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A6stract- ASTRAL is a formal specification language for 
real-time systems. It is intended to support formal software 
development, and therefore has been formally defined. This paper 
focuses on how to formally prove the mathematical correctness 
of ASTRAL specifications. ASTRAL is provided with structuring 
mechanisms that allow one to build modularized specifications of 
complex systems with layering. In this paper, further details of the 
ASTRAL environment components and the critical requirements 
components, which were not fully developed in previous papers, 
are presented. Formal proofs in ASTRAL can be divided into two 
categories: interlevel proofs and intralevel proofs. The former deal 
with proving that the specification of level i + 1 is consistent with 
the specification of level i ,  and the latter deal with proving that the 
specification of level i is consistent and satisfies the stated critical 
requirements. This paper concentrates on intralevel proofs. 

Zndex Terms-Formal methods, formal specification and veri- 
fication, real-time systems, timing requirements, state machines, 
ASLAN, TRIO. 

I. INTRODUCTION 

STRAL is a formal specification language for real-time A systems. It is intended to support formal software devel- 
opment, and therefore has been formally defined. Reference [8] 
discusses the rationale of ASTRAL’S design and demonstrates 
how the language builds on previous language experiments. 
Reference [9] discusses how ASTRAL’S semantics are spec- 
ified in the TRIO formal real-time logic. It also outlines 
how ASTRAL specifications can be formally analyzed by 
translating them into TRIO and then using the TRIO validation 
theory. 

Recently, a number of approaches have been proposed to 
build formal proofs for real-time systems [ I ] ,  [ 2 ] ,  [5]-[7],  
[lo], 1121. Many of these exploit the so-called dual language 
approach [lo], [ 1 11, where a system is modeled as an abstract 
machine (e.g., a finite state machine or a Petri net) and 
its properties are described through some assertion language 
(e.g., a logic or an algebraic language). However, they are 
based on low-level formalisms, i.e., abstract machines and/or 
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assertion languages that are not provided with modularization 
and abstraction mechanisms. As a consequence, the proofs 
lack structure, which makes them unsuitable for dealing with 
complex real-life systems. 

The work of Gerber and Lee [7] provides a layered approach 
to the verification of real-time systems. With their approach, 
the CSR application language is used to specify processes, 
and these processes are mapped to system resources by using 
a configuration schema. A CSSR specification is then auto- 
matically generated. This approach is similar to the ASTRAL 
to TRIO translation; however, their approach is much more 
operational than the ASTRALDRIO approach. 

ASTRAL provides structuring mechanisms that allow one 
to build modularized specifications of complex systems with 
layering [SI, [9]. In this paper, further details of the ASTRAL 
environment components and the critical requirements com- 
ponents, which were not fully developed in previous papers, 
are presented. 

Formal proofs in ASTRAL can be divided into two cate- 
gories: interlevel proofs and intralevel proofs. The former deal 
with proving that the specification of level i, + 1 is consistent 
with the specification of level i, whereas the latter deal with 
proving that the specification of level Z is consistent and sat- 
isfies the stated critical requirements. This paper concentrates 
on intralevel proofs. 

In the next section, a brief overview of ASTRAL is pre- 
sented along with an example system, which is used through- 
out the remainder of the paper for illustrating specific features 
of ASTRAL. Section 111 discusses how to represent assump- 
tions about the environment as well as the representation of 
critical requirements for the system. Section IV presents a for- 
mal framework for generating proof obligations in ASTRAL, 
and Section V presents an example proof. Finally, in Section 
VI, some conclusions from this research are presented, and 
possible future directions are proposed. 

11. OVERVIEW OF ASTRAL 

ASTRAL uses a state machine process model and has 
types, variables, constants, transitions, and invariants. A real- 
time system is modeled by a collection of state machine 
specifications and a single global specification. Each state 
machine specification represents a process type, of which there 
may be multiple statically generated instances in the system.’ 

‘Static rather than dynamic processes are used in ASTRAL to simplify 
both the syntax and semantics of the formalism. Furthermore, most real-life 
real-time systems avoid dynamic processes. The reader is referred to 181 for 
more details on the ASTRAL design goals. 
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The process being specified is thought of as being in various 
states, with one state differentiated from another by the values 
of the state variables. The values of these variables evolve 
only via well-defined state transirions, which are specified 
with Entry and Exit assertions and have an explicit non- 
null duration. State variables and transitions may be explicitly 
exported by a process. This makes the variable values readable 
by other processes, and makes the transitions callable by the 
extemal environment; exported transitions cannot be called by 
another process. Interprocess communication occurs via the 
exported variables, and is accomplished by inquiring about the 
value of an exported variable for a particular instance of the 
process. A process can inquire about the value of any exported 
variable of a process type or about the start or end time of an 
exported transition. 

The ASTRAL computation model views the values of all 
variables being modified by a transition as being changed by 
the transition in a single atomic action that occurs when the 
transition completes execution. Thus, if a process is inquiring 
about the value of an exported variable while a transition 
is being executed by the process being queried, the value 
obtained is the value that the variable had when the transition 
commenced. Start(Opi, 1) is a predicate that is true if and only 
if transition Op, starts at time t and there is no other time 
after t and before the current time when Op, starts (i.e., t is 
the time of the last occurrence of Op,). For simplicity, the 
functional notation Start(Op;) is adopted as a shorthand for 
“time t such that Start(Op,, t),” whenever the quantification 
of the variable t (whether existential or universal) is clear 
from the context. Start-k(Op,) is used to give the start time of 
the kth previous occurrence of Op,. Inquiries about the end 
time of a transition Op, may be specified similarly by using 
End(Opi) and End-k(Op;). 

In ASTRAL, a special variable called Now is used to denote 
the current time. The value of Now is 0 at system initialization 
time. ASTRAL specifications can refer to the current time 
(“Now”) or to an absolute value for time that must be less 
than or equal to the current time. That is, in ASTRAL, one 
cannot express values of time that are to occur in the future. 
To specify the value that an exported variable var had at 
time t ,  ASTRAL provides a past(var, t )  function. The past 
function can also be used with the Start and End predicates. 
For example, the expression “past(Start(Op), t) = t” is used 
to specify that transition Op started at time t .  

The type ID is one of the primitive types of ASTRAL. 
Every instance of a process type has a unique identification 
of type ID. An instance can refer to its own identification 
by using “Self.” For inquiries where there is more than 
one instance of that process type, the inquiry is preceded 
by the unique identification of the desired instance followed 
by a period. For example, %.Start(Op) gives the last start 
time that transition Op was executed by the process instance 
whose unique identification is .i. However, when the process 
instance performing the inquiry is the same as the instance 
being queried, the preceding identification and period may be 
dropped. 

An ASTRAL global specification contains declarations for 
all of the process instances that comprise the system and for 

any constants or nonprimitive types that are shared by more 
than one process type. Globally declared types and constants 
must be explicitly imported by a process type specification 
that requires them. 

The computation model for ASTRAL is based on nonde- 
terministic state machines and assumes maximal parallelism, 
noninterruptable and nonoverlapping transitions in a single 
process instance, and implicit one-to-many (multicast) 
message-passing communication, which is instantaneous. 
Maximal parallelism assumes that each logical task is 
associated with its own physical processor, and that other 
physical resources used by logical tasks (e.g., memory and 
bus bandwidth) are unlimited. In addition, a processor is 
never idle when some transition is able to execute. That is, a 
transition is executed as soon as its precondition is satisfied 
(assuming that no other transition is executing). When two or 
more transitions of the same process are enabled, one of them 
is nondeterministically chosen for execution. 

A detailed description of ASTRAL and of its underlying 
motivations is provided in [SI, which also contains a complete 
specification of a phone system example. In this paper, only 
the concepts of ASTRAL that are needed to present the proof 
theory are discussed in detail. These concepts are illustrated via 
a simple example that is a variation of the packet assembler 
described in [ 131. 

The system contains an object that assembles data items 
(in the order in which it receives them) into fixed-size 
packets, and sends these packets to the environment. It also 
contains a fixed number of other objects, each of which 
receives data items from the environment on a particular 
channel and sends those items to the packet maker. The 
packet maker sends a packet to the environment as soon as 
it is full of data items. 

Each data receiver attaches a channel identifier to each 
incoming data item; these channel identifiers are included 
with the data items in the outgoing packets. 

If a data receiver does not receive a new datum within 
a fixed time since the last item amved, its channel is 
considered closed until the next datum arrives. Notifications 
of channel closings are put into the outgoing packets as well 
as data items. If all channels are closed, then the packet 
maker should send an incomplete packet to the environment 
rather than wait for data to complete it. 
In the remainder of this paper, this system is referred to 

as the CCITT system. The Appendix contains a complete 
ASTRAL specification of the CCITT system.2 It consists 
of a packet maker process specification, an input process 
specification (of which there are N instances), and the global 
specification. 

The input process specification, which corresponds to the 
data receiver in Zave’s system description, contains two vari- 
ables Msg of type Message and Channel-Closed of type 
Boolean. It also contains two transitions New-Info and Notify 
-Timeout, whose duration are N-LDur and N-T-Dur, respec- 

’An earlier version of this specification that did not take into acount the 
environment, and with different invariants and schedules, was presented in 
191. 
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tively. Transition New-Info, which is exported, prepares a 
message to be sent to the packet maker process through a 
channel. The message contains a data part, which is provided 
by the extemal environment when the transition is invoked, 
and two other parts that allow the system to unequivocally 
identify which instance of process Input has produced that 
message and how many messages have been produced so far 
by that particular process instance. 

TRANSITION New-Info(x:Info) N-I-Dur 
EXIT 

MsgCData-Part] = x 
& Msg[Countl = Msg'[Countl + 1 
& Msg[ID-Partl = Self 
& -Channel-Closed 

In ASTRAL Exit assertions, variable names followed by a 
prime (') indicate the value that the variable had when the 
transition fired. Transition Notify-Timeout is executed when 
no datum is received from the extemal environment for more 
than Input-Tout time units. It prepares a message to be sent 
to the packet maker process containing the information that 
no datum has been received (Le., the value of the data part 
is the constant Closed). Moreover, Notify-Timeout marks the 
channel through which messages are usually sent as being 
closed. 

TRANSITION Notify-Timeout N-T-Dur 
ENTRY 

EXISTS tl : Time ( 

& -Channel-Closed 
EXIT 

& 
& Msg[ID-Part] = Self 
& Channel-Closed 

Start(New-Info, t l )  
& Now - tl 2 Input-Tout) 

MsgCData-Partl= Closed 
Msg[Countl = Msg'tCountl + 1 

The packet maker specification has three variables: Packet 
and Output of type Message-List, and Previous(Receiver-ID) 
of type Time. Also, it has two transitions: Process-Msg and 
Deliver, which correspond to processing a message from an 
input channel and delivering a packet, respectively. Transition 
Process-Msg is enabled whenever the packet is not full and 
either the present message has been produced since the last 
message from that channel was processed or the value of the 
current message is Closed and the value of the previously 
processed message from that channel was not Closed. The 
result of transition Process-Msg is that the current message 
from that channel is appended to the packet and the chan- 
nel's previous processing time is updated to be the current 
time. 
TRANSITION Process_Msg(R-id:Receiver-ID) P-M-Dur 

ENTRY 

& ( Receiver[R-id].End(New-Info) > Previous(R-id) 
LIST-LEN(Packet) e Maximum 

I ( Receiver[R-id].MsglData-Partl=Closed 
& past(Receiver[R-idl.Msg[Data-Part], 

Mom(R-id)) # Closed 1) 
EXIT 

Packet = Packet' CONCAT 

& Previous(R-id) BECOMES NOW 
~ v e ~ - i d l . M s ~  

Transition Deliver is enabled whenever the packet is full 
or whenever the packet is not empty and Del-Tout time units 
elapsed since the last packet was output or since system sfartup 
time. 

TRANSITION Deliver Del-Dur 
ENTRY 

I ( LIST-LEN(Packet) > 0 
LIST-LEN(Packet) = Maximum 

& ( EXISTS t:Time ( Start(Deliver, t) 
& NOW - t = Dd-Tmt) 

I Now = Del-Tout - Del-Dur + N-I-Dur)) 
EXIT 

& Packet = EMPTY 
Output = Packet' 

111. ENVIRONMENTAL ASSUMPTIONS 
AND CRITICAL..REQUIREMENTS 

In addition to specifying system state (through process 
variables and constants) and system evolution (through transi- 
tions), an ASTRAL specification also defines desired system 
properties and assumptions on the behavior of the environment 
that interacts with the system. Assumptions about the behavior 
of the environment are expressed in environment clauses and 
imported variable clauses, and desired system properties are 
expressed through invariants and schedules. Because these 
components are critical to the ASTRAL proof theory and were 
not fully developed in previous papers, they are discussed in 
more detail in this section. 

A .  Environment Clauses 

formalizes the assumptions that 
must always hold on the behavior of the environment to 
guarantee some desired system properties. They are expressed 
as first-order formulas involving the calls of the exported tran- 
sitions, which are denoted Call(Op,) (with the same syntactic 
conventions as Start(Op,)). For each process p there is a local 
environment clause, Env,, which expresses the assumptions 
about calls to the exported transitions of process p .  There is 
also a global environment clause, EnvG, which is a formula 
that may refer to all exported transitions in the system. 

In the CCITT example there is a local environment clause 
for the input process and 8 global clause. The local clause 
states that for each input process, the time between two 
consecutive calls to transition New-Info is not less than the 
duration of New-Info , and that there will always be a call to 
New-Info before the timeout expires: 

An environment clause 

(EXISTS tirime (Call-2 (New-Info, t)) [Envinl 
+ (Call (New-Info) - Call-2 (New-Info) 2 N-I-Dur) 

+ EXISTS t:Time (Call (New-Info, t)) 
& Now - Call(New-Info) e Input-Tout) 

& Now 2 Input-Tout 

The global environment clause states that exactly N I L  
calls to transition New-Info are cyclically produced, with 
time period N/L*P-M- Dur + Del-Dur (where P-M-Dur is 
the duration of transition Process-Message; Del-Dur is the 
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duration of Deliver; and L denotes a constant that is used 
to specify that N /  L processes are producing  message^).^ 

FORALL t%e ( CEnvGl 
t MOD (NL*P-M-Dur + Del-Dur) = 0 

( IS1 =N/L 
& FORALL i:Receiver-ID (i ISIN S 

-+ EXISTS S: Set-Of-Receiver-ID 

t) Receivedil.Call(New~Info) = t))) 
& FORALL t:Time ( 

t MOD (N/L*P-M-Dur + Del-Dur) # 0 

-Receiver[il.Call(New~€nfo, t))) 
-+ FORALL i:Receiver-ID ( 

B. Imported Variable Clauses 

Each process p may also have an imported variable clause, 
IV,. This clause formalizes assumptions that process p makes 
about the context provided by the other processes in the 
system. For example IV, contains assumptions about the 
timing of transitions exported by other processes that p uses 
to synchronize the timing of its transitions. It also contains 
assumptions about when variables exported by other processes 
change value. For instance, p might assume that some imported 
variable changes no more frequently than every I O  time units. 

In the CCITT example only the Packet-Maker process 
has an imported variable clause. It states that the ends of 
transition New-Info executed by input processes follow the 
same periodic behavior as the corresponding calls. The clause 
is similar to the global environment clause. 

C .  Invariant Claiises 

lnvarianrs state properties that must initially be true and 
must be guaranteed during system evolution, according to 
the traditional meaning of the term. Invariants can be either 
local to some process, I,, or global, I,. These properties 
must be true regardless of the environment or the context in 
which the process or system is running. Invariants are formulas 
that express properties about process variables and transition 
timing according to some natural scope rules, which are given 
in [3]. 

In the CCITT example the global invariant consists of two 
clauses. The second clause states that every input data will be 
output within H1 time units after it is input, but not sooner 
than H 2  time units. 

FORALL i:Receiver-ID, t l  Time, x:Info ( [IG] 
tl<Now - H1 

& past(Receiver[il.End(New~Info(x)),tl) = t l  
-+ EXISTS t2:Time, k:Integer ( 

t2 2 tl + H2 & t2 S Now & Change(Output,t2) 
0 < k & k < LIST_LEN(past(Output,t2)) & 

& past( OutputOrXData~Partl,t2~=x 
& past(Outputlkl[Countl,t2) = 

past(ReceiverCl.~Countl,fl) 
& past(OutputM[ID~artl,t2) = Receiver[il.Id)) 

The other global clause states that no message is output 
other than those produced by the input processes. The Input 

1.  is adopted, even ‘For simplicity, the traditional cardinality operator. I 
though it is not an ASTRAL operator. 

process local invariant states that after Input-Tout time units 
have elapsed without receiving any new message a timeout 
occurs, and that the last message received is kept until a 
Deliver timeout occurs. 

The Packet-Maker’s local invariant states that changes in the 
exported variable Output occur at, and only at, the end of a 
Deliver and that no new messages are generated by the packet 
assembler. It also states that the order that messages appear 
in an output packet is the order in which they were processed 
from a channel, this order is preserved across output packets, 
and every message in Output was previously in Packet and if 
Output changes Now, then each of the elements of Packet are 
unchanged from when they were put into the packet. All of 
the invariants are given in the appendix. 

D .  Schedule Clauses 

Schedules are additional system properties that are required 
to hold under more restrictive hypotheses than invariants. 
Unlike invariants, the vaiidity of a schedule may be proved 
using the assumptions expressed in the associated environment 
and/or imported variable clauses. 

Like invariants, schedules may be either local, Sc,, or 
global, SCG, and obey suitable scope rules in the same style 
as invariants. Unlike invariants, however, they may refer to 
calls to exported transitions. Typically, a schedule clause states 
properties about the reaction time of the system to extemal 
stimuli and on the number of requests that can be “served” by 
the system. This motivates the term “schedule.” 

Because there may be several ways to assure that a schedule 
is satisfied, such as giving one transition priority over another 
or making additional assumptions about the environment, and 
because this kind of decision should often be postponed until 
a more detailed design phase, in ASTRAL the schedules 
are not required to be proved. It is important, however, to 
know that the schedule is feasible. That is, it is important to 
know that if further restrictions are placed on the specification 
and/or if further assumptions are made about the environment, 
then the schedule can be met. For this reason, a further 
assumptions and restrictions clause may be included as part 
of a process specification. Unlike other components of the 
ASTRAL specification this clause is only used as guidance to 
the implementer; it is not a hard requirement. The details of 
this clause are given in the aext subsection. 

In the CCITT example the global schedule states that the 
time that elapses between the call of a N e w h f o  transition 
and the delivery of the message it  produced is equal to 
N/L*P-MDur + N-I-Dur + Del-Dur. 

The local schedule for the Input process states that there is 
no delay between a call of a New-Info transition and the start 
of its execution. The Packet-Maker’s schedule states that the 
transition Deliver is executed cyclically and that a packet is 
always delivered with N I L  elements. 

(EXISTS tTime (End-%Deliver,t)) [Scpml 
+ End(De1iver) - End-S(De1iver) = 

FORALL t: Time (past(End(Deliver), t) = t 
+ LIST-LEN(past(Output, t)) = NL) 

N/L*P_M_Dur + Del-Dud 
& 
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A proof of the Packet-Maker’s schedule is presented in Section 
V. 

E. Further Assumptions and Restrictions Clause 

As mentioned before, schedules can be guaranteed by ex- 
ploiting further assumptions about the environment or restric- 
tions on the system behavior. These assumptions constitute a 
separate part of the process specification, the further assump- 
tions and restrictions clause, FAR,. It consists of two parts: a 
further environment assumptions section and a further process 
assumptions section. 

The further environment assumptions section, FEnv,, obeys 
the same syntactic rules as Env,. It simply states further 
hypotheses on the admissible behaviors of the environment 
interacting with the system. Of course. it cannot contradict 
previous general assumptions on the environment expressed 
in Env, and EnvG. 

A further process assumptions section, FPA,, restricts the 
possible system implementations by specifying suitable selec- 
tion policies in the case of nondeterministic choice between 
several enabled transitions, TS,, or by further restricting 
constants, CR,. In general, FPA, reduces the level of non- 
determinism of the system specification. 

The transition selection part, TS,, consists of a sequence of 
clauses of the following type: 

{ OpSeti} (Boolean Condition,) { R.OpSeti} 

where 
{OpSet;} defines a set of transitions. 
{ ROpSet;} defines a restricted but nonempty set of transi- 
tions that must be included in the set defined by {OpSet,}. 
(BooleaiiCoriditiori,) is a boolean condition on the state 
of process p.  

The operational semantics of the transition selection part is 
defined as follows. 

I )  At any given time the set of enabled transitions, {ET}, 
is evaluated by the process abstract machine. 

2) Let {OpSet;}, (Boolean Condition;) be a pair such 
that ET is {OpSeti } and (Boolean Condition, ) holds. 
Notice that such a pair does not necessarily exist. 

3) If there are pairs that satisfy condition 2, then the set 
of transitions that actually are eligible for firing is the 
union of all {ROpSet;} corresponding to the above pairs 
{OpSeti}, (Boolcan Conditioni) that are satisfied. 

4) If no such pair exists, the set of transitions eligible for 
firing is [ET}.  

The constant refinement part, CR,, is a sequence of clauses 
that may restrict the values that system constants can assume 
w.r.t. what is stated in the remaining part of the system 
specification. For example, one can further restrict a constant 
T1 that is bounded between 0 and 100, by stating that Tl’s 
value is actually between I O  and 50, or that i t  is exactly 5. 

Notice that the further assumptions and restrictions section 
can only restrict the set of possible behaviors. That is, if {B} 
denotes the set of system behaviors that are compatible with 
the system specification without the FAR clau.ti . t e u  (.~.->; 

denotes the set of behaviors that are compatible with the 

system specification including the FAR clause, then it  is easy 
to verify that {RB} is contained in {B}. 

For the CCITT system two different further assumptions 
clauses were used with the Packet-Maker process. The first 
contains both a constant refinement part and a transition 
selection part. The CR part states that the timeout of transition 
Deliver is 0 and that the packet length is equal to N / L .  

Del-Tout = 0 & Maxiniuiri = N / L  

The TS part states that the Process-Message transition has 
higher priority than Deliver. 

{ Proccss-Message, Dcliver}TRUE{ Process-Message} 

The second further assumptions clause contains only a 
constant refinement part, which states that Deliver’s timeout 
is N/L*P-M-Dur + Del-Dur and that Maximum = N .  

Either of these further assumptions clauses is sufficient to 
prove that the schedules are met. 

IV. INTRALEVEL PROOF OBLIGATIONS IN ASTRAL 

In this section, the ASTRAL intralevel proof obligations 
are presented. However, it is first necessary to present some 
notation. 

Let S denote a top level ASTRAL specification. S is 
composed of a set of process specifications P, and a global 
specification G. Each E‘,, in turn, is composed of a set of 
transitions Op,l; I .,Op,,,, a local invariant I,, a local schedule 
Sc, a local environment Env,, imported variable assumptions 
IV,, a further local environment FEnv,, a further process 
assumption FPA, and an initial clause Init-State,. Moreover, 
every transition Op,j is described by entry and exit clauses 
denoted EN,, and EX,, , respectively. The global specification 
G is made up of a global invariant I,, a global schedule SCG 
and a global environment EnvG clause. 

Proving that S satisfies its critical requirements can be 
partitioned into the following proof obligations: 

1) Every process specification P, guarantees its local in- 

2 )  Every process specification I‘,, guarantees its local 

3) The specification S guarantees the global invariant IG;  
4) The specification S guarantees the global schedule Scc;. 

For soundness the following proof obligations are also needed: 
5) The imported variable assumptions IV,, are guaranteed 

6) All the assumptions about the environment (EnvG, Env, 

In what follows a formal framework for these proof obli- 

variant I,; 

schedule Sc,; 

by the specification S 

and FEnv,) are consistent. 

gations is presented. 

A .  Axiomatization of ASTRAL Abstract Machine 
An informal description of the ASTRAL computational 

model is given in [SI, 191. However, a formal description of the 
,-3X.‘L ?kctract machine is needed to carry out the ASTRAL 
proof\. 
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The semantics of the ASTRAL abstract machine is defined 
by three axioms. The first axiom states that the time interval 
spanning from the starting to the ending of a given transition 
is equal to the specified duration of the transition. 

FORALL tTime, Op: Trans-of$ ( [All 
Now - t 2 Top 

-+ ( past(Start(Op),t) = t 
tt past(End(Op),t+TOp) = t +Top)) 

where To,, represents the duration of transition Op. 
The second axiom states that if a processor is idle and some 

transitions are enabled then one transition will fire. Let ST 
denote the set of transitions of process p .  

FORALLtTime( [A23 
EXISTS d: Time, S'T: SET OF Trans-ofg( 

FORALL t i  Time, Op: Trans-of3 ( 

& past(Start(Op),tl) c past(End(Op),t) 
& S'T @ & S'T # EMPTY 
& FORALL 0p':Trans-of-p ( 

& FORALL 0p':Trans-of-p ( 

+ UNIQUE 0p':Trans-of-p ( 

t l ?  t - d & tl < t & Op ISIN 

Op' ISIN ST + Eval-Entry(Op',t)) 

op' -ISIN S'T + -Eva]-Entry(Op',t)) 

Op' ISIN ST & past(S~Op'),t)=t)))) ,  

where Eval-Entry(Op, t )  is a function that given a transition 
Op and a time instant t evaluates the entry condition ENop 
of transition Op at time t .  

Because the ASTRAL model implies that the starting time 
of a transition equals the time in which its entry condition was 
evaluated, the Eval-Entry function is introduced to prevent 
the occurrence of a contradiction. More specifically, when the 
entry condition of transition Op refers to the last start (2nd 
last, etc) of itself, the evaluation at time t of Start(0p) in the 
entry condition should refer to the value of Start immediately 
before the execution of Op at time t .  Since Op has a non-null 
duration this can be expressed by evaluating Start(0p) at a 
time t' which is prior to f and such that transition Op has not 
fired in the interval [ f ' ,  1). 

Finally, the third axiom states that for each processor the 
transitions are nonoverlapping. 

FORALL tl, t2irime, Op: Trans-of-p ( [A31 
Start(Op)=tl & End(Op)=tz & t i  c t2 

+ FORALL t3: Time, Op': Trans-of-p ( 
t32 t l  & t.3 c t2 & Sta~Op'k t.3 

-3 Op=Op'&t.3=t1) 

+ Op=W&t.3=ti)) 

& FORALL t3: Time,Op': Trans-of-p ( 
t3 > ti & t.3 5 t2 & End(0p'k t.3 

B. Locul Invariant Proof Ohli,gations 

The local invariant I ,  represents a property that must 
hold for every reachable state of process p .  Furthermore, the 
invariant describes properties that are independent from the 
environment. Therefore. the proof of the invariant I, may not 
make use of any assumption about the environment, imported 

variables or the system behavior as described by Env,, FEnv,, 
IV, and FPA,. 

To prove that the specification of process p guarantees the 
local invariant one needs to show that: 

1) I ,  holds in the initial state of process p ,  and 
2) If p is in a state in which I ,  holds, then for every possible 

The first proof consists of showing that the following 
evolution of p ,  I ,  will hold. 

implication is valid: 

Init-State, & Now = 0 + I ,  

To carry out the second proof one assumes that the invariant 
lIj holds until a given time t o  and proves that I ,  will hold for 
every time t > t o .  Without loss of generality, one can assume 
that t is equal to to + A, for some fixed A greater than zero, 
and show that the invariant holds until to + A. 

In order to prove that I ,  holds until time t o  + A it may 
be necessary to make assumptions on the possible sequences 
of events that occurred within the interval [ t o  - H . t o  + A]. 
where H is a constant a priori unbounded, and where by event 
is meant the starting or endin;: of some transition Op, j  of 
process p.  

Let (T denote one such sequence of events. A formula F, 
describing the sequence of events that belong to n can be 
algorithmically generated from 0. For each event occurring at 
time t one has: 

Eval_Entry(Op,j, t )  & past(Start(Op,,, /), t )  if the event 

past(EX,j, t) & past(End(Op,,, t ) ,  t )  if the event is the 

F, is the logical conjunction of all such predicates. Then 

is the start of Op,, or 

end of Op,j. 

the prover's job is to show that for any n: 

AI & A 2 & A 3 F  
Fa & FORALL t:Time (t  S to + past(Ip,t)) 

+ FORALL t1:Time ( t l >  to & ti St0  + A 
+ pastop, t l ) )  

Notice that as a particular case, the implication is trivially 
true if F, is contradictory, since this would mean that (T is 
not feasible. 

C. Local Schedule Proof Obligatioris 

The local schedule Sc, of a process 1, describes some further 
properties that p must satisfy when the assumptions on the 
behavior of both the environment and p hold (i.e., Env,, IV,, 
FEnv, and FPA,). 

To prove that the specification of process p guarantees the 
local schedule Sc, it is necessary to show that: 

1) Sc, holds in the initial state of process p .  and 
2) If p is in a state in which Sc, holds, then for every 

possible evolution of p compatible with FPA,. when the 
environment behavior is described by Env, and FEnv,, 
and the imported variables behavior is described by I V , ,  
ScIl will hold. 
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Note that one can also assume that the local invariant I, 
holds; i.e., I, can be used as a lemma. The initial state 
proof obligation is similar to the proof obligation for the local 
invariant case; however the further hypothesis on the values 
of some constants expressed by CR, can be used: 

Init-State, & Now = 0 & CR, -+ Sc, 

The second proof obligation is also similar to the local 
invariant proof. However, in this case events may be extemal 
calls of exported transitions Op,j in addition to the starting 
and ending of all transitions of p .  If the event is the call of 
Op,j from the extemal environment, then "past(Call(Op,,), t )  
= t" can be used to represent that transition Op,j was called 
at time t. 

The prover's job is to show that for any IT: 

Al & A2' &A3 & A4 & Envp & F'Env, & WPl- 
CRp & Fo& FORALL t:Time ( t 5tQ 

pastiscp, t)) 
+ F O R A L L t l : T i m e (  t i > t Q & t 1 5 t o + A  

-+Pasffscp, t l))  

where A2' and A4 are defined in what follows. 
A2' is an axiom derived from A2 by taking into account 

the TS, section, which restricts the non-determinism of the 
machine, and the fact that the exported transitions can fire 
only if they are called by the environment. 

The TS, section can be viewed as the definition of a function 

range the powerset of the transitions of process p .  Its semantics 
is the following: denoting with ET the set of enabled transi- 
tions then TS(ET) retums a restricted set of enabled transitions, 
ET', where ET' & ET. The processor will nondeterministically 
select which transition to fire from the transitions in ET'. 

TS: 2{0Pl,"'.OPn} -+ 2{0P1,'.',0Pn}, having as domain and 

Let ST denote the set of transition of process p :  

FORALLtTime( [Azl 
EXISTS d: Time, S'T: SET OF Trans-of-p ( 

F O W L  tl:Time, Op: Trans-of3 ( 
t l >  t - d & tl < t & Op ISIN ST 

& past(Start(Op1,tl) < past(End(Op),t) 
& S 'TCST&S 'T#EMPTY 
& FORALL 0p':Trans-of-p ( 

& FORALL 0p':Trans-of-p ( 

+ UNIQUE 0p':Trans-of-p ( 

Op' ISIN ST + Eval-Entry'(Op',t)) 

Op' -1SIN ST + -Eval-Ehtry'(Op',t)) 

Op' ISIN TS~S'T) & past(Start(Op'),t)=t)))), 

where Eval-Entry' (Op'? t). = EvalLEntry(Op',t) & Issued- 
call(Op'), iff Op' is exported and Eval-Entry'(Op', t )= 
EvalEntry(Op',t), iff Op' is not exported. 

A4 states that Issued-call(0p) is true iff the environment has 
called transition Op and transition Op has not fired since then: 

op: TTanS-Of> ( [A41 
EXISTS tl: Time ( 

tl 5 Now & Call(Op, tl) - 
& FORALL t: Time ( 

t 2 tl & t 5 NOW & -StadOp,t) 
+ past(1ssued-call(Op),t))) 

& EXISTS tl: Time ( 
tl 5 Now & Start(Op, tl) 

& FORALL t: Time ( 
t > tl & t 5 Now & -Call(Op,t) 

+ -past(Issued-call(Op),t)))). 

D. Global Invariant Proof Ohligations 

Given an ASTRAL specification S composed of TL pro- 
cesses, the state of S can be defined as the tuple (SI,. . . , s,,), 

where sp represents the state of process p .  The global invariant 
IG of S describes the properties that must hold in every state 
of s. 

To Prove that IG is guaranteed by S it is necessary to prove 
that: 

1) IC holds in the initial state of S ,  and 
2) If S is in a state in which f~ holds, then for every 

possible evolution of S, IG will hold. 
Since the initial state of 5' is the tuple 

(Iiiit-Statel, . . . , Init-State,,), where each Init-State, 
is a formula describing the initial state of process p ,  to prove 
point 1 one needs to prove the validity of the following 
logical implication: 

Point 2 can be proved in a manner very similar to the local 
invariant case. However in this case the sequences of events U 

will contain starting and ending events for exported transitions 
belonging to any process of S. Moreover, the local invariant 
of each process p composing S can be used to prove that every 
IT preserves the global invariant. 

The prover's job is to show that for any U :  

A1 &A2&A3l -  
Fo & FORALL t:Time ( t  5 to past( IG, t ) )  

+ F O R A L L t l : T i m e (  t l > t o & t l S t Q + A  

-+ pastik t l ) )  

Notice that unlike local proofs, for global proofs it may 
happen that a sequence IT contains contemporary events. More 
precisely two sequences 01 and "2 may differ only in the 
order of some events that occur at the same time. In this case, 
anyone of the sequences can be chosen since the associated 
I T ' S  are obviously logically equivalent. 

E. Global Schedule Pro($ Obligations 

The global schedule SCG of the specification S describes 
some further properties that S must satisfy, when all its 
processes satisfy their own schedules and the assumptions on 
the behavior of the global environment hold. 



COEN-PORISINI P I  al.: A FORMAL FRAMEWORK FOR ASTRAL INTRALEVEL PROOF OBLIGATIONS 555 

Thus, to prove that SCG is consistent with S one has to 

I )  SCG holds in the initial state of S, and 
2) If S is in a state in which SCG holds, then for every 

possible evolution of S, SCG will hold. 
In both proofs one can assume that the global invariant 1~ 

and every local invariant I ,  and local schedule Sc, holds as 
well as the global environment assumptions EnvG. Note that 
none of the local environment assumption (Env, and FEnv,) 
may be used to prove the validity of the global schedule. 

The first proof requires the validity of the formula: 

show that: 

n 

/\(Init-Statc,) & Now = 0 & ErivG -+ SCG 
p = l  

The second proof requires the construction of the sequences 
of events cr. Each (T will contain calling, starting and ending 
of exported transitions belonging to any process p of S. The 
prover's job is to show that for any (T: 

AI & A2" & A3 & A4 & E n v ~ k  
Fa & FORALL t:Time ( t  S to + past(ScG t>)  

+ FORALLtl:l"e( t l > b & t l I t o + A  

+ past(scG, t l ) )  

where A2" is an axiom derived from A2 by taking into account 
that the exported transitions can fire only if they are called by 
the environment. 

FORALL t.Time ( [A27 
EXISTS d: Time, S'T: SET OF Trangof-p ( 

FORALL tl:Time, Op: Trans-of-p ( 

& past!Start(Op),tl) < past(End(Op1,t) 
& S'T E & S'T # EMPTY 
& FORALL 0p':Trans-of-p( 

& FORALL 0p':Trans-of-p ( 

-+ UNIQUE 0p':Trans-ofg ( 

t l >  t - d& t l  < t & Op ISIN @ 

Op' ISIN S'T -+ Eval-Entry'(Op',t)) 

op' -ISIN S'T -+ -Ed-Entry'(Op',t)) 

op' ISIN S T  & past( sMop'),t)=t)))) 

where Eval-Entry'(Op',t) = Eval-Entry(Op',t) & Issued- 
call(Op'), iff Op' is exported and EvalEntry'(Op', t )  = 
EvalEntry(Op', t ) ,  iff Op' is not exported. 

F.  Imported Variable Proof Obligation 

When proving the local schedule of a process p one can 
use the assumptions about the imported variables expressed 
by IV,. Therefore, these assumptions must be checked against 
the behavior of the processes from which they are imported. 

The proof obligation guarantees that the local environment, 
local schedule and local invariant of every process of S (except 
p ) ,  and the global environment, invariant and schedule imply 
the assumptions on the imported variables of process p :  

A1 & A2 & A3 & A EIiv,& A I,& A Sc, 
l#P L # ,  L#P 

& SCG + I\r, & EnvG & 

G. Environment Consistency Proof Obligation 

Every process p of S may contain two clauses describing 
assumptions on the behavior of the external environment, Env, 
and FEnv,. These clauses are used to prove the local schedule 
of p .  The global specification also contains a clause describing 
assumptions on the system environment behavior EnvG. 

For soundness, i t  is necessary to verify that none of the 
environmental assumptions contradict each other, i.e.. that a 
behavior satisfying the global as well as the local assumptions 
can exist. This requires proving that the following formula is 
satisfiable: 

71 n 

A Env, & A FEIIv, & EnvG. 
r=l 1 = 1  

V. AN EXAMPLE CORRECTNESS PROOF IN ASTRAL 

In this section the proof of the local schedule of process 
Packet-Maker is considered: 

Scpm: 
EXISTS t:Time (End-S(Deliver, t )) 

-+ End(De1iver) - End-S(De1iver) 
= N/L*P-M-h + Del-Dur 

FORALL t:Time (past(End(Deliver),t) = t 
-+ LIST-LEN(past(Output,t)) = NL) 

& 

To prove SC,, the imported variables assumptions IV,, 
and the second further process assumptions, FPA,,, , of process 
Packet Maker are used: 

IVpm: 
FORALL t:Time ( 

(t - N-I-Dur) MOD (N/L*P-M-Dur + Del-Dur) = 0 
-+ EXISTS S:Set-of-Receiver-ID ( I S I = N/L 

& FORALL i:Receiver-ID ( 
i ISIN S fs Receive~fil.End(New-Info) = t))) 

& FORALL t:Time ( 
(t - N-I-Dur) MOD (N/L*P-M-Dur + Del-Dur) f 0 

-+ FORALL i:Receiver-ID ( 
-Receiver[i].End(New-Info) = t)) 

& FORALL i:Receiver-ID ( 
Receiver[i].Msg[Data-Partl f Closed) 

FPA,, : 

Del-Tout = N / L  * P-M-Dur + DelDur & Maximum = N 

Consider a time instant p~ such that SC,, holds until po;  
it is necessary to prove that ScpnL holds until po + A, where 
A is big enough to require an End(Deliver) to occur within 
( P O .  po  + A]. Without loss of generality, assume that: 

1 )  at time po transition Deliver ends and 
2 )  A = N/L*P-M-Dur + Del-Dur. 
Now, by [ A l l  one can deduce that at time po - Del-Dur a 

Start(De1iver) occurred. Fig. 1 shows the relevant events for 
the discussion that follows on a time line. 

The Entry assertion of Deliver states that Deliver fires either 
when the buffer is full or when the timeout expires and at least 
one message has been processed. 
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Start(PM), StartiPM), 
End(De1) End(De1) End(De1) 

StartiDel) 
Sta&2(Del) I I I  I I  

I 
pO-Del-Dur-NL*P-M-Dur pO+NL*P-M-Dur 

N L  End(N1) occur in this time interval 

Fig. I .  Example time line. 

EnDel: 

I ( LIST-LEN(Packet)>O 
& ( EXISTS t: Time ( 

LISTLEN(Packet) = Maximum 

Start@eliver,t ) & Now - t 2 Del-Tout) 
I Now = Del-Tout + N-I-Dur - Del-Dur)) 

Because SC,, holds until 210 and from the Exit assertion 

1) For all t less than or equal to po and such that an 
end of transition Deliver occurred, Output contains N /  L 
messages at time t (Sc,,), and 

2) The content of Output at the end of Deliver is equal to 
the content of Packet at the beginning of Deliver (Exit 
assertion of Deliver). 

From this one can conclude that at time t - Del-Dur the 
buffer contained N I L  messages (i.e., it was not full). As a 
consequence transition Deliver has fired because the timeout 
has expired. 

Furthermore, assume as lemma L 1 that Process-Message is 
disabled every time Deliver fires (this lemma will be proved 
later). 

for Deliver it is known that: 

The Entry condition of Process-Message is: 

LIST-LEN(Packet) < Maximum 
& ( EXISTS t1:Time ( 

Receiver[R-idl.End(New-Info) = tl 
& tl > F’revious(R-id)) 

I ( Receiver[Rjd].Msg[Data-Part1 = Closed 
& past(Receiver[R-idl.Msg[Data-Part], 

Previous(R-id)) *closed)) 

and since 
1) the buffer is not full (Sc,,), and 
2) no notification of closed channel can arrive (IV,,) 

one can conclude that no new message is available when 
Deliver fires (Ll). 

IV,, states that N I L  messages are received every 
N/L*P-M-Dur + Del-Dur time units. As a consequence: 

1 )  the N I L  messages output at time po have been received 
before time po - Del-Dur - N/L*P-MDur, in order 
to allow Process-Message to process each of them, and 

2 )  they have been received after the second last occurrence 
of Delivery prior to 110 (because of L1) 

Thus, one can conclude that the N I L  messages output at 
time po have been received in the interval: 

(Start-2( Deliver), yo - Del-Dur - N/L*P-MDur], 

that is, 

(PO - 2*DeLDur - N/L*P-M-Dur, - 
po - Del-Dur - N/L*P-M-Dur] 

because of Scpn1. As a consequence of IV,,,,, N I L  new mes- 
sages will arrive after N/L*P-M-Dur + Del-Dur time units 
from the last arrival, i.e., in the interval (po-Del-Dur, pol .  

Thus, at time po Process-Message will become enabled 
and the N I L  messages will be processed within time po + 
N/L*P-M-Dur, since Deliver is disabled until that time. 
Moreover, at time yo + N/L*P-M-Dur Process-Message will 
be disabled, since there are exactly N I L  messages to process. 

Thus, at time po + N/L*P-M-Dur the buffer contains N I L  
messages and Deliver fires because the timeout has expired. 
Also, at time p o  + N/L*P-M-Dur + Del-Dur, Deliver ends 
and the length of the Output buffer will be equal to N I L  (Exit 
clause of Deliver). Therefore, the schedule will hold until time 
po + N/L*P-M-Dur + Del-Dur. 

To complete the proof it is necessary to prove lemma 
L 1, which states that Process-Message is disabled every time 
Deliver fires. The proof is carried out by induction in what 
follows. 

Initially, the first time that Deliver fires, Process-Message 
is disabled. In fact, the first N I L  End(New-Info) occur at 
time N-I-Dur (IVpm). Transition Process-Message will finish 
processing these messages at time N-IDur +N/L*P-M-Dur, 
and at that time Deliver will become enabled. 

Since no End(New-Info) can occur in (N-I-Dur, N-LDur 
+N/L*P-M-Dur + Del-Dur) (by IV,,), then at time N-LDur 
+N/L*P-M-Dur transition Process-Message is disabled and 
Deliver fires. 

Now suppose that when Deliver fires Process-Message is 
disabled; it is necessary to prove that Process-Message is again 
disabled the next time Deliver fires. 

Let yo be the time when Deliver starts; by hypothesis at 
time yo Process-Message is disabled. As a consequence the 
messages in Packet at time yo have been received in the 
interval (yo -DelDur -N/L*P-MDur, yo - N/L*P-M-Dur] 

Thus, by IVplrl the next N I L  messages will arrive in the 
interval (yo, yo + Del-Dur]. Furthermore, the timeout for 
Deliver will expire at time yo + N/L*PIv-Dur + DelDur. 
Therefore, Deliver cannot fire before that time unless the buffer 
is full. 

At time yo + Del-Dur Process-Message will become en- 
abled, and it will fire until either all messages have been 
processed or the buffer becomes full. At time qo + Del-Dur 
+N/L*P-M-Dur the N I L  messages that arrived in the interval 
(yo, qo + Del-Dur] will be processed, and since no new 
message can arrive before yo + Del-Dur + N/L*P-M-Dur 
at that time Process-Message will be disabled. Similarly, at 
that time Deliver will be enabled and thus will fire. 

This completes the proof of lemma L1 and thus the proof 

(SCp7n 1. 

of SCprn. 

VI. CONCLUSION AND FUTURE DIRECTIONS 

In this paper, the environment and critical requirements 
clauses, which were only briefly sketched in previous papers, 
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were presented in detail. The intralevel proof obligations were 
also presented and an example proof was demonstrated. 

All of the proofs for the CCITT specification have been 
completed. In addition, the proofs of five different schedules 
that can be guaranteed by using different further assumptions 
clauses have also been completed. The proofs of these sched- 
ules did not require any new or changed invariants. The CCITT 
proofs demonstrate that formal correctness analysis can be 
applied to complex real-time systems by suitably structuring 
both the specifications and the proofs. 

Normal correctness proofs are probably the most advanced 
and critical application of formal methods to software con- 
struction. In any proof within an undecidable theory a “cre- 
ative” part cannot be avoided. For instance, in the proof of 
traditional sequential programs, this part typically consists of 
the invention of suitable invariants. The difficult part of the 
ASTRAL proofs is choosing the appropriate event sequences 
and showing that all of the possible event sequences are 
included in the set of sequences chosen. This is essentially. due 
to the fact that most often the desired properties of reactive 
systems are of the type “as a consequence of event A ,  event 
B must occur within A time units (or not before A time 
units)”. Thus, the sequencing of events becomes a central 
issue. Our limited experience, however, showed that in all 
practical examples considered so far, the “shape” of the event 
sequences to be analyzed were always quite similar to the 
sequences of the CCITT example presented in this paper. The 
examples investigated include a phone switching system, a 
traffic light system, a timed light switching system, along with 
five different versions of the global schedule of the CCITT 
example. Thus, this similarity may considerably reduce the 
amount of ingenuity necessary to carry out ASTRAL proofs, 
after an initial experience with some sample systems. 

The interlevel proofs for the CCITT specifications have also 
been completed. The details of these proofs as well as the 
complete two-level CCITT specification can be found in [4]. 
In that paper, the details of the implementation mappings and 
the refinement of process specifications are also discussed. 

Future work will concentrate on applying ASTRAL to more 
varied and complex real-time systems. Work will also continue 
on building a tool suite for formally designing real-time 
systems using ASTRAL. 

APPENDIX 
ASTRAL FORMAL SPECIFICATION FOR THE C C I R  SYSTEM 

GLOBAL Specification CCIl’T 

PROCESSES 
Receiver: array [l..N] of Input, 
Assembler: Packet-Maker 

TYPE 
Data, 
Message IS STRUCTURE OF 

(Data-Part Data, 
Count: Integer, 
ID-Part: ID), 

Message-List IS LIST OF Message, 

Pos-Integer: TYPEDEF i: Integer (i > 01, 
Receiver-ID: TYPEDEF i:Pos-Integer (i S N), 
Set-Of-Receiver-ID IS SET OF Receiver-ID, 
Info: TYPEDEF D:Data (D # Closed) 

CONSTANT 
N, L: Pos-Integer, 

/*N denotes the number of processes of type Input, 
L denotes a value such that the number of input 
processes producing messages a t  the same time is  N/L*/ 

Closed: Data, 
N-I-Dur, P-M-Dur, Del-Dur: Time 

/*These are the duration for transitions New-Info, 
Process-Message, and Deliver*/ 

/*H1, H2 are lower and upper bounds on the time 
for an input to be output*/ 

H1, H2: Time 

AXIOM 
N MOD L = 0 

DEFINE 
Change(L-Msg:Message-List,t:Time):Boolean == 

EXISTS e: Time ( 
e > O & e < t  

& FORALL d Time ( 
d > t - e & d c t  

+ past(L-Msg, d) # past(L-Msg,t))) 

ENVIRONMENT 
/*The environment cyclically produces exactly 
N/L messages every N/L*P-M-Dur + Del-Dur 
time units*/ 

FORALL t:Time ( 
t MOD (N/L*P-M-Dur + D e l p u r )  = 0 

--f EXISTS S Set-Of-Receiver ( 

IS1 =N/L 
& FORALL i:Receiver-ID ( 

( i IS INS 
c) Receiver[il.Call(New~Info) = t))) 

& FORALL t:Time ( 
t MOD (NL*P-M-Dur + D e l p u r )  # 0 

+ FORALL i:Receiver-ID ( 

-Receiver[il.Call(New-Info, t))) 

INVARIANT 
/* Every data output was received sometime in the past */ 

FORALL kInteger ( 
k > 0 & k < LIST-LEN(0utput) 

& Output[kl [Data-Part] # Closed 
+ EXISTS i:Receiver-ID, t:Time, $Integer ( 

t < Now 
& Receiver[il.Start-j(New-Info(Output[kl 

[Data-Part]) = t)) 

& /* Every input data will be output within H1 time units after 
i t  is input, but not sooner than H2 time units*/ 

FORALL i:Receiver-ID, t l  :Time, x:Info ( 
tl“ow-HI 

& past(Receiver[il.End(New~Info(x)),tl) = tl 
+ EXISTS tZ:Time, k:Integer ( 

t2 > tl+H2 & t2 2 Now & Change(Output,t2) 
& 0 c k & k i LIST-LEN(pasffOutput,tZ)) 
& past(Output[kl~ata-Partl,t2)=x 
& past(Output[kl[Countl,t2) = 

& past(Outpuffkl[IDgartl,t2) = Receiver[il.Id)) 
past(Receiver[il.Msg[Countl,tl) 
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SCHEDULE 

/*The time that elapses between the call of a New-Info transition and 
the delivery of the message i t  produced is equal to N/L*P-M-Dur + 
N-I-Dur + Del-Dur*/ 

FORALL i:Receiver-ID, tl:Time, x:Info ( 
t l  2 Now - N/L*P-M-Dur - N-I-Dur - Del-Dur 

& past(Receiver[il.Cal1(New~Info(x)),t~ )=tl 
+ EXISTS tz:Time, k:Integer ( 

tz = t l  + N/L*P-M-Dur + N-I-Dur + Del-Dur 
& 0 < k & k S LIST-LEN(past(Output,tZ)) 
& Change(Output,t~) 
& past(Output[kl[Data-Part1 ,tZ)=x 
& past(OutpuUkl[ID-Partl,t2) 

= Receiver[il.Id)) 

END CCI'IT 

SPECIFICATION Input 
LEVEL Top-Level 

IMPORT 
Data, Message, Info, Closed, N-I-Dur 

EXPORT 
New-Info, Msg 

VARIABLE 
Msg: Message, 
Channel-C1osed:Boolean 

CONSTANT 
Input-Tout, N-T-Dur: Time 

ENVIRONMENT 

(EXISTS t:Time (Call-2 (New-Info, t)) 
--f Call (New-Info) - Call-2 (NewJnfo) Z N-I-Dur) 

& (Now 2 Input-Tout 
+ EXISTS t:Time (Call (New-Info, t)) 

& Now - Call(New-1nfo) < Input-Tout) 

INITIAL 
-Channel-Closed 

& Msg[Data-Partl# Closed 
& MsdCount]=O 

FORALL t l :  Time, x: Info ( 
End(New-Info(x), tl) 

& Now - tl < Input-Tout 
+ Msg[Data-part1 = x) 

& ( End(New-Info(x), tl) 

N-I-Dur + N-T-DUI 

& Now - t l  2 Input-Tout - N-I-Dur + N-T-Dur 
+ MsgLDatagart] = Closed)) 

SCHEDULE 
FORALL t: Time, x: Info ( 
t s Now + ((Call(New-Info(x)) = t) c) Start(New-Info(x)) = t)) 

TRANSITION New-Info(x:Info) N-I-Dur 
EXIT 

Msg[Data-Part] = x 
& Msg[Countl = Msg'[Countl + 1 
& Msg[ID-Partl = Self 
& -Channel-Closed 

TRANSITION Notify-Timeout N-T-Dur 
ENTRY 

EXISTS t l :  Time (Start(New-Info,tl) & Now - tl 2 Input-Tout) 
& -Channel-Closed 

EXIT 
MsgiData-Part] = Closed 

& Msg[Countl = Msg'[Countl + 1 
& Msg[ID-Part] = Self 
& Channel-Closed 

END Top-Level 
END Input 

SPECIFICATION Packet-Maker 
LEVEL Top-Level 

IMPORT 
Receiver, Data, Message, Message-List, Pos-Integer, 
Receiver-ID, Set-Of-Receiver-ID, Info, Closed, N, L, 
P-M-Dur, Del-Dur, N-I-Dur, Mag 

INVARIANT 

/* After Input-Tout time units have elapsed without receiving any new 
message a timeout occurs */ 

FORALL t l  : Time ( 

EXPORT 
output  

Start(New-Info, tl) & Now - tl > Input-Tout 
+ EXISTSt2:Time( 

StartiNotify-Timeout, t2) 
& t2  = tl + Input-Tout)) 

& /* The last received message is kept until a timeout occurs */ 

VARIABLE 
Packet: Message-List, 
Previous(Receiver-ID): Time, 
Output: Message-List 
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CONSTANT 
Maximum: Pos-Integer, 
Del-Tout, H3: Time 
/*H3 denotes an upperbound for the time to deliver 
a message after i t  has been processed*/ 

IMPORTED VARIABLE CLAUSE 
FORALL t Time ( 
( t  - N-I-Dur) MOD (NL*P-M-Dur + Del-Dur) = 0 

+ EXISTS S: Set-Of-Receiver-ID ( 

& FORALL i: Receiver-ID 
IS I = N L  

(i ISIN S e, ReceiveIfil.End(New-Info) = t))) 
& FORALL t:Time ( 

(t - N-I-Dur) MOD (N/L*P-M-Dur + Del-Dur) # 0 
+ FORALL i:Receiver-ID ( 

-Receiver[il.End(New-Info) = t)) 
& FORALL i:Receiver-ID ( 

Receive~fil.Msg[Data-Partl f Closed) 

INITIAL 
Packet = EMPTY 

& FORALL i:Receiver-ID (Previous(i)=O) 
& Output = EMPTY 

INVARIANT 
/*Changes in Output occur a t  and only a t  

the end of a Deliver*/ 
FORALL t: Time ( 

Change(Output, t) tt past( End(De1iver). t) = t) 

/* No new messages are generated by the packet 
& 

assembler */ 
FORALL k:Integer ( 

k>O & klLIST-LEN(Output) 
+ EXISTS i:Receiver-ID, t:Time ( 

t<Now & pasffReceiveIfil.Msg,t)=Output[kl) ) 

/*The order that messages appear in an output packet 
is the order in which they were processed from the channels*/ 
FORALL kInteger ( 

& 

L O  & k<LIST-LEN(0utput) 
+ EXISTS t l  ,t2:Time ( 

tl < t2 <Now 
& pasff End(Process-Message), tl) = tl 
& past(End(Process-Message), t2) = t2  
& Outputrkl= 

& Output€k+l] = 
past(Packet[past(LIST-LEN(Packet),tl )I, t l  

past(Packet[past(LIST-LEN(Packet),t2)1, t2)) 

& 
/* The order is also preserved across output packets */ 

EXISTS t:Time ( 
Starti2(Deliver, t) & End(De1iver) > Start(De1iver)) 

+ EXISTS tl ,t2:Time ( 
t l < t 2 c N o w  

& past(End(Process-Message, tl) = t l  
& past(End(Process-Message, t2) = t2  
& past(Output[past(LIST-LEN(Output), Starff Deliver)], 

StartlDeliver)) = 
pasUPacketLpasff LIST-LEN(Packet),tl )I, tl) 

& 0utpuff11= 
pasffPacket[pasff LIST_LEN(Packet).t2)1, t2)) 

& 
/* Every message in Output was previously in Packet and 
all of the elements of Packet have not changed from when 
they were put into the packet until the packet is output*/ 

FORALL k:Integer ( 
k>O & kSJJST-LEN(Output) 

tf EXISTS tTime ( 
t<End(Deliver) 

& past(End(Process-Message,t)=t 
& past(Packet[past(LIST-LEN(Packet),t)l, t) 

& FORALL t1:Time ( 
= Outputrkl 

tl2t & tl<End(Deliver) 
+ past(F'acke~pasffLIST-LEN(Packet), t)l, t) = 

pasffPaeket€pasffLIST-LEN(Packet), t)l, tl)))) 
& 

FORALL tl :Time ( 
t l  "ow-H3 & past(End(Process-Msg),tl )=tl 

+ EXISTS t2:Time ( 
t&tl &MsNow 

& pasUEnd(Deliver).t2)=t2 
& past(PackeapasffLIST-LEN@'acket), till, tl) = 

past(0utpuCpasff LIST-LEN(Packet), till, t2) 
& FORALL t:Time ( 

tx1&t<t2 
+ past(Packet[pasff LIST-LEN(Packet), tl11, tl 1 = 

past(Packet[pastfLIST-LEN(Packet), t l  )I, t)))) 

SCHEDULE 
/*The transition Deliver is activated cyclically. Furthermore, 
i t  always delivers a packet 4th N L  elements*/ 

EXISTS tTime (End-a(De1iver.t)) 
+ End(Deliver) - End-P(Deliver) = 

NL*P-M-Dur + D e l p u r )  
& FORALL t: Time (past(End(Deliver), t) = t 

+ LIST-LEN(pasffOutput, t)) = NL)  

TRANSITION Process-Msg(R-id:Receiver-ID) P-M-Dur 
ENTRY 
PPacket is not full and either (a) the present message has 
been produced after the last message that has been processed 
from that channel, or (b) the value of the current message is  
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Closed and the value of the previously processed message 
for that channel was not Closed*/ 

LIST-LEN(Packetj < Maximum 
& (ReceiverLR-idl.End(New-Info) > Previous(R-id) 

I ( Receiver[R~idl.Msg[Data~Partl=Closed 
& past(Receiver[R-idl.Msg[Data-Partl, 

Previous(R-id)) z Closed )) 
EXIT 

Packet = Packet' CONCAT 
LIST(Receiver[R-idl.Msgj 

& Previous(R-idj BECOMES Now 

TRANSITION Deliver Del-Dur 
ENTRY 
/*Either Packet is  full or Packet is not empty and the 
timeout elapsed from the last Deliver or from the initial 
time*/ 

I ( LIST-LEN(Packet) > 0 
LIST-LEN(Packetj = Maximum 

& ( EXISTS t:Time ( Start(Deliver, tj 
& Now - t = Del-Tout) 

I Now = Del-Tout - Del-Dur + N-I-Dur)) 

EXIT 
Output = Packet' 

& Packet = EMPTY 

FURTHER ASSUMPTIONS #1 
CONSTANT REFINMENT 

Del-Tout = 0 & Maximum = N/L 

{Process-Message, Deliver) TRUE (Process-Message) 
TRANSITION SELECTION 

FURTHER ASSUMPTIONS #2 
CONSTANT REFINMENT 

Del-Tout = N/L*P-M-Dur + Del-Dur 
& Maximum = N 

END Top-Level 
END Packet-Maker 
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