
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. X. AUGUST 1994

A Formal Framework for ASTRAL
Intralevel Proof Obligations

Alberto Coen-Porisini, Member, IEEE, Richard A. Kemmerer, Senior Member, IEEE, and Dino Mandrioli

A6stract- ASTRAL is a formal specification language for
real-time systems. It is intended to support formal software
development, and therefore has been formally defined. This paper
focuses on how to formally prove the mathematical correctness
of ASTRAL specifications. ASTRAL is provided with structuring
mechanisms that allow one to build modularized specifications of
complex systems with layering. In this paper, further details of the
ASTRAL environment components and the critical requirements
components, which were not fully developed in previous papers,
are presented. Formal proofs in ASTRAL can be divided into two
categories: interlevel proofs and intralevel proofs. The former deal
with proving that the specification of level i + 1 is consistent with
the specification of level i , and the latter deal with proving that the
specification of level i is consistent and satisfies the stated critical
requirements. This paper concentrates on intralevel proofs.

Zndex Terms-Formal methods, formal specification and veri-
fication, real-time systems, timing requirements, state machines,
ASLAN, TRIO.

I. INTRODUCTION

STRAL is a formal specification language for real-time A systems. It is intended to support formal software devel-
opment, and therefore has been formally defined. Reference [8]
discusses the rationale of ASTRAL’S design and demonstrates
how the language builds on previous language experiments.
Reference [9] discusses how ASTRAL’S semantics are spec-
ified in the TRIO formal real-time logic. It also outlines
how ASTRAL specifications can be formally analyzed by
translating them into TRIO and then using the TRIO validation
theory.

Recently, a number of approaches have been proposed to
build formal proofs for real-time systems [I] , [2] , [5]-[7],
[lo], 1121. Many of these exploit the so-called dual language
approach [lo], [1 11, where a system is modeled as an abstract
machine (e.g., a finite state machine or a Petri net) and
its properties are described through some assertion language
(e.g., a logic or an algebraic language). However, they are
based on low-level formalisms, i.e., abstract machines and/or

Manuscript received August 1993; revised May, 1994. The research
by A. Coen-Porisini was supported by Consiglio Nazionale delle
Ricerche-Comitato Nazionale per la Scienza e le Tecnologie
dell’hformazione. The research by R. A. Kemmerer and D. Mandrioli
was partially funded by the National Science Foundation under Grant
CCR-9204249, and by the Loral Westem Development Laboratories and
the University of Califomia through a MICRO grant. Recommended by
I . Sommerville.

A. Coen-Porisini and D. Mandrioli are with the Dipartimento di Elettronica
e Inforrnazione, Politecnico di Milano, 20133 Milano, Italy.

R. A. Kemmerer is with the Reliable Software Group-Department of
Computer Science, University of Califomia, Santa Barbara, CA 93 106 USA;
e-mail: kemm@cs.ucsb.edu.

IEEE Log Number 9403573.

assertion languages that are not provided with modularization
and abstraction mechanisms. As a consequence, the proofs
lack structure, which makes them unsuitable for dealing with
complex real-life systems.

The work of Gerber and Lee [7] provides a layered approach
to the verification of real-time systems. With their approach,
the CSR application language is used to specify processes,
and these processes are mapped to system resources by using
a configuration schema. A CSSR specification is then auto-
matically generated. This approach is similar to the ASTRAL
to TRIO translation; however, their approach is much more
operational than the ASTRALDRIO approach.

ASTRAL provides structuring mechanisms that allow one
to build modularized specifications of complex systems with
layering [SI, [9]. In this paper, further details of the ASTRAL
environment components and the critical requirements com-
ponents, which were not fully developed in previous papers,
are presented.

Formal proofs in ASTRAL can be divided into two cate-
gories: interlevel proofs and intralevel proofs. The former deal
with proving that the specification of level i, + 1 is consistent
with the specification of level i, whereas the latter deal with
proving that the specification of level Z is consistent and sat-
isfies the stated critical requirements. This paper concentrates
on intralevel proofs.

In the next section, a brief overview of ASTRAL is pre-
sented along with an example system, which is used through-
out the remainder of the paper for illustrating specific features
of ASTRAL. Section 111 discusses how to represent assump-
tions about the environment as well as the representation of
critical requirements for the system. Section IV presents a for-
mal framework for generating proof obligations in ASTRAL,
and Section V presents an example proof. Finally, in Section
VI, some conclusions from this research are presented, and
possible future directions are proposed.

11. OVERVIEW OF ASTRAL

ASTRAL uses a state machine process model and has
types, variables, constants, transitions, and invariants. A real-
time system is modeled by a collection of state machine
specifications and a single global specification. Each state
machine specification represents a process type, of which there
may be multiple statically generated instances in the system.’

‘Static rather than dynamic processes are used in ASTRAL to simplify
both the syntax and semantics of the formalism. Furthermore, most real-life
real-time systems avoid dynamic processes. The reader is referred to 181 for
more details on the ASTRAL design goals.

0098-5589/94$04.00 0 1994 IEEE

mailto:kemm@cs.ucsb.edu

COEN-PORISINI er a/.: A FORMAL FRAMEWORK FOR ASTRAL INTRALEVEL PROOF OBLIGATIONS 549

The process being specified is thought of as being in various
states, with one state differentiated from another by the values
of the state variables. The values of these variables evolve
only via well-defined state transirions, which are specified
with Entry and Exit assertions and have an explicit non-
null duration. State variables and transitions may be explicitly
exported by a process. This makes the variable values readable
by other processes, and makes the transitions callable by the
extemal environment; exported transitions cannot be called by
another process. Interprocess communication occurs via the
exported variables, and is accomplished by inquiring about the
value of an exported variable for a particular instance of the
process. A process can inquire about the value of any exported
variable of a process type or about the start or end time of an
exported transition.

The ASTRAL computation model views the values of all
variables being modified by a transition as being changed by
the transition in a single atomic action that occurs when the
transition completes execution. Thus, if a process is inquiring
about the value of an exported variable while a transition
is being executed by the process being queried, the value
obtained is the value that the variable had when the transition
commenced. Start(Opi, 1) is a predicate that is true if and only
if transition Op, starts at time t and there is no other time
after t and before the current time when Op, starts (i.e., t is
the time of the last occurrence of Op,). For simplicity, the
functional notation Start(Op;) is adopted as a shorthand for
“time t such that Start(Op,, t),” whenever the quantification
of the variable t (whether existential or universal) is clear
from the context. Start-k(Op,) is used to give the start time of
the kth previous occurrence of Op,. Inquiries about the end
time of a transition Op, may be specified similarly by using
End(Opi) and End-k(Op;).

In ASTRAL, a special variable called Now is used to denote
the current time. The value of Now is 0 at system initialization
time. ASTRAL specifications can refer to the current time
(“Now”) or to an absolute value for time that must be less
than or equal to the current time. That is, in ASTRAL, one
cannot express values of time that are to occur in the future.
To specify the value that an exported variable var had at
time t , ASTRAL provides a past(var, t) function. The past
function can also be used with the Start and End predicates.
For example, the expression “past(Start(Op), t) = t” is used
to specify that transition Op started at time t .

The type ID is one of the primitive types of ASTRAL.
Every instance of a process type has a unique identification
of type ID. An instance can refer to its own identification
by using “Self.” For inquiries where there is more than
one instance of that process type, the inquiry is preceded
by the unique identification of the desired instance followed
by a period. For example, %.Start(Op) gives the last start
time that transition Op was executed by the process instance
whose unique identification is .i. However, when the process
instance performing the inquiry is the same as the instance
being queried, the preceding identification and period may be
dropped.

An ASTRAL global specification contains declarations for
all of the process instances that comprise the system and for

any constants or nonprimitive types that are shared by more
than one process type. Globally declared types and constants
must be explicitly imported by a process type specification
that requires them.

The computation model for ASTRAL is based on nonde-
terministic state machines and assumes maximal parallelism,
noninterruptable and nonoverlapping transitions in a single
process instance, and implicit one-to-many (multicast)
message-passing communication, which is instantaneous.
Maximal parallelism assumes that each logical task is
associated with its own physical processor, and that other
physical resources used by logical tasks (e.g., memory and
bus bandwidth) are unlimited. In addition, a processor is
never idle when some transition is able to execute. That is, a
transition is executed as soon as its precondition is satisfied
(assuming that no other transition is executing). When two or
more transitions of the same process are enabled, one of them
is nondeterministically chosen for execution.

A detailed description of ASTRAL and of its underlying
motivations is provided in [SI, which also contains a complete
specification of a phone system example. In this paper, only
the concepts of ASTRAL that are needed to present the proof
theory are discussed in detail. These concepts are illustrated via
a simple example that is a variation of the packet assembler
described in [131.

The system contains an object that assembles data items
(in the order in which it receives them) into fixed-size
packets, and sends these packets to the environment. It also
contains a fixed number of other objects, each of which
receives data items from the environment on a particular
channel and sends those items to the packet maker. The
packet maker sends a packet to the environment as soon as
it is full of data items.

Each data receiver attaches a channel identifier to each
incoming data item; these channel identifiers are included
with the data items in the outgoing packets.

If a data receiver does not receive a new datum within
a fixed time since the last item amved, its channel is
considered closed until the next datum arrives. Notifications
of channel closings are put into the outgoing packets as well
as data items. If all channels are closed, then the packet
maker should send an incomplete packet to the environment
rather than wait for data to complete it.
In the remainder of this paper, this system is referred to

as the CCITT system. The Appendix contains a complete
ASTRAL specification of the CCITT system.2 It consists
of a packet maker process specification, an input process
specification (of which there are N instances), and the global
specification.

The input process specification, which corresponds to the
data receiver in Zave’s system description, contains two vari-
ables Msg of type Message and Channel-Closed of type
Boolean. It also contains two transitions New-Info and Notify
-Timeout, whose duration are N-LDur and N-T-Dur, respec-

’An earlier version of this specification that did not take into acount the
environment, and with different invariants and schedules, was presented in
191.

550 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20, NO. 8. AL'GL'ST 1994

tively. Transition New-Info, which is exported, prepares a
message to be sent to the packet maker process through a
channel. The message contains a data part, which is provided
by the extemal environment when the transition is invoked,
and two other parts that allow the system to unequivocally
identify which instance of process Input has produced that
message and how many messages have been produced so far
by that particular process instance.

TRANSITION New-Info(x:Info) N-I-Dur
EXIT

MsgCData-Part] = x
& Msg[Countl = Msg'[Countl + 1
& Msg[ID-Partl = Self
& -Channel-Closed

In ASTRAL Exit assertions, variable names followed by a
prime (') indicate the value that the variable had when the
transition fired. Transition Notify-Timeout is executed when
no datum is received from the extemal environment for more
than Input-Tout time units. It prepares a message to be sent
to the packet maker process containing the information that
no datum has been received (Le., the value of the data part
is the constant Closed). Moreover, Notify-Timeout marks the
channel through which messages are usually sent as being
closed.

TRANSITION Notify-Timeout N-T-Dur
ENTRY

EXISTS tl : Time (

& -Channel-Closed
EXIT

&
& Msg[ID-Part] = Self
& Channel-Closed

Start(New-Info, t l)
& Now - tl 2 Input-Tout)

MsgCData-Partl= Closed
Msg[Countl = Msg'tCountl + 1

The packet maker specification has three variables: Packet
and Output of type Message-List, and Previous(Receiver-ID)
of type Time. Also, it has two transitions: Process-Msg and
Deliver, which correspond to processing a message from an
input channel and delivering a packet, respectively. Transition
Process-Msg is enabled whenever the packet is not full and
either the present message has been produced since the last
message from that channel was processed or the value of the
current message is Closed and the value of the previously
processed message from that channel was not Closed. The
result of transition Process-Msg is that the current message
from that channel is appended to the packet and the chan-
nel's previous processing time is updated to be the current
time.
TRANSITION Process_Msg(R-id:Receiver-ID) P-M-Dur

ENTRY

& (Receiver[R-id].End(New-Info) > Previous(R-id)
LIST-LEN(Packet) e Maximum

I (Receiver[R-id].MsglData-Partl=Closed
& past(Receiver[R-idl.Msg[Data-Part],

Mom(R-id)) # Closed 1)
EXIT

Packet = Packet' CONCAT

& Previous(R-id) BECOMES NOW
~ v e ~ - i d l . M s ~

Transition Deliver is enabled whenever the packet is full
or whenever the packet is not empty and Del-Tout time units
elapsed since the last packet was output or since system sfartup
time.

TRANSITION Deliver Del-Dur
ENTRY

I (LIST-LEN(Packet) > 0
LIST-LEN(Packet) = Maximum

& (EXISTS t:Time (Start(Deliver, t)
& NOW - t = Dd-Tmt)

I Now = Del-Tout - Del-Dur + N-I-Dur))
EXIT

& Packet = EMPTY
Output = Packet'

111. ENVIRONMENTAL ASSUMPTIONS
AND CRITICAL..REQUIREMENTS

In addition to specifying system state (through process
variables and constants) and system evolution (through transi-
tions), an ASTRAL specification also defines desired system
properties and assumptions on the behavior of the environment
that interacts with the system. Assumptions about the behavior
of the environment are expressed in environment clauses and
imported variable clauses, and desired system properties are
expressed through invariants and schedules. Because these
components are critical to the ASTRAL proof theory and were
not fully developed in previous papers, they are discussed in
more detail in this section.

A . Environment Clauses

formalizes the assumptions that
must always hold on the behavior of the environment to
guarantee some desired system properties. They are expressed
as first-order formulas involving the calls of the exported tran-
sitions, which are denoted Call(Op,) (with the same syntactic
conventions as Start(Op,)). For each process p there is a local
environment clause, Env,, which expresses the assumptions
about calls to the exported transitions of process p . There is
also a global environment clause, EnvG, which is a formula
that may refer to all exported transitions in the system.

In the CCITT example there is a local environment clause
for the input process and 8 global clause. The local clause
states that for each input process, the time between two
consecutive calls to transition New-Info is not less than the
duration of New-Info , and that there will always be a call to
New-Info before the timeout expires:

An environment clause

(EXISTS tirime (Call-2 (New-Info, t)) [Envinl
+ (Call (New-Info) - Call-2 (New-Info) 2 N-I-Dur)

+ EXISTS t:Time (Call (New-Info, t))
& Now - Call(New-Info) e Input-Tout)

& Now 2 Input-Tout

The global environment clause states that exactly N I L
calls to transition New-Info are cyclically produced, with
time period N/L*P-M- Dur + Del-Dur (where P-M-Dur is
the duration of transition Process-Message; Del-Dur is the

COEN-PORISINI al.: A FORMAL FRAMEWORK FOR ASTRAL INTKALEVEL PROOF OBLIGATIONS 55 I

duration of Deliver; and L denotes a constant that is used
to specify that N / L processes are producing message^).^

FORALL t%e (CEnvGl
t MOD (NL*P-M-Dur + Del-Dur) = 0

(IS1 =N/L
& FORALL i:Receiver-ID (i ISIN S

-+ EXISTS S: Set-Of-Receiver-ID

t) Receivedil.Call(New~Info) = t)))
& FORALL t:Time (

t MOD (N/L*P-M-Dur + Del-Dur) # 0

-Receiver[il.Call(New~€nfo, t)))
-+ FORALL i:Receiver-ID (

B. Imported Variable Clauses

Each process p may also have an imported variable clause,
IV,. This clause formalizes assumptions that process p makes
about the context provided by the other processes in the
system. For example IV, contains assumptions about the
timing of transitions exported by other processes that p uses
to synchronize the timing of its transitions. It also contains
assumptions about when variables exported by other processes
change value. For instance, p might assume that some imported
variable changes no more frequently than every I O time units.

In the CCITT example only the Packet-Maker process
has an imported variable clause. It states that the ends of
transition New-Info executed by input processes follow the
same periodic behavior as the corresponding calls. The clause
is similar to the global environment clause.

C . Invariant Claiises

lnvarianrs state properties that must initially be true and
must be guaranteed during system evolution, according to
the traditional meaning of the term. Invariants can be either
local to some process, I,, or global, I,. These properties
must be true regardless of the environment or the context in
which the process or system is running. Invariants are formulas
that express properties about process variables and transition
timing according to some natural scope rules, which are given
in [3].

In the CCITT example the global invariant consists of two
clauses. The second clause states that every input data will be
output within H1 time units after it is input, but not sooner
than H 2 time units.

FORALL i:Receiver-ID, t l Time, x:Info ([IG]
tl<Now - H1

& past(Receiver[il.End(New~Info(x)),tl) = t l
-+ EXISTS t2:Time, k:Integer (

t2 2 tl + H2 & t2 S Now & Change(Output,t2)
0 < k & k < LIST_LEN(past(Output,t2)) &

& past(OutputOrXData~Partl,t2~=x
& past(Outputlkl[Countl,t2) =

past(ReceiverCl.~Countl,fl)
& past(OutputM[ID~artl,t2) = Receiver[il.Id))

The other global clause states that no message is output
other than those produced by the input processes. The Input

1. is adopted, even ‘For simplicity, the traditional cardinality operator. I
though it is not an ASTRAL operator.

process local invariant states that after Input-Tout time units
have elapsed without receiving any new message a timeout
occurs, and that the last message received is kept until a
Deliver timeout occurs.

The Packet-Maker’s local invariant states that changes in the
exported variable Output occur at, and only at, the end of a
Deliver and that no new messages are generated by the packet
assembler. It also states that the order that messages appear
in an output packet is the order in which they were processed
from a channel, this order is preserved across output packets,
and every message in Output was previously in Packet and if
Output changes Now, then each of the elements of Packet are
unchanged from when they were put into the packet. All of
the invariants are given in the appendix.

D . Schedule Clauses

Schedules are additional system properties that are required
to hold under more restrictive hypotheses than invariants.
Unlike invariants, the vaiidity of a schedule may be proved
using the assumptions expressed in the associated environment
and/or imported variable clauses.

Like invariants, schedules may be either local, Sc,, or
global, SCG, and obey suitable scope rules in the same style
as invariants. Unlike invariants, however, they may refer to
calls to exported transitions. Typically, a schedule clause states
properties about the reaction time of the system to extemal
stimuli and on the number of requests that can be “served” by
the system. This motivates the term “schedule.”

Because there may be several ways to assure that a schedule
is satisfied, such as giving one transition priority over another
or making additional assumptions about the environment, and
because this kind of decision should often be postponed until
a more detailed design phase, in ASTRAL the schedules
are not required to be proved. It is important, however, to
know that the schedule is feasible. That is, it is important to
know that if further restrictions are placed on the specification
and/or if further assumptions are made about the environment,
then the schedule can be met. For this reason, a further
assumptions and restrictions clause may be included as part
of a process specification. Unlike other components of the
ASTRAL specification this clause is only used as guidance to
the implementer; it is not a hard requirement. The details of
this clause are given in the aext subsection.

In the CCITT example the global schedule states that the
time that elapses between the call of a N e w h f o transition
and the delivery of the message it produced is equal to
N/L*P-MDur + N-I-Dur + Del-Dur.

The local schedule for the Input process states that there is
no delay between a call of a New-Info transition and the start
of its execution. The Packet-Maker’s schedule states that the
transition Deliver is executed cyclically and that a packet is
always delivered with N I L elements.

(EXISTS tTime (End-%Deliver,t)) [Scpml
+ End(De1iver) - End-S(De1iver) =

FORALL t: Time (past(End(Deliver), t) = t
+ LIST-LEN(past(Output, t)) = NL)

N/L*P_M_Dur + Del-Dud
&

552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20, NO. X. AUGUST 1994

A proof of the Packet-Maker’s schedule is presented in Section
V.

E. Further Assumptions and Restrictions Clause

As mentioned before, schedules can be guaranteed by ex-
ploiting further assumptions about the environment or restric-
tions on the system behavior. These assumptions constitute a
separate part of the process specification, the further assump-
tions and restrictions clause, FAR,. It consists of two parts: a
further environment assumptions section and a further process
assumptions section.

The further environment assumptions section, FEnv,, obeys
the same syntactic rules as Env,. It simply states further
hypotheses on the admissible behaviors of the environment
interacting with the system. Of course. it cannot contradict
previous general assumptions on the environment expressed
in Env, and EnvG.

A further process assumptions section, FPA,, restricts the
possible system implementations by specifying suitable selec-
tion policies in the case of nondeterministic choice between
several enabled transitions, TS,, or by further restricting
constants, CR,. In general, FPA, reduces the level of non-
determinism of the system specification.

The transition selection part, TS,, consists of a sequence of
clauses of the following type:

{ OpSeti} (Boolean Condition,) { R.OpSeti}

where
{OpSet;} defines a set of transitions.
{ ROpSet;} defines a restricted but nonempty set of transi-
tions that must be included in the set defined by {OpSet,}.
(BooleaiiCoriditiori,) is a boolean condition on the state
of process p.

The operational semantics of the transition selection part is
defined as follows.

I) At any given time the set of enabled transitions, {ET},
is evaluated by the process abstract machine.

2) Let {OpSet;}, (Boolean Condition;) be a pair such
that ET is {OpSeti } and (Boolean Condition,) holds.
Notice that such a pair does not necessarily exist.

3) If there are pairs that satisfy condition 2, then the set
of transitions that actually are eligible for firing is the
union of all {ROpSet;} corresponding to the above pairs
{OpSeti}, (Boolcan Conditioni) that are satisfied.

4) If no such pair exists, the set of transitions eligible for
firing is [ET}.

The constant refinement part, CR,, is a sequence of clauses
that may restrict the values that system constants can assume
w.r.t. what is stated in the remaining part of the system
specification. For example, one can further restrict a constant
T1 that is bounded between 0 and 100, by stating that Tl’s
value is actually between I O and 50, or that i t is exactly 5.

Notice that the further assumptions and restrictions section
can only restrict the set of possible behaviors. That is, if {B}
denotes the set of system behaviors that are compatible with
the system specification without the FAR clau.ti . t e u (.~.->;

denotes the set of behaviors that are compatible with the

system specification including the FAR clause, then it is easy
to verify that {RB} is contained in {B}.

For the CCITT system two different further assumptions
clauses were used with the Packet-Maker process. The first
contains both a constant refinement part and a transition
selection part. The CR part states that the timeout of transition
Deliver is 0 and that the packet length is equal to N / L .

Del-Tout = 0 & Maxiniuiri = N / L

The TS part states that the Process-Message transition has
higher priority than Deliver.

{ Proccss-Message, Dcliver}TRUE{ Process-Message}

The second further assumptions clause contains only a
constant refinement part, which states that Deliver’s timeout
is N/L*P-M-Dur + Del-Dur and that Maximum = N .

Either of these further assumptions clauses is sufficient to
prove that the schedules are met.

IV. INTRALEVEL PROOF OBLIGATIONS IN ASTRAL

In this section, the ASTRAL intralevel proof obligations
are presented. However, it is first necessary to present some
notation.

Let S denote a top level ASTRAL specification. S is
composed of a set of process specifications P, and a global
specification G. Each E‘,, in turn, is composed of a set of
transitions Op,l; I .,Op,,,, a local invariant I,, a local schedule
Sc, a local environment Env,, imported variable assumptions
IV,, a further local environment FEnv,, a further process
assumption FPA, and an initial clause Init-State,. Moreover,
every transition Op,j is described by entry and exit clauses
denoted EN,, and EX,, , respectively. The global specification
G is made up of a global invariant I,, a global schedule SCG
and a global environment EnvG clause.

Proving that S satisfies its critical requirements can be
partitioned into the following proof obligations:

1) Every process specification P, guarantees its local in-

2) Every process specification I‘,, guarantees its local

3) The specification S guarantees the global invariant IG;
4) The specification S guarantees the global schedule Scc;.

For soundness the following proof obligations are also needed:
5) The imported variable assumptions IV,, are guaranteed

6) All the assumptions about the environment (EnvG, Env,

In what follows a formal framework for these proof obli-

variant I,;

schedule Sc,;

by the specification S

and FEnv,) are consistent.

gations is presented.

A . Axiomatization of ASTRAL Abstract Machine
An informal description of the ASTRAL computational

model is given in [SI, 191. However, a formal description of the
,-3X.‘L ?kctract machine is needed to carry out the ASTRAL
proof\.

COEN-PORiSINI et U/.: A FORMAL FRAMEWORK FOR ASTRAL INTRALEVEL PROOF OBLIGATIONS 553

The semantics of the ASTRAL abstract machine is defined
by three axioms. The first axiom states that the time interval
spanning from the starting to the ending of a given transition
is equal to the specified duration of the transition.

FORALL tTime, Op: Trans-of$ ([All
Now - t 2 Top

-+ (past(Start(Op),t) = t
tt past(End(Op),t+TOp) = t +Top))

where To,, represents the duration of transition Op.
The second axiom states that if a processor is idle and some

transitions are enabled then one transition will fire. Let ST
denote the set of transitions of process p .

FORALLtTime([A23
EXISTS d: Time, S'T: SET OF Trans-ofg(

FORALL t i Time, Op: Trans-of3 (

& past(Start(Op),tl) c past(End(Op),t)
& S'T @ & S'T # EMPTY
& FORALL 0p':Trans-of-p (

& FORALL 0p':Trans-of-p (

+ UNIQUE 0p':Trans-of-p (

t l ? t - d & tl < t & Op ISIN

Op' ISIN ST + Eval-Entry(Op',t))

op' -ISIN S'T + -Eva]-Entry(Op',t))

Op' ISIN ST & past(S~Op'),t)=t)))) ,

where Eval-Entry(Op, t) is a function that given a transition
Op and a time instant t evaluates the entry condition ENop
of transition Op at time t .

Because the ASTRAL model implies that the starting time
of a transition equals the time in which its entry condition was
evaluated, the Eval-Entry function is introduced to prevent
the occurrence of a contradiction. More specifically, when the
entry condition of transition Op refers to the last start (2nd
last, etc) of itself, the evaluation at time t of Start(0p) in the
entry condition should refer to the value of Start immediately
before the execution of Op at time t . Since Op has a non-null
duration this can be expressed by evaluating Start(0p) at a
time t' which is prior to f and such that transition Op has not
fired in the interval [f ' , 1).

Finally, the third axiom states that for each processor the
transitions are nonoverlapping.

FORALL tl, t2irime, Op: Trans-of-p ([A31
Start(Op)=tl & End(Op)=tz & t i c t2

+ FORALL t3: Time, Op': Trans-of-p (
t32 t l & t.3 c t2 & Sta~Op'k t.3

-3 Op=Op'&t.3=t1)

+ Op=W&t.3=ti))

& FORALL t3: Time,Op': Trans-of-p (
t3 > ti & t.3 5 t2 & End(0p'k t.3

B. Locul Invariant Proof Ohli,gations

The local invariant I , represents a property that must
hold for every reachable state of process p . Furthermore, the
invariant describes properties that are independent from the
environment. Therefore. the proof of the invariant I, may not
make use of any assumption about the environment, imported

variables or the system behavior as described by Env,, FEnv,,
IV, and FPA,.

To prove that the specification of process p guarantees the
local invariant one needs to show that:

1) I , holds in the initial state of process p , and
2) If p is in a state in which I , holds, then for every possible

The first proof consists of showing that the following
evolution of p , I , will hold.

implication is valid:

Init-State, & Now = 0 + I ,

To carry out the second proof one assumes that the invariant
lIj holds until a given time t o and proves that I , will hold for
every time t > t o . Without loss of generality, one can assume
that t is equal to to + A, for some fixed A greater than zero,
and show that the invariant holds until to + A.

In order to prove that I , holds until time t o + A it may
be necessary to make assumptions on the possible sequences
of events that occurred within the interval [t o - H . t o + A].
where H is a constant a priori unbounded, and where by event
is meant the starting or endin;: of some transition Op, j of
process p.

Let (T denote one such sequence of events. A formula F,
describing the sequence of events that belong to n can be
algorithmically generated from 0. For each event occurring at
time t one has:

Eval_Entry(Op,j, t) & past(Start(Op,,, /), t) if the event

past(EX,j, t) & past(End(Op,,, t) , t) if the event is the

F, is the logical conjunction of all such predicates. Then

is the start of Op,, or

end of Op,j.

the prover's job is to show that for any n:

AI & A 2 & A 3 F
Fa & FORALL t:Time (t S to + past(Ip,t))

+ FORALL t1:Time (t l > to & ti St0 + A
+ pastop, t l))

Notice that as a particular case, the implication is trivially
true if F, is contradictory, since this would mean that (T is
not feasible.

C. Local Schedule Proof Obligatioris

The local schedule Sc, of a process 1, describes some further
properties that p must satisfy when the assumptions on the
behavior of both the environment and p hold (i.e., Env,, IV,,
FEnv, and FPA,).

To prove that the specification of process p guarantees the
local schedule Sc, it is necessary to show that:

1) Sc, holds in the initial state of process p . and
2) If p is in a state in which Sc, holds, then for every

possible evolution of p compatible with FPA,. when the
environment behavior is described by Env, and FEnv,,
and the imported variables behavior is described by I V , ,
ScIl will hold.

554 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20. NO. 8, AUGUST 1994

Note that one can also assume that the local invariant I,
holds; i.e., I, can be used as a lemma. The initial state
proof obligation is similar to the proof obligation for the local
invariant case; however the further hypothesis on the values
of some constants expressed by CR, can be used:

Init-State, & Now = 0 & CR, -+ Sc,

The second proof obligation is also similar to the local
invariant proof. However, in this case events may be extemal
calls of exported transitions Op,j in addition to the starting
and ending of all transitions of p . If the event is the call of
Op,j from the extemal environment, then "past(Call(Op,,), t)
= t" can be used to represent that transition Op,j was called
at time t.

The prover's job is to show that for any IT:

Al & A2' &A3 & A4 & Envp & F'Env, & WPl-
CRp & Fo& FORALL t:Time (t 5tQ

pastiscp, t))
+ F O R A L L t l : T i m e (t i > t Q & t 1 5 t o + A

-+Pasffscp, t l))

where A2' and A4 are defined in what follows.
A2' is an axiom derived from A2 by taking into account

the TS, section, which restricts the non-determinism of the
machine, and the fact that the exported transitions can fire
only if they are called by the environment.

The TS, section can be viewed as the definition of a function

range the powerset of the transitions of process p . Its semantics
is the following: denoting with ET the set of enabled transi-
tions then TS(ET) retums a restricted set of enabled transitions,
ET', where ET' & ET. The processor will nondeterministically
select which transition to fire from the transitions in ET'.

TS: 2{0Pl,"'.OPn} -+ 2{0P1,'.',0Pn}, having as domain and

Let ST denote the set of transition of process p :

FORALLtTime([Azl
EXISTS d: Time, S'T: SET OF Trans-of-p (

F O W L tl:Time, Op: Trans-of3 (
t l > t - d & tl < t & Op ISIN ST

& past(Start(Op1,tl) < past(End(Op),t)
& S 'TCST&S 'T#EMPTY
& FORALL 0p':Trans-of-p (

& FORALL 0p':Trans-of-p (

+ UNIQUE 0p':Trans-of-p (

Op' ISIN ST + Eval-Entry'(Op',t))

Op' -1SIN ST + -Eval-Ehtry'(Op',t))

Op' ISIN TS~S'T) & past(Start(Op'),t)=t)))),

where Eval-Entry' (Op'? t). = EvalLEntry(Op',t) & Issued-
call(Op'), iff Op' is exported and Eval-Entry'(Op', t)=
EvalEntry(Op',t), iff Op' is not exported.

A4 states that Issued-call(0p) is true iff the environment has
called transition Op and transition Op has not fired since then:

op: TTanS-Of> ([A41
EXISTS tl: Time (

tl 5 Now & Call(Op, tl) -
& FORALL t: Time (

t 2 tl & t 5 NOW & -StadOp,t)
+ past(1ssued-call(Op),t)))

& EXISTS tl: Time (
tl 5 Now & Start(Op, tl)

& FORALL t: Time (
t > tl & t 5 Now & -Call(Op,t)

+ -past(Issued-call(Op),t)))).

D. Global Invariant Proof Ohligations

Given an ASTRAL specification S composed of TL pro-
cesses, the state of S can be defined as the tuple (SI,. . . , s,,),

where sp represents the state of process p . The global invariant
IG of S describes the properties that must hold in every state
of s.

To Prove that IG is guaranteed by S it is necessary to prove
that:

1) IC holds in the initial state of S , and
2) If S is in a state in which f~ holds, then for every

possible evolution of S, IG will hold.
Since the initial state of 5' is the tuple

(Iiiit-Statel, . . . , Init-State,,), where each Init-State,
is a formula describing the initial state of process p , to prove
point 1 one needs to prove the validity of the following
logical implication:

Point 2 can be proved in a manner very similar to the local
invariant case. However in this case the sequences of events U

will contain starting and ending events for exported transitions
belonging to any process of S. Moreover, the local invariant
of each process p composing S can be used to prove that every
IT preserves the global invariant.

The prover's job is to show that for any U :

A1 &A2&A3l -
Fo & FORALL t:Time (t 5 to past(IG, t))

+ F O R A L L t l : T i m e (t l > t o & t l S t Q + A

-+ pastik t l))

Notice that unlike local proofs, for global proofs it may
happen that a sequence IT contains contemporary events. More
precisely two sequences 01 and "2 may differ only in the
order of some events that occur at the same time. In this case,
anyone of the sequences can be chosen since the associated
I T ' S are obviously logically equivalent.

E. Global Schedule Pro($ Obligations

The global schedule SCG of the specification S describes
some further properties that S must satisfy, when all its
processes satisfy their own schedules and the assumptions on
the behavior of the global environment hold.

COEN-PORISINI P I al.: A FORMAL FRAMEWORK FOR ASTRAL INTRALEVEL PROOF OBLIGATIONS 555

Thus, to prove that SCG is consistent with S one has to

I) SCG holds in the initial state of S, and
2) If S is in a state in which SCG holds, then for every

possible evolution of S, SCG will hold.
In both proofs one can assume that the global invariant 1~

and every local invariant I , and local schedule Sc, holds as
well as the global environment assumptions EnvG. Note that
none of the local environment assumption (Env, and FEnv,)
may be used to prove the validity of the global schedule.

The first proof requires the validity of the formula:

show that:

n

/\(Init-Statc,) & Now = 0 & ErivG -+ SCG
p = l

The second proof requires the construction of the sequences
of events cr. Each (T will contain calling, starting and ending
of exported transitions belonging to any process p of S. The
prover's job is to show that for any (T:

AI & A2" & A3 & A4 & E n v ~ k
Fa & FORALL t:Time (t S to + past(ScG t>)

+ FORALLtl:l"e(t l > b & t l I t o + A

+ past(scG, t l))

where A2" is an axiom derived from A2 by taking into account
that the exported transitions can fire only if they are called by
the environment.

FORALL t.Time ([A27
EXISTS d: Time, S'T: SET OF Trangof-p (

FORALL tl:Time, Op: Trans-of-p (

& past!Start(Op),tl) < past(End(Op1,t)
& S'T E & S'T # EMPTY
& FORALL 0p':Trans-of-p(

& FORALL 0p':Trans-of-p (

-+ UNIQUE 0p':Trans-ofg (

t l > t - d& t l < t & Op ISIN @

Op' ISIN S'T -+ Eval-Entry'(Op',t))

op' -ISIN S'T -+ -Ed-Entry'(Op',t))

op' ISIN S T & past(sMop'),t)=t))))

where Eval-Entry'(Op',t) = Eval-Entry(Op',t) & Issued-
call(Op'), iff Op' is exported and EvalEntry'(Op', t) =
EvalEntry(Op', t) , iff Op' is not exported.

F. Imported Variable Proof Obligation

When proving the local schedule of a process p one can
use the assumptions about the imported variables expressed
by IV,. Therefore, these assumptions must be checked against
the behavior of the processes from which they are imported.

The proof obligation guarantees that the local environment,
local schedule and local invariant of every process of S (except
p) , and the global environment, invariant and schedule imply
the assumptions on the imported variables of process p :

A1 & A2 & A3 & A EIiv,& A I,& A Sc,
l#P L # , L#P

& SCG + I\r, & EnvG &

G. Environment Consistency Proof Obligation

Every process p of S may contain two clauses describing
assumptions on the behavior of the external environment, Env,
and FEnv,. These clauses are used to prove the local schedule
of p . The global specification also contains a clause describing
assumptions on the system environment behavior EnvG.

For soundness, i t is necessary to verify that none of the
environmental assumptions contradict each other, i.e.. that a
behavior satisfying the global as well as the local assumptions
can exist. This requires proving that the following formula is
satisfiable:

71 n

A Env, & A FEIIv, & EnvG.
r=l 1 = 1

V. AN EXAMPLE CORRECTNESS PROOF IN ASTRAL

In this section the proof of the local schedule of process
Packet-Maker is considered:

Scpm:
EXISTS t:Time (End-S(Deliver, t))

-+ End(De1iver) - End-S(De1iver)
= N/L*P-M-h + Del-Dur

FORALL t:Time (past(End(Deliver),t) = t
-+ LIST-LEN(past(Output,t)) = NL)

&

To prove SC,, the imported variables assumptions IV,,
and the second further process assumptions, FPA,,, , of process
Packet Maker are used:

IVpm:
FORALL t:Time (

(t - N-I-Dur) MOD (N/L*P-M-Dur + Del-Dur) = 0
-+ EXISTS S:Set-of-Receiver-ID (I S I = N/L

& FORALL i:Receiver-ID (
i ISIN S fs Receive~fil.End(New-Info) = t)))

& FORALL t:Time (
(t - N-I-Dur) MOD (N/L*P-M-Dur + Del-Dur) f 0

-+ FORALL i:Receiver-ID (
-Receiver[i].End(New-Info) = t))

& FORALL i:Receiver-ID (
Receiver[i].Msg[Data-Partl f Closed)

FPA,, :

Del-Tout = N / L * P-M-Dur + DelDur & Maximum = N

Consider a time instant p~ such that SC,, holds until po;
it is necessary to prove that ScpnL holds until po + A, where
A is big enough to require an End(Deliver) to occur within
(P O . po + A]. Without loss of generality, assume that:

1) at time po transition Deliver ends and
2) A = N/L*P-M-Dur + Del-Dur.
Now, by [A l l one can deduce that at time po - Del-Dur a

Start(De1iver) occurred. Fig. 1 shows the relevant events for
the discussion that follows on a time line.

The Entry assertion of Deliver states that Deliver fires either
when the buffer is full or when the timeout expires and at least
one message has been processed.

556 lEEE TRANSACTlONS ON SOFTWARE ENGINEERING. VOL. 20. NO. X. AUGUST 1993

Start(PM), StartiPM),
End(De1) End(De1) End(De1)

StartiDel)
Sta&2(Del) I I I I I

I
pO-Del-Dur-NL*P-M-Dur pO+NL*P-M-Dur

N L End(N1) occur in this time interval

Fig. I . Example time line.

EnDel:

I (LIST-LEN(Packet)>O
& (EXISTS t: Time (

LISTLEN(Packet) = Maximum

Start@eliver,t) & Now - t 2 Del-Tout)
I Now = Del-Tout + N-I-Dur - Del-Dur))

Because SC,, holds until 210 and from the Exit assertion

1) For all t less than or equal to po and such that an
end of transition Deliver occurred, Output contains N / L
messages at time t (Sc,,), and

2) The content of Output at the end of Deliver is equal to
the content of Packet at the beginning of Deliver (Exit
assertion of Deliver).

From this one can conclude that at time t - Del-Dur the
buffer contained N I L messages (i.e., it was not full). As a
consequence transition Deliver has fired because the timeout
has expired.

Furthermore, assume as lemma L 1 that Process-Message is
disabled every time Deliver fires (this lemma will be proved
later).

for Deliver it is known that:

The Entry condition of Process-Message is:

LIST-LEN(Packet) < Maximum
& (EXISTS t1:Time (

Receiver[R-idl.End(New-Info) = tl
& tl > F’revious(R-id))

I (Receiver[Rjd].Msg[Data-Part1 = Closed
& past(Receiver[R-idl.Msg[Data-Part],

Previous(R-id)) *closed))

and since
1) the buffer is not full (Sc,,), and
2) no notification of closed channel can arrive (IV,,)

one can conclude that no new message is available when
Deliver fires (Ll).

IV,, states that N I L messages are received every
N/L*P-M-Dur + Del-Dur time units. As a consequence:

1) the N I L messages output at time po have been received
before time po - Del-Dur - N/L*P-MDur, in order
to allow Process-Message to process each of them, and

2) they have been received after the second last occurrence
of Delivery prior to 110 (because of L1)

Thus, one can conclude that the N I L messages output at
time po have been received in the interval:

(Start-2(Deliver), yo - Del-Dur - N/L*P-MDur],

that is,

(PO - 2*DeLDur - N/L*P-M-Dur, -
po - Del-Dur - N/L*P-M-Dur]

because of Scpn1. As a consequence of IV,,,,, N I L new mes-
sages will arrive after N/L*P-M-Dur + Del-Dur time units
from the last arrival, i.e., in the interval (po-Del-Dur, pol .

Thus, at time po Process-Message will become enabled
and the N I L messages will be processed within time po +
N/L*P-M-Dur, since Deliver is disabled until that time.
Moreover, at time yo + N/L*P-M-Dur Process-Message will
be disabled, since there are exactly N I L messages to process.

Thus, at time po + N/L*P-M-Dur the buffer contains N I L
messages and Deliver fires because the timeout has expired.
Also, at time p o + N/L*P-M-Dur + Del-Dur, Deliver ends
and the length of the Output buffer will be equal to N I L (Exit
clause of Deliver). Therefore, the schedule will hold until time
po + N/L*P-M-Dur + Del-Dur.

To complete the proof it is necessary to prove lemma
L 1, which states that Process-Message is disabled every time
Deliver fires. The proof is carried out by induction in what
follows.

Initially, the first time that Deliver fires, Process-Message
is disabled. In fact, the first N I L End(New-Info) occur at
time N-I-Dur (IVpm). Transition Process-Message will finish
processing these messages at time N-IDur +N/L*P-M-Dur,
and at that time Deliver will become enabled.

Since no End(New-Info) can occur in (N-I-Dur, N-LDur
+N/L*P-M-Dur + Del-Dur) (by IV,,), then at time N-LDur
+N/L*P-M-Dur transition Process-Message is disabled and
Deliver fires.

Now suppose that when Deliver fires Process-Message is
disabled; it is necessary to prove that Process-Message is again
disabled the next time Deliver fires.

Let yo be the time when Deliver starts; by hypothesis at
time yo Process-Message is disabled. As a consequence the
messages in Packet at time yo have been received in the
interval (yo -DelDur -N/L*P-MDur, yo - N/L*P-M-Dur]

Thus, by IVplrl the next N I L messages will arrive in the
interval (yo, yo + Del-Dur]. Furthermore, the timeout for
Deliver will expire at time yo + N/L*PIv-Dur + DelDur.
Therefore, Deliver cannot fire before that time unless the buffer
is full.

At time yo + Del-Dur Process-Message will become en-
abled, and it will fire until either all messages have been
processed or the buffer becomes full. At time qo + Del-Dur
+N/L*P-M-Dur the N I L messages that arrived in the interval
(yo, qo + Del-Dur] will be processed, and since no new
message can arrive before yo + Del-Dur + N/L*P-M-Dur
at that time Process-Message will be disabled. Similarly, at
that time Deliver will be enabled and thus will fire.

This completes the proof of lemma L1 and thus the proof

(SCp7n 1.

of SCprn.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, the environment and critical requirements
clauses, which were only briefly sketched in previous papers,

COEN-PORISINI cf al.: A FORMAL FRAMEWORK FOR ASTRAL INTRALEVEL PROOF OBLIGATIONS

were presented in detail. The intralevel proof obligations were
also presented and an example proof was demonstrated.

All of the proofs for the CCITT specification have been
completed. In addition, the proofs of five different schedules
that can be guaranteed by using different further assumptions
clauses have also been completed. The proofs of these sched-
ules did not require any new or changed invariants. The CCITT
proofs demonstrate that formal correctness analysis can be
applied to complex real-time systems by suitably structuring
both the specifications and the proofs.

Normal correctness proofs are probably the most advanced
and critical application of formal methods to software con-
struction. In any proof within an undecidable theory a “cre-
ative” part cannot be avoided. For instance, in the proof of
traditional sequential programs, this part typically consists of
the invention of suitable invariants. The difficult part of the
ASTRAL proofs is choosing the appropriate event sequences
and showing that all of the possible event sequences are
included in the set of sequences chosen. This is essentially. due
to the fact that most often the desired properties of reactive
systems are of the type “as a consequence of event A , event
B must occur within A time units (or not before A time
units)”. Thus, the sequencing of events becomes a central
issue. Our limited experience, however, showed that in all
practical examples considered so far, the “shape” of the event
sequences to be analyzed were always quite similar to the
sequences of the CCITT example presented in this paper. The
examples investigated include a phone switching system, a
traffic light system, a timed light switching system, along with
five different versions of the global schedule of the CCITT
example. Thus, this similarity may considerably reduce the
amount of ingenuity necessary to carry out ASTRAL proofs,
after an initial experience with some sample systems.

The interlevel proofs for the CCITT specifications have also
been completed. The details of these proofs as well as the
complete two-level CCITT specification can be found in [4].
In that paper, the details of the implementation mappings and
the refinement of process specifications are also discussed.

Future work will concentrate on applying ASTRAL to more
varied and complex real-time systems. Work will also continue
on building a tool suite for formally designing real-time
systems using ASTRAL.

APPENDIX
ASTRAL FORMAL SPECIFICATION FOR THE C C I R SYSTEM

GLOBAL Specification CCIl’T

PROCESSES
Receiver: array [l..N] of Input,
Assembler: Packet-Maker

TYPE
Data,
Message IS STRUCTURE OF

(Data-Part Data,
Count: Integer,
ID-Part: ID),

Message-List IS LIST OF Message,

Pos-Integer: TYPEDEF i: Integer (i > 01,
Receiver-ID: TYPEDEF i:Pos-Integer (i S N),
Set-Of-Receiver-ID IS SET OF Receiver-ID,
Info: TYPEDEF D:Data (D # Closed)

CONSTANT
N, L: Pos-Integer,

/*N denotes the number of processes of type Input,
L denotes a value such that the number of input
processes producing messages a t the same time is N/L*/

Closed: Data,
N-I-Dur, P-M-Dur, Del-Dur: Time

/*These are the duration for transitions New-Info,
Process-Message, and Deliver*/

/*H1, H2 are lower and upper bounds on the time
for an input to be output*/

H1, H2: Time

AXIOM
N MOD L = 0

DEFINE
Change(L-Msg:Message-List,t:Time):Boolean ==

EXISTS e: Time (
e > O & e < t

& FORALL d Time (
d > t - e & d c t

+ past(L-Msg, d) # past(L-Msg,t)))

ENVIRONMENT
/*The environment cyclically produces exactly
N/L messages every N/L*P-M-Dur + Del-Dur
time units*/

FORALL t:Time (
t MOD (N/L*P-M-Dur + D e l p u r) = 0

--f EXISTS S Set-Of-Receiver (

IS1 =N/L
& FORALL i:Receiver-ID (

(i IS INS
c) Receiver[il.Call(New~Info) = t)))

& FORALL t:Time (
t MOD (NL*P-M-Dur + D e l p u r) # 0

+ FORALL i:Receiver-ID (

-Receiver[il.Call(New-Info, t)))

INVARIANT
/* Every data output was received sometime in the past */

FORALL kInteger (
k > 0 & k < LIST-LEN(0utput)

& Output[kl [Data-Part] # Closed
+ EXISTS i:Receiver-ID, t:Time, $Integer (

t < Now
& Receiver[il.Start-j(New-Info(Output[kl

[Data-Part]) = t))

& /* Every input data will be output within H1 time units after
i t is input, but not sooner than H2 time units*/

FORALL i:Receiver-ID, t l :Time, x:Info (
tl“ow-HI

& past(Receiver[il.End(New~Info(x)),tl) = tl
+ EXISTS tZ:Time, k:Integer (

t2 > tl+H2 & t2 2 Now & Change(Output,t2)
& 0 c k & k i LIST-LEN(pasffOutput,tZ))
& past(Output[kl~ata-Partl,t2)=x
& past(Output[kl[Countl,t2) =

& past(Outpuffkl[IDgartl,t2) = Receiver[il.Id))
past(Receiver[il.Msg[Countl,tl)

5 5 8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20. NO. 8. AUGUST 1YY4

SCHEDULE

/*The time that elapses between the call of a New-Info transition and
the delivery of the message i t produced is equal to N/L*P-M-Dur +
N-I-Dur + Del-Dur*/

FORALL i:Receiver-ID, tl:Time, x:Info (
t l 2 Now - N/L*P-M-Dur - N-I-Dur - Del-Dur

& past(Receiver[il.Cal1(New~Info(x)),t~)=tl
+ EXISTS tz:Time, k:Integer (

tz = t l + N/L*P-M-Dur + N-I-Dur + Del-Dur
& 0 < k & k S LIST-LEN(past(Output,tZ))
& Change(Output,t~)
& past(Output[kl[Data-Part1 ,tZ)=x
& past(OutpuUkl[ID-Partl,t2)

= Receiver[il.Id))

END CCI'IT

SPECIFICATION Input
LEVEL Top-Level

IMPORT
Data, Message, Info, Closed, N-I-Dur

EXPORT
New-Info, Msg

VARIABLE
Msg: Message,
Channel-C1osed:Boolean

CONSTANT
Input-Tout, N-T-Dur: Time

ENVIRONMENT

(EXISTS t:Time (Call-2 (New-Info, t))
--f Call (New-Info) - Call-2 (NewJnfo) Z N-I-Dur)

& (Now 2 Input-Tout
+ EXISTS t:Time (Call (New-Info, t))

& Now - Call(New-1nfo) < Input-Tout)

INITIAL
-Channel-Closed

& Msg[Data-Partl# Closed
& MsdCount]=O

FORALL t l : Time, x: Info (
End(New-Info(x), tl)

& Now - tl < Input-Tout
+ Msg[Data-part1 = x)

& (End(New-Info(x), tl)

N-I-Dur + N-T-DUI

& Now - t l 2 Input-Tout - N-I-Dur + N-T-Dur
+ MsgLDatagart] = Closed))

SCHEDULE
FORALL t: Time, x: Info (
t s Now + ((Call(New-Info(x)) = t) c) Start(New-Info(x)) = t))

TRANSITION New-Info(x:Info) N-I-Dur
EXIT

Msg[Data-Part] = x
& Msg[Countl = Msg'[Countl + 1
& Msg[ID-Partl = Self
& -Channel-Closed

TRANSITION Notify-Timeout N-T-Dur
ENTRY

EXISTS t l : Time (Start(New-Info,tl) & Now - tl 2 Input-Tout)
& -Channel-Closed

EXIT
MsgiData-Part] = Closed

& Msg[Countl = Msg'[Countl + 1
& Msg[ID-Part] = Self
& Channel-Closed

END Top-Level
END Input

SPECIFICATION Packet-Maker
LEVEL Top-Level

IMPORT
Receiver, Data, Message, Message-List, Pos-Integer,
Receiver-ID, Set-Of-Receiver-ID, Info, Closed, N, L,
P-M-Dur, Del-Dur, N-I-Dur, Mag

INVARIANT

/* After Input-Tout time units have elapsed without receiving any new
message a timeout occurs */

FORALL t l : Time (

EXPORT
output

Start(New-Info, tl) & Now - tl > Input-Tout
+ EXISTSt2:Time(

StartiNotify-Timeout, t2)
& t2 = tl + Input-Tout))

& /* The last received message is kept until a timeout occurs */

VARIABLE
Packet: Message-List,
Previous(Receiver-ID): Time,
Output: Message-List

COEN-PORISINI cf U / : A FORMAL FRAMEWORK FOR ASTRAL INTRALEVEL PROOF OBLIGATIONS 559

CONSTANT
Maximum: Pos-Integer,
Del-Tout, H3: Time
/*H3 denotes an upperbound for the time to deliver
a message after i t has been processed*/

IMPORTED VARIABLE CLAUSE
FORALL t Time (
(t - N-I-Dur) MOD (NL*P-M-Dur + Del-Dur) = 0

+ EXISTS S: Set-Of-Receiver-ID (

& FORALL i: Receiver-ID
IS I = N L

(i ISIN S e, ReceiveIfil.End(New-Info) = t)))
& FORALL t:Time (

(t - N-I-Dur) MOD (N/L*P-M-Dur + Del-Dur) # 0
+ FORALL i:Receiver-ID (

-Receiver[il.End(New-Info) = t))
& FORALL i:Receiver-ID (

Receive~fil.Msg[Data-Partl f Closed)

INITIAL
Packet = EMPTY

& FORALL i:Receiver-ID (Previous(i)=O)
& Output = EMPTY

INVARIANT
/*Changes in Output occur a t and only a t

the end of a Deliver*/
FORALL t: Time (

Change(Output, t) tt past(End(De1iver). t) = t)

/* No new messages are generated by the packet
&

assembler */
FORALL k:Integer (

k>O & klLIST-LEN(Output)
+ EXISTS i:Receiver-ID, t:Time (

t<Now & pasffReceiveIfil.Msg,t)=Output[kl))

/*The order that messages appear in an output packet
is the order in which they were processed from the channels*/
FORALL kInteger (

&

L O & k<LIST-LEN(0utput)
+ EXISTS t l ,t2:Time (

tl < t2 <Now
& pasff End(Process-Message), tl) = tl
& past(End(Process-Message), t2) = t2
& Outputrkl=

& Output€k+l] =
past(Packet[past(LIST-LEN(Packet),tl)I, t l

past(Packet[past(LIST-LEN(Packet),t2)1, t2))

&
/* The order is also preserved across output packets */

EXISTS t:Time (
Starti2(Deliver, t) & End(De1iver) > Start(De1iver))

+ EXISTS tl ,t2:Time (
t l < t 2 c N o w

& past(End(Process-Message, tl) = t l
& past(End(Process-Message, t2) = t2
& past(Output[past(LIST-LEN(Output), Starff Deliver)],

StartlDeliver)) =
pasUPacketLpasff LIST-LEN(Packet),tl)I, tl)

& 0utpuff11=
pasffPacket[pasff LIST_LEN(Packet).t2)1, t2))

&
/* Every message in Output was previously in Packet and
all of the elements of Packet have not changed from when
they were put into the packet until the packet is output*/

FORALL k:Integer (
k>O & kSJJST-LEN(Output)

tf EXISTS tTime (
t<End(Deliver)

& past(End(Process-Message,t)=t
& past(Packet[past(LIST-LEN(Packet),t)l, t)

& FORALL t1:Time (
= Outputrkl

tl2t & tl<End(Deliver)
+ past(F'acke~pasffLIST-LEN(Packet), t)l, t) =

pasffPaeket€pasffLIST-LEN(Packet), t)l, tl))))
&

FORALL tl :Time (
t l "ow-H3 & past(End(Process-Msg),tl)=tl

+ EXISTS t2:Time (
t&tl &MsNow

& pasUEnd(Deliver).t2)=t2
& past(PackeapasffLIST-LEN@'acket), till, tl) =

past(0utpuCpasff LIST-LEN(Packet), till, t2)
& FORALL t:Time (

tx1&t<t2
+ past(Packet[pasff LIST-LEN(Packet), tl11, tl 1 =

past(Packet[pastfLIST-LEN(Packet), t l)I, t))))

SCHEDULE
/*The transition Deliver is activated cyclically. Furthermore,
i t always delivers a packet 4th N L elements*/

EXISTS tTime (End-a(De1iver.t))
+ End(Deliver) - End-P(Deliver) =

NL*P-M-Dur + D e l p u r)
& FORALL t: Time (past(End(Deliver), t) = t

+ LIST-LEN(pasffOutput, t)) = NL)

TRANSITION Process-Msg(R-id:Receiver-ID) P-M-Dur
ENTRY
PPacket is not full and either (a) the present message has
been produced after the last message that has been processed
from that channel, or (b) the value of the current message is

560 IEET. TKANSACTlOhS O N SOITWARE ENGlhEERINC. VOL 70. NO. X. AUGUST 1994

Closed and the value of the previously processed message
for that channel was not Closed*/

LIST-LEN(Packetj < Maximum
& (ReceiverLR-idl.End(New-Info) > Previous(R-id)

I (Receiver[R~idl.Msg[Data~Partl=Closed
& past(Receiver[R-idl.Msg[Data-Partl,

Previous(R-id)) z Closed))
EXIT

Packet = Packet' CONCAT
LIST(Receiver[R-idl.Msgj

& Previous(R-idj BECOMES Now

TRANSITION Deliver Del-Dur
ENTRY
/*Either Packet is full or Packet is not empty and the
timeout elapsed from the last Deliver or from the initial
time*/

I (LIST-LEN(Packet) > 0
LIST-LEN(Packetj = Maximum

& (EXISTS t:Time (Start(Deliver, tj
& Now - t = Del-Tout)

I Now = Del-Tout - Del-Dur + N-I-Dur))

EXIT
Output = Packet'

& Packet = EMPTY

FURTHER ASSUMPTIONS #1
CONSTANT REFINMENT

Del-Tout = 0 & Maximum = N/L

{Process-Message, Deliver) TRUE (Process-Message)
TRANSITION SELECTION

FURTHER ASSUMPTIONS #2
CONSTANT REFINMENT

Del-Tout = N/L*P-M-Dur + Del-Dur
& Maximum = N

END Top-Level
END Packet-Maker

REFEREWES

R. .41ur, C. Courcouhetis. and D. Dill, "Model-checking for rea-time
systems," Sth IEEE LICS YO. 1990. pp. 414425.
C. Chang. H. Huang, and C.C. Song. "An approach to verifying
concurrency behavior o f real-time systems ba\ed on time Petri net and
temporal logic." I i z j d q w t i YO. 1990. pp. 307-3 14.
A. Coen-Porisini. R. Kemmerer, and D. Mandrioli. "Formal verification
of real-time systems in ASTRAL," Tech. Rep. TRCS 92-27. Dept. of
Comput. S a . . Univ. o f Califomia, Santa Barhara. CA. USA. Sept. 1092.
-, "A formal framework for ASTRAL interlevel proof obligation\."
Tech. Rep. TRCS 93-04. Dept. of Comput. Sci.. Univ. of Calitornia.
Santa Barbara. CA, USA. Apr. 1993.
M . Felder. D. Mandrioli, and A. Morzenti, "Proving properties of r e d
time systems through logical specitication\ and Petri net modcls." /FE/?
Ti~utrs. Sq'rwuw E:",p., vol. 70, pp. l?7-131, Feb. 1994.
A. Gabrielian and M . Franklin, "Multilevel specification of real-time
systems." CACM 34. vol. 5. pp. 51-60. May 1991,
R. Gerber and I . Lee. ".A layered approach to automating the verification
of real-time system\." lEEE T~.uiis. Sr!frbi.uir, Eiip.. vol. 18. pp. 768-7x4.

C . Gher i i and R. Kemmerer, ".4STRAL: An n\sertion Ianguqe for
Sept. 1992.

speciiying real-time \ystems." in PI.^. 3 i . d Eut.. Sofrwuw Eti,q. Coi f ,

191 -. "Executing fomial specifications: The ASTRAL to TRIQ Iran\-
Iation approach," in P r i ~ (TAV4: S\ni/,. 7i,.stiii,q. h d , \ i . i . i f i~ .c r r io t7 .

I 101 J . Ostroll. f i w p) r u / Liigii. / iw Kerrl-Timr .SJ.sIi~tm, vol. I. Advanced
Software Development Series. Taunton, UK: Research Studie\ Pre\\.
19x9.

I I I I A. Pnueli. "The temporal logic of programs," in Pro(.. l X t h Aii i i i t . S\ni/'.

[I ?] 1. Suzuki. "Formal analysis of alternating hit protocol hy temporal Petri
nets," lEEE Truri.\. Softwui.o Etig. vol. 16. pp. 1273-1781. Nov. 1990.

[131 P. Zave. "PAISLey user documentation volume 3: Case studies." Com-
put. Tcchnol. Re\. Lab. Rep., XT&T Bell Lnhoratorie\. Murray Hil l.
NJ. USA, 19x7.

1991. pp. 122-146.

1991. pp. 112-119.

FOl~tiL/Uti011.\ (d C'oni/,1tt. si.;.. 1977, pp. 46-57.

Dr. Coen-Porisini is 3

A. Cwn-Porisini received the laurea degree iii elec-
trical engineering and the Ph.D. degree in computer
science from the Politccnico di Milano. Milan. Italy.
in 1087 and 1992. respectively.

He was a Vi\iting Scholar at the Univenity
of California at Santa Barbara. USA, from June
1992 to August 1993. He i \ currently an As\istant
Profe\sor o f Computer Science at the Politecnico di
Milano, Milan. Italy. H i s main research intere\t\ are
in \oftware engineering, with particular reference to
\pecitication languages and ob,ject-oriented \y\tem\.

member of the A C M and the IEEE Computer Society.

K. A. Kemmerer received the B.S. degree in mathe-
matics from the Pennsylvania State University, State
College, PA, USA, in 1966, and the M.S. and Ph.D.
degrees in cornputer science from the Cnivenity of
California at Los Angeles, CA, USA. in 1976 and
1979. reqxxtively.

He i \ a Profe\sor and Chair t i l the Department of
Computer Science at the University o t Califomia.
Santa Barbara. USA. He also lcads the Reliable
Software Group there. He has heen a Visiting Sci-
enti\t at the Massochu\ett\ Institute o f Technology.

and a Whiting Profeswi- HI the Wang In\titute and the Politecnico di Milano.
Italy. From 1966 10 1974, he worked a s a Programmer and Systems Consultant
lor North American Rochwell and the Institute of Transportation and Traflic
Engineering at the University o t Califomia at Los .Angele\. USA. l i i \ re\earch
intcre\t\ include fomial specilicatibn and verification o f \ysteim, computer
\y\tem security and reliability. prograniming and specification language
design. and software cngineering.

Dr. Kernmerer is author of the hook Foi-niul . S / ~ i ~ i ~ t f i (~ u r t o i i c r t d L > i - i f i i w i (i t i

of u i i O/wruttii,q Systenr Secitrity Kei-tic,/, and coauthor of the book Coniputei.'.\
ur Risk .Sufc, Compiititig it7 rlre /ii,f(~t~mutioir Age. He has served as a member of
the Nntionnl Academy o f Science'\ Committee o n Computer Security in the
DOE (19x7-XX), the System Security Study Committee (IYXY-Y I I. and the
Committee for Review of the Oversight Mechanisms for Space Shuttle Flight
Sottware Proce\\es (199-93). He has aI\o served a\ ii member of the National
Computer Security Center'\ Formal Verilication Working Group, and wa\ a
Member of the NIST'\ Computer and Telecommunication\ Security Council.
He i\ nlso the past Chairman of the IEEE Technical Committee on Security
and Pri\,acy, and i \ a past member of the Adviwry Board for the ACM'\
Sp.ccial Interest Group o n Security. Audit. and Control. Hc also \erye\ on the
editorial boards of the IEEE TKANSACTIO~S ou SOFI w,\Kt. E V ~ I \ ~ - I W V ~ and the
AClM C . O ~ J ~ / J I I / / / I , ~ S i o . , ~ e ~ . ~ . He i s ;I member of the A.r\ociation for Computing
Machinery. the lEEE Coniputer Society. and the Intemational A\\ociation tor
Crypto log ic Re\cnrc ti.

COEN-PORlSlNl c f U / : A FORMAL FRAMEWORK FOR ASTRAL INTRALEVEL PROOF OBLIGATIONS

D. Mandrioli received the degree in electricdl en-
gineering from the Politecnico di Mildno Mildn,
Itdly, in 1972. and received dn ddvdnced degree
in mdthemdtics dt thc Universita Stdtdle di Milmo
Italy. in 1976

He wd\ dn A\\i\tdnt Profe\sor and dn A\5ociate
Profe55or dt the Politecniw di Mildno troin 1976
to 1980, dnd wd\ d Profeswr dt the UniLersite
di Udine Itdlj, from 1981 to 19x3 Since lhen
he hd\ been a Prote\\or ot Computer Science dl
the Politecnico di Mildno, Milan Italy He wa\

r i l w d Vivting Scholdr dt the Univer\it j o f Calitornia dt Los Angeles in

1976, at the University ot Cdlifornid dt Santa B'irbard in 19x1 dnd 1992
and dt Hewlett Pdckdrd Rewdrch Labordories in Pdlo Alto CA, USA,
in 1989 His re%drch interest5 include theoretical computer \cience dnd
software engineering, with pdrticular reterence to speLihLdtion Idngu,ige\ and
environment\, progrdmming Idngudge\ and redl-time system\

Dr Mdndrioli has published more than 70 scientihc paper\ in major
journdls He 15 also d coauthor. with C Ghezzi, ot the book 71ioo~errcol
FOIUtCh((Jfi\ of Compurer 5(wri(e . and ot the book Fiiridumenrulv of 5o$w o f ('
F r t y / t f w i i r i y , with C Ghezzi m d V Jdzdyeri He hd\ dho written \everdl
other hooh5 in Italidn Mdndrioli \erbe\ ds d reviewer tor many international
confcrenLe\ and journdls m d hd\ participdted on the program committee\ 01
mnny interndtiondl conlerence\ He i s d member of the 4 C M and the New
York Academq ot Science\

5h I

