
1

1
ASTRAL GCMPSC 266 10 MAR 09

Formally Specifying and Verifying
Real-Time Systems with ASTRAL

Richard A. Kemmerer

Reliable Software Group
Computer Science Department

University of California, Santa Barbara

2
ASTRAL GCMPSC 266 10 MAR 09

What is a Real-Time System?

• A system whose semantics depend on the
speed of execution of (some of) the
activities

• A system where a failure to produce certain
results within given time limits (too early ...
too late) may result in an error (whose effect
may be catastrophic

• A system whose performance and
correctness can not be separated

3
ASTRAL GCMPSC 266 10 MAR 09

Real-Time Systems

• In 1977 Wirth classified programs into three
types

– Sequential

– Parallel

– Processing-time dependent (i.e., real-
time)

4
ASTRAL GCMPSC 266 10 MAR 09

Verifying Real-Time Systems

• Sequential and real-time systems both have
critical functionality requirements

• Real-time systems must also meet critical
performance deadlines

5
ASTRAL GCMPSC 266 10 MAR 09

ASTRAL Solution

• Develop a formal specification language

• Develop a formal proof system for proving
properties about the specifications

• Build tools to support the construction and
use of the specifications

6
ASTRAL GCMPSC 266 10 MAR 09

Goals for ASTRAL

• Language usability was a major design
factor

• Tool development proceeded in parallel
with the language development

• Specifications are layered, compositional,
and executable

2

7
ASTRAL GCMPSC 266 10 MAR 09

Layered, Compositional, and
Executable Specifications

• Specification modules are refined to include
more detail without changing their interface

• Behavior of the whole is determined by the
behavior of the parts

• Allow the developers to treat the
specifications as prototypes

8
ASTRAL GCMPSC 266 10 MAR 09

An Overview of ASTRAL

• In ASTRAL a real-time system is modeled by a collection of
process type specifications and a single global specification

• The global specification contains declarations for types,
constants, etc that are shared among process types

• A process type specification contains types, state variables,
transitions, etc

• Every process is thought as being in various states, with one
state differentiated from another by the values of state variables

• Only state transitions can change the values of state variables;
Transitions are described in term of pre- and post- conditions by
using an extension of first order predicate calculus

9
ASTRAL GCMPSC 266 10 MAR 09

The ASTRAL Computational Model

• Maximal parallelism among processes

• Non interruptable, non overlapping transitions in
a single process instance

• Transitions are executed as soon as they are
enabled, that is, their pre-condition is satisfied
(exception: exported transitions)

• Implicit one-to-many message passing
communication

• Time can be continuous or discrete

10
ASTRAL GCMPSC 266 10 MAR 09

The ASTRAL Computational Model

• Every process can export state variables and
transitions

• Inter-process communication is accomplished by
inquiring about the value of exported variables and the
start time and end time of exported transitions.
– i.Start(Op, t) true iff the last occurrence of transition Op of instance i

started at time t.

– i.End(Op, t) true iff the last completed occurrence of transition Op of
instance i ended at time t.

– past(expr, t) represents the value of expr at time t

11
ASTRAL GCMPSC 266 10 MAR 09

The ASTRAL Computational Model

• When an exported transition fires, the start time
and the values of parameters are broadcast

• When the transition ends, the end time and the
values of any exported variables modified by the
transition are broadcast

12
ASTRAL GCMPSC 266 10 MAR 09

Environmental Assumptions

• An environment clause formalizes the assumptions that
must always hold on the behavior of the external
environment

• For each process there is a local environment clause
which expresses the assumptions about calls to the
exported transitions

• There is also a global environment clause which is a
formula that may refer to all exported transitions in the
system

3

13
ASTRAL GCMPSC 266 10 MAR 09

Environmental Assumptions

• An exported transition can fire only after it has
been called by the environment

• If Op is an exported transition, Call(Op,t) is true
iff at time t the last occurrence of the call to Op
occurred

14
ASTRAL GCMPSC 266 10 MAR 09

System Assumptions

• Each process p may have an imported variable clause
which formalizes assumptions that process p makes
about the context provided by the other processes in
the system

15
ASTRAL GCMPSC 266 10 MAR 09

Critical Requirements

Critical requirements are expressed by means of:

- invariants (global and local)

- schedules (global and local)

16
ASTRAL GCMPSC 266 10 MAR 09

Invariants

• Must be true regardless of the environment
or the context in which the process or
system is running

• State properties that must initially be true
and must be guaranteed during system
evolution

17
ASTRAL GCMPSC 266 10 MAR 09

Schedules

• Schedules are additional system properties
that are required to hold under more
restrictive hypothesis than invariants

• Assumptions expressed in the associated
environment, imported variable clauses
and/or system assumptions may be used to
prove the validity of a schedule

18
ASTRAL GCMPSC 266 10 MAR 09

Further Assumptions
and Restrictions Clause

• Used to prove that schedules are feasible

• Serve only as a guidance to the implementer

• Further environment assumptions

• Further process assumptions (FPAp) section restricts
the possible system implementations and reduces the
level of nondeterminism of the system specification

– transition selection part

– constant refinement part

4

19
ASTRAL GCMPSC 266 10 MAR 09

Telephony Example

• Two process type specifications
– Phone

– Central Control

• One instance of central control

• One instance of phone for each operating
telephone number in the area

20
ASTRAL GCMPSC 266 10 MAR 09

Global Specification

Central
Control

Phone

Phone

Phone_ID Digit Digit_List Enabled_State

Enabled_Ring_Pulse
Enabled_Ringback_Pulse

Next_Digit

Enter_Digit

Phone_State

Offhook

PickupHangup

21
ASTRAL GCMPSC 266 10 MAR 09

Keywords

Now Represents the current value of time

Self Is used by a process when it wants
to refer to its own id

22
ASTRAL GCMPSC 266 10 MAR 09

Specification Function

IDTYPE Returns the process type when
presented with a process id

23
ASTRAL GCMPSC 266 10 MAR 09

Global

PROCESSES
Phones: array[1 .. Num_Phone] of Phone,
Central: Central_Control

TYPE
Positive_Integer i: Integer (i > 0),
Digit IS TYPEDEF d: Integer (d ≥ 0 & d ≤ 9),
Digit_List IS LIST OF Digit,
Phone_ID IS TYPEDEF pid: ID

(IDTYPE(pid)=Phone)
Enabled_State = (Idle,Ready_To_Dial,Dialing,

Ringing,Waiting,Talk,Disconnect,Busy,Alarm)

24
ASTRAL GCMPSC 266 10 MAR 09

Global

CONSTANT
Num_Phone, Max_Cust : Positive_Integer

5

25
ASTRAL GCMPSC 266 10 MAR 09

Phone

IMPORT
Digit, Phone_ID, Enabled_State,
Central.Phone_State,
Central.Enabled_Ring_Pulse,
Central.Enabled_Ringback_Pulse

EXPORT
Offhook, Next_Digit, Pickup, Enter_Digit,
Hangup

26
ASTRAL GCMPSC 266 10 MAR 09

Phone

VARIABLE
Offhook, Dialtone, Ring, Ringback,

Busytone: Boolean,
Next_Digit: Digit

27
ASTRAL GCMPSC 266 10 MAR 09

Phone

TRANSITION Pickup T1
ENTRY

~Offhook
EXIT

Offhook

& ~Dialtone

& ~Busytone

& ~Ring

& ~Ringback

28
ASTRAL GCMPSC 266 10 MAR 09

Phone
TRANSITION Start_Tone T2

ENTRY
Offhook & ~Dialtone

& Central.Phone_State(Self)=
Ready_To_Dial

& FORALL t:Time(
Change(Dialtone,t) →

t < Change(Offhook))
EXIT

Dialtone

29
ASTRAL GCMPSC 266 10 MAR 09

Phone
TRANSITION Enter_Digit(D:Digit) T4
ENTRY

Offhook
& (

Central.Phone_State(Self)=Ready_To_Dial
& Dialtone

| Central.Phone_State(Self)=Dialing)
EXIT

Next_Digit=D & ~Dialtone

30
ASTRAL GCMPSC 266 10 MAR 09

Other Phone Transitions

Start_Ring

Stop_Ring

Start_Ringback

Stop_Ringback

Start_Busytone

Stop_Busytone

Hangup

6

31
ASTRAL GCMPSC 266 10 MAR 09

Phone Environment

ENVIRONMENT

FORALL t: Time (Call(Pickup, t) →
~past(Offhook, t))

& FORALL t: Time (Call(Hangup, t) →
past(Offhook, t))

& FORALL t: Time (Call2(Pickup, t) →
Call(Pickup) - Call2(Pickup) ≥ 1)

32
ASTRAL GCMPSC 266 10 MAR 09

Phone Environment

FORALL t: Time

(Call(Enter_Digit, t)

→ (past(Dialtone, t)

| EXISTS t1: Time, n: Integer, D: Digit

(2 <= n & Calln(Enter_Digit(D), t1)

& past(Dialtone, t1) & n <= 7

& FORALL t2: Time (t1 <= t2 <= t

→ past(Offhook, t2))))

33
ASTRAL GCMPSC 266 10 MAR 09

Phone Invariant

INVARIANT
(Dialtone→ ~Ring & ~Ringback & ~Busytone)

& (Ring → ~Dialtone & ~Ringback & ~Busytone)

& (Ringback→ ~Dialtone & ~Ring & ~Busytone)

& (Busytone→ ~Dialtone & ~Ring & ~Ringback)

34
ASTRAL GCMPSC 266 10 MAR 09

Phone Schedule

SCHEDULE

FORALL t: Time (

Call(Pickup, t) <−>Start(Pickup, t))

35
ASTRAL GCMPSC 266 10 MAR 09

Phone Further Assumption

FURTHER ASSUMPTION #1

FURTHER PROCESS ASSUMPTION

TRANSITION SELECTION

enabled_transitions CONTAINS

any_subset({Stop_Ringback, Stop_Busytone})

& TRUE

→ eligible_transitions =

{Stop_Ringback, Stop_Busytone}
INTERSECT enabled_transitions

36
ASTRAL GCMPSC 266 10 MAR 09

Central Control
IMPORT

Digit, Digit_List, Phone_ID, Enabled_State,
Phones.Offhook, Phones.Next_Digit,
Phones.Pickup, Phones.Enter_Digit

EXPORT
Phone_State, Enabled_Ring_Pulse,
Enabled_Ringback_Pulse

7

37
ASTRAL GCMPSC 266 10 MAR 09

Central Control

VARIABLE
Phone_State(Phone_ID): Enabled_State,
Enabled_Ring_Pulse(Phone_ID):Boolean,
Enabled_Ringback_Pulse(Phone_ID): Boolean,
Connected_To(Phone_ID): Phone_ID,
Number(Phone_ID): Digit_List

38
ASTRAL GCMPSC 266 10 MAR 09

Central Control

IMPORTED VARIABLE CLAUSE

SETSIZE({ SETDEF P: Phone_ID (

Now - 2 <= P.Start(Pickup) <= Now)})

<= Max_Cust

39
ASTRAL GCMPSC 266 10 MAR 09

Central Control

TRANSITION
Give_Dial_Tone(P:Phone_ID) Tim1

ENTRY
P.Offhook

& Phone_State(P)=Idle
EXIT

Phone_State(P) BECOMES
Ready_To_Dial

& Number(P) BECOMES NIL

40
ASTRAL GCMPSC 266 10 MAR 09

Central Control
TRANSITION

Process_Digit(P:Phone_ID) Tim2

ENTRY

P.Offhook

& Count(P) < 7

& ((Phone_State(P)=Ready_To_Dial

& P.End(Enter_Digit) > End(Give_Dial_Tone(P)))

| (Phone_State(P)=Dialing)

& P.End(Enter_Digit) > End(Process_Digit(P))))

EXIT
Number(P) BECOMES Number'(P) CONCAT LISTDEF(P.Next_Digit)

& Phone_State(P) BECOMES Dialing

41
ASTRAL GCMPSC 266 10 MAR 09

Other Central Control Transitions

Process_Call
Enable_Ring_Pulse
Disable_Ring_Pulse
Enable_Ringback_Pulse
Disable_Ringback_Pulse
Start_Talk
Terminate_Call
Generate_Alarm

42
ASTRAL GCMPSC 266 10 MAR 09

Central Control Invariant

INVARIANT

FORALL P:Phone_ID (

Count(P) >= 0 & Count(P) <= 7

& Phone_State(P)=Waiting →
Phone_State(Connected(P))=Ringing

& Phone_State(P)=Ringing →

Phone_State(Connected(P))=Waiting

& Phone_State(P)=Talk →
Phone_State(Connected(P))=Talk)

8

43
ASTRAL GCMPSC 266 10 MAR 09

Central Control Constraint

CONSTRAINT
FORALL P:Phone_ID (

(Phone_State'(P)=Busy
| Phone_State'(P)=Alarm
| Phone_State'(P)=Disconnect)

& Phone_State(P) ~= Phone_State'(P)
→

Phone_State(P)=Idle)

44
ASTRAL GCMPSC 266 10 MAR 09

Central Control Schedule

SCHEDULE
FORALL P:Phone_ID (

Phone_State(P)=Ringing
& Now - End(Process_Call(Connected(P))) >= Downtime_Ring

→
EXISTS n:Integer (

Endn(Enable_Ring_Pulse(P)) >
End(Process_Call(Connected(P)))

& Endn(Enable_Ring_Pulse(P)) <=
End(Process_Call(Connected(P))) + Downtime_Ring)

)

45
ASTRAL GCMPSC 266 10 MAR 09

Global Environment

ENVIRONMENT

SETSIZE({ SETDEF P: Phone_ID (
Now - 2 <= P.Call(Pickup) <= Now)})

<= Max_Cust

46
ASTRAL GCMPSC 266 10 MAR 09

Global Schedule

SCHEDULE
FORALL P:Phone_ID, t: Time

(P.Offhook
& P.Call(Pickup, t)
& Now - t >= 2
& past(Central.Phone_State(P), t) = Idle

→ EXISTS t1:Time (t < t1 <= t + 2
& past(Central.Phone_State(P), t1)

= Ready_To_Dial))

47
ASTRAL GCMPSC 266 10 MAR 09

Formal Proofs

Formal proofs in ASTRAL can be divided
into two categories:

– Intra-level proofs

– Inter-level proofs

48
ASTRAL GCMPSC 266 10 MAR 09

Formal Proofs

• Intra-level proofs deal with proving that the
specification of level i is consistent and
satisfies the stated critical requirements

• Inter-level proofs deal with proving that the
specification of level i+1 is consistent with
the specification of level i

9

49
ASTRAL GCMPSC 266 10 MAR 09

ASTRAL Intra-level Proofs

• Every process specification guarantees its local
invariant

• Every process specification guarantees its local
schedule

• The specification guarantees the global invariant

• The specification guarantees the global schedule

• The imported variable assumptions are guaranteed by
the specification

• All the assumptions about the environment are
compatible

50
ASTRAL GCMPSC 266 10 MAR 09

Building an ASTRAL intra-level proof

• The local invariant Ip describes properties which are

independent from the environment, i.e., it must hold in every

possible environment

• To prove that the process Pp guarantees Ip we have to show

that:
1) Ip holds in the initial state of process p, and

2) If Pp is in a state in which Ip holds, then

for every possible evolution of Pp, Ip will

hold.

1) Ip holds in the initial state of process p, and

2) If Pp is in a state in which Ip holds, then

for every possible evolution of Pp, Ip will

hold.

51
ASTRAL GCMPSC 266 10 MAR 09

Building an ASTRAL invariant proof

1) Init_Statep & Now = 0 → Ip

2) We assume that Ip holds until a given time t0 and prove that Ip will hold

for every time t > t0. Without loss of generality we assume that t = t0 + ∆,

for some fixed ∆ > 0 and we will show that Ip holds until t0 + ∆

We may need to make assumptions on the possible sequences of events

that occurred within the interval [t0 - H, t0 + ∆], where H is a constant a

priori unbounded. By event we mean the starting (ending) of some

transition of Pp

52
ASTRAL GCMPSC 266 10 MAR 09

ASTRAL Abstract Machine Semantics

Captured in three axioms
A1 start to end of transition is equal to the

transition duration

A2 if processor is idle and some transitions are
enabled, then one will fire

A3 for each processor the transitions are
nonoverlapping

53
ASTRAL GCMPSC 266 10 MAR 09

Axiom A1

FORALL t:Time, Op: Trans_of_p
(Now - t ≥ TOp

→ (past(Start(Op),t) = t

↔ past(End(Op),t+TOp) = t +TOp))

where TOp represents the duration of Op

54
ASTRAL GCMPSC 266 10 MAR 09

Axiom A2
FORALL t:Time (

EXISTS d:Time, S'T: SET OF Trans_of_p(
FORALL t1:Time, Op: Trans_of_p(

t1 ≥ t - d & t1 < t & Op ISIN ST
& past(Start(Op),t1) < past(End(Op),t)
& S'T ⊆ ST & S'T ~= EMPTY
& FORALL Op':Trans_of_p (

Op' ISIN S'T → Eval_Entry(Op',t))
& FORALL Op':Trans_of_p (

Op' ~ISIN S'T → ~Eval_Entry(Op',t))
→ UNIQUE Op':Trans_of_p (

Op' ISIN S'T & past(Start(Op'),t)=t))))

10

55
ASTRAL GCMPSC 266 10 MAR 09

Axiom A3

FORALL t1, t2:Time, Op: Trans_of_p(
Start(Op)=t1 & End(Op)=t2 & t1 < t2

→ FORALL t3: Time, Op': Trans_of_p(
t3 ≥ t1 & t3 < t2 & Start(Op')= t3

→ Op = Op' & t3 = t1)
& FORALL t3: Time,Op': Trans_of_p(

t3 > t1 & t3 ≤ t2 & End(Op')= t3

→ Op = Op' & t3 = t2))

56
ASTRAL GCMPSC 266 10 MAR 09

Building an ASTRAL invariant proof
• For each sequence of events σ a formula Fσ can be algorithmically

associated with σ

• For each event occurring at time t we have:

- past(ENpj, t) & past(Start(Oppj, t), t) if the event is the start of Oppj

- past(EXpj, t) & past(End(Oppj, t), t) if the event is the end of Oppj

A1 & A2 & A3 −| Fσ & FORALL t:Time (t <= t0 → past(Ip,t))

→ FORALL t1 :Time (t1 > t0 & t1<= t0+ ∆ → past(Ip, t1))

57
ASTRAL GCMPSC 266 10 MAR 09

To Prove the Schedule

Need to modify axiom A2 to deal with the
transition selection clause and to require
calls for external transitions

Also need an axiom to state that a call is
issued only if a call was made from the
environment and not yet serviced

58
ASTRAL GCMPSC 266 10 MAR 09

Axiom A2’
FORALL t:Time (

EXISTS d: Time, S'T: SET OF Trans_of_p(
FORALL t1:Time, Op: Trans_of_p(

t1 ≥ t - d & t1 < t & Op ISIN ST

& past(Start(Op),t1) < past(End(Op),t)
& S'T ⊆ ST & S'T ~= EMPTY
& FORALL Op':Trans_of_p (

Op' ISIN S'T → Eval_Entry'(Op',t))
& FORALL Op':Trans_of_p (

Op' ~ISIN S'T → ~Eval_Entry'(Op',t))
→ UNIQUE Op':Trans_of_p (

Op' ISIN TS(S'T) & past(Start(Op'),t)=t))))

59
ASTRAL GCMPSC 266 10 MAR 09

Axiom A4

FORALL Op: Trans_of_p(
EXISTS t1: Time(

t1 ≤ Now & Call(Op, t1)
& FORALL t: Time (

t ≥ t1 & t ≤ Now & ~Start(Op,t)

→ past(Issued_call(Op),t)))

& EXISTS t1: Time(
t1 ≤ Now & Start(Op, t1)

& FORALL t: Time(
t > t1 & t ≤ Now & ~Call(Op,t)

→ ~past(Issued_call(Op),t))))

60
ASTRAL GCMPSC 266 10 MAR 09

Building an ASTRAL schedule proof

• To prove that Pp guarantees the local schedule Scp:

1) Scp holds in the initial state of process p, and

2) If Pp is in a state in which Scp holds, then for every possible
evolution of Pp compatible with the system assumptions, when
the environment behaves as described in Pp, Scp will hold.

1) Scp holds in the initial state of process p, and

2) If Pp is in a state in which Scp holds, then for every possible
evolution of Pp compatible with the system assumptions, when
the environment behaves as described in Pp, Scp will hold.

• We can assume that the local invariant Ip holds

11

61
ASTRAL GCMPSC 266 10 MAR 09

Building an ASTRAL Global proof

• Proving that S guarantees the global invariant IG is done as for the

local invariant case:

1) IG holds in the initial state of S, and

2) If S is in a state in which IG holds, then for every
possible evolution of S, IG will hold.

1) IG holds in the initial state of S, and

2) If S is in a state in which IG holds, then for every
possible evolution of S, IG will hold.

• We can assume that the local invariants Ip hold

62
ASTRAL GCMPSC 266 10 MAR 09

Building an ASTRAL global proof

• To prove that S guarantees the global schedule ScG:

1) ScG holds in the initial state of S, and

2) If S is in a state in which ScG holds, then for every
possible evolution of S, ScG will hold

1) ScG holds in the initial state of S, and

2) If S is in a state in which ScG holds, then for every
possible evolution of S, ScG will hold

• We can assume that the global invariant, every local invariant

and schedules, and the global environment assumptions hold

• We cannot use any of the local environment assumption or system

assumptions to prove the validity of the global schedule

63
ASTRAL GCMPSC 266 10 MAR 09

Building an ASTRAL consistency Proof

• When proving a local schedule we rely on the assumptions on the

imported variables. Such assumptions must be checked against the

behavior of the processes they are imported from.

• Every process contains two clauses describing assumptions on the

behavior of the environment. The global specification contains

another clause describing assumptions on the environment. We

must verify that all the assumptions do not contradict each other

64
ASTRAL GCMPSC 266 10 MAR 09

ASTRAL Inter-level Proofs

• Every transition at level n is correctly
implemented at level n+1

65
ASTRAL GCMPSC 266 10 MAR 09

Composing ASTRAL Specifications
Composing two top level specifications S' and S" means

to build a new top level specification C, that is the
specification of a system obtained by making one or
more instances of S' and S" interact

In order to compose S' and S" one has to define:
- how the interaction between S' and S" can be
formally defined
- how the specification C can be built starting from S',
S" and the description of their interaction
- under which conditions the critical requirements of S'
and S" will still be valid in C.

66
ASTRAL GCMPSC 266 10 MAR 09

The Compose Section

• The COMPOSE section allows ASTRAL specifications
to be composed into a new specification of a more
complex system

• By adding the COMPOSE section and introducing a
compositional specification method a system designer
can now reason about the behavior of a composite system
in terms of its components

• The size of the composite specification grows linearly
with the size of the component specifications

12

67
ASTRAL GCMPSC 266 10 MAR 09

The Compose Section

• The COMPOSE Section describes the interaction between
S' and S"

• Some exported transitions of S' (S") are no longer exported,
i.e., the stimuli needed to fire such transitions are produced
by S" (S') rather than the external environment

S'
x1
x2
x3

T1

T2

S"
y1
y2

T3

Call(T1)

Call(T3)

Call(T2)

S'
x1
x2
x3

T1

T2

S"
y1
y2

T3

C

Call(T2)

68
ASTRAL GCMPSC 266 10 MAR 09

The COMPOSE Section

• The COMPOSE Section contains the following parts

- A set of clauses defining types constants and definitions

- A name clash resolution clause

- A call generation clause describing how exported transitions of S' (S") are

triggered by events occuring in S" (S')

FORALL t: Time, … (P(S') ↔ Call(T, t))

where P(S') is an ASTRAL well-formed formula describing the

occurrence of events in S' equivalent to calling transition T of

S"

FORALL t: Time, … (P(S') ↔ Call(T, t))

where P(S') is an ASTRAL well-formed formula describing the

occurrence of events in S' equivalent to calling transition T of

S"

69
ASTRAL GCMPSC 266 10 MAR 09

Building the New Specification
• When composing two specifications by means of a COMPOSE section it is

desirable to automaticaly produce the specification of the composed system.

Therefore it is necessary to:

- Build the global specification

- Modify the process specifications

S'
x1
x2
x3

T1

T2

S"
y1
y2

T3

C

Call(T2) x1
x2
x3
y1
y2

T2 CCall(T2)

70
ASTRAL GCMPSC 266 10 MAR 09

The Global Specification

• The clauses defining type, constants, and definitions are taken from the

COMPOSE section and the global specification of S' and S" (using the

name clash clause)

• The global invariant (schedule) is built from the invariants (schedules) of

S' and S", by substituting any occurrences of the operators Start, End and

Call referring to a no longer exported transition with an equivalent

predicate referring to exported variables

• The global environment clause is similarly built by modifying those parts

that refer to no longer exported transitions.

71
ASTRAL GCMPSC 266 10 MAR 09

The Process Specifications
• All process specifications belonging to either S' or S" belong to C

• For each process specification the following modifications are required:

Local environment clause Remove references to no longer exported
transitions

Export/Import clause Unexport transitions referred to in the Call
Generation Clause of the COMPOSE section

Import variables referred to in the CGC

Transitions in the CGC Modify the Entry condition:

EXISTS t: Time … (P(S') & Start(T) < t)
& Old_Entry,

P(S') is the predicate used in the CGC

72
ASTRAL GCMPSC 266 10 MAR 09

The Process Specifications

Imported variables clause Add assumptions about new imported variables
They are generated from the CGC and the old
environment clauses

Local Schedule Modify as for Global Schedule

Local Invariant No modification is required

Process assumptions No modification is required

13

73
ASTRAL GCMPSC 266 10 MAR 09

Proof Obligations

• Under what conditions are the invariants and schedules of S' and S" still valid in
C ?

- Invariants do not depend on the environment

Therefore, they are still valid

- Schedules do depend on the environment

Therefore, one has to prove that the behavior of S' (S") implies what is stated in
the environment clauses of S" (S'):

A1 & A2" & A3 & A4 & Env G ' & CG' −| Fσ ' → Env G" , for S"

A1 & A2" & A3 & A4 & Env G" & CG" −| Fσ" → Env G ', for S'

74
ASTRAL GCMPSC 266 10 MAR 09

Modularized Specifications

• The composite specification approach coupled with
the top-down refinement specification approach
allows a system designer to specify his/her system
using either a bottom-up approach or a top-down
approach or a combination of the two

• The composability of specifications also promotes
the reuse of existing specifications

75
ASTRAL GCMPSC 266 10 MAR 09

ASTRAL Tool Suite

In order to get designers to use formal
methods to develop real-time systems it is
necessary to provide them with an
integrated set of tools for writing and
analyzing their specifications

76
ASTRAL GCMPSC 266 10 MAR 09

ASTRAL
Software Development Environment

(SDE)

• Syntax directed editor

• Specification processor

• Reasoning system

• Specification testing component

• Browser kit

77
ASTRAL GCMPSC 266 10 MAR 09

SDE

• A key design criteria for the SDE was that a
user should never need to switch between
tools nor should there be any need for data
exchange via temporary files

• The user should be able to change from
specification writing to type checking to
generating proof obligations with a mere
button push

78
ASTRAL GCMPSC 266 10 MAR 09

Syntax-Directed Editor

• Only basic editing functions

• Syntax is automatically checked when input
– errors are indicated when entered

– help facility displays corresponding part of the
grammar

• When editing of a section is completed the
section of text is formatted into a fixed
format

14

79
ASTRAL GCMPSC 266 10 MAR 09

Specification Processor
• Validation component checks the entire

specification for:
– type errors

– scoping errors

– missing parameters

• Proof obligation component generates
– Intra-level proof obligations

– Inter-level proof obligations

– Composition proof obligations

80
ASTRAL GCMPSC 266 10 MAR 09

Reasoning System

• Uses PVS theorem prover
– ASTRAL semantics have been written in the

PVS specification language

– ASTRAL to PVS translator

• ASTRAL model checker

81
ASTRAL GCMPSC 266 10 MAR 09

Specification Testing Tool

• Symbolically executes an ASTRAL
specification under user direction

• Modification of the ASTRAL model
checker

82
ASTRAL GCMPSC 266 10 MAR 09

Browser Kit

• Uses three inter-related databases
– Variables database

– Transitions database

– Processes database

• Automatically updated whenever the
specification is edited

• Browser for each database

• Particularly useful during the maintenance
phase

83
ASTRAL GCMPSC 266 10 MAR 09

ASTRAL Case Studies
Standard Benchmarks

– railroad crossing

– elevator

Phone System (POTS)

Wide-area Phone System

Hardware
– checksum generator

– UART

Robot Control System

84
ASTRAL GCMPSC 266 10 MAR 09

For More Information

Introduction to Language and Composition
– TSE September 1997

Intra-level Proof Obligations
– TSE August 1994

Inter-level Proof Obligations
– ESEC 95

Composability Proof Obligations
– ISSTA 93

15

85
ASTRAL GCMPSC 266 10 MAR 09

Software Development Environment (SDE)
ftp from ftp.cs.ucsb.edu in directory seclab-distrib

Using the ASTRAL Model Checker Tool for
Encryption Protocol Analysis
– DIMACS 97

– FM&SP 98

86
ASTRAL GCMPSC 266 10 MAR 09

Online ASTRAL Info

www.cs.ucsb.edu/~seclab/projects/ASTRAL

