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Specification of Realtime Systems
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Abstract —ASTRAL is a formal specification language for realtime systems. It is intended to support formal software development
and, therefore, has been formally defined. The structuring mechanisms in ASTRAL allow one to build modularized specifications of
complex systems with layering. A realtime system is modeled by a collection of state machine specifications and a single global
specification. This paper discusses the rationale of ASTRAL’s design. ASTRAL’s specification style is illustrated by discussing a
telephony example. Composability of one or more ASTRAL system specifications is also discussed by the introduction of a
composition section, which provides the needed information to combine two or more ASTRAL system specifications.

Index Terms —Formal methods, formal specification and verification, assertions, temporal logic, realtime systems, timing
requirements, state machines, composability, ASLAN, TRIO.

——————————   ✦   ——————————

1 INTRODUCTION

REALTIME computer system is a system that must per-
form its functions within specified time bounds. Real-

time computer systems are increasingly being used in criti-
cal applications such as aircraft avionics, nuclear power
plant control and patient monitoring. These systems are
generally characterized by complex interactions with the
environments in which they operate and strict time con-
straints whose violation may have catastrophic conse-
quences. The need for these software systems to be highly
reliable is evident.

The best way to improve software quality is to develop
it formally. Existing informal software development
methods and tools [56], [38], [32] are often unable to pro-
vide acceptable levels of assurance for many realtime ap-
plications, because of the combination of complexity and
critical requirements.

Although research in the area of realtime systems has
been quite active, and a number of experimental environ-
ments supporting formal specifications have been devel-
oped (see Section 4), the search for adequate notations and
tools is still ongoing. The ASTRAL formal specification lan-
guage for realtime systems and its associated support envi-
ronment, which is currently being developed, are intended
to provide a solution to the problem.

Because ASTRAL is intended to be used for specifying
large and complex realtime systems, it was designed to
support specifications that are layered and compositional.
Layering and composition are two complementary ap-

proaches to hierarchical system development. A layered
specification method allows one to refine the specification
of a process to show more detail, without changing the in-
terface of the specified system. This is important because it
allows designers to prove, test, or otherwise examine prop-
erties of a process whose behavior is specified abstractly,
and then iteratively refine the behavioral specification to be
as close to an implementation as appropriate for a given
assurance level.

A compositional specification method allows one to rea-
son about the behavior of a system in terms of the specifi-
cations of its components [59]. That is, the behavior of a
system comprising several component processes is com-
pletely determined by the component specifications. This is
important because it modularizes a system’s proof and al-
lows for bottom-up development.

ASTRAL provides mechanisms for specifying critical
system requirements, and a formal proof system for prov-
ing the satisfaction of the stated requirements has been de-
fined. These proofs are divided into two categories: in-
tralevel proofs and interlevel proofs. The former deal with
proving that the specification of level i is consistent and
satisfies the stated critical requirements, while the  latter
deal with proving that the specification of level i + 1 is con-
sistent with the specification of level i. Details of the formal
proof system can be found in [15], [16].

The ASTRAL specification language is intended to be
executable. An executable specification language allows
developers to treat specifications as prototypes. This is im-
portant because testing in the design stage, even before at-
tempting proofs, can be a cost-effective means of finding
design flaws [42], [20]. A translation scheme for translating
ASTRAL to TRIO [31], [50] was defined for an earlier ver-
sion of the ASTRAL language [28]. More recently, the se-
mantics of ASTRAL have been formally defined using both
a model theoretic approach and an axiomatic semantic ap-
proach [17]. This provides a firm theoretical basis for the
development of a software development environment with
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a specification execution tool as one of its components. The
axiomatic semantics of the ASTRAL abstract machine can
be found in [15].

The main intent of this paper is to give the reader an in-
troduction to the language. In the next section, the specifi-
cation language is presented using a telephone system ex-
ample to clarify the language components and their use. In
Section 3 the ASTRAL approach to composing system
specifications is described and the telephony example is
extended. Section 4 discusses related work. Finally, conclu-
sions drawn from this work and further areas of research
are presented.

2 AN OVERVIEW OF ASTRAL
In ASTRAL a realtime system is described as a collection of
state machine specifications each of them representing a
process type of which there may be multiple statically gen-
erated instances plus a global specification, which contains
declarations for types and constants that are shared among
more than one process type, as well as assumptions about
the global environment and critical requirements for the
whole system.

Fig. 1 presents the syntactic structure for an ASTRAL
specification.

Fig. 1. ASTRAL syntactic structure.

An ASTRAL process specification consists of a sequence of
levels. Each level is an abstract data type view of the system
being specified. The first (“top level”) view is a very ab-
stract model of what constitutes the process (types, con-
stants, variables), what the process does (state transitions),
and the critical requirements the process must meet. Lower
levels are increasingly more detailed with the lowest level

corresponding closely to high level code.1

The process being specified is thought of as being in vari-
ous states, with one state differentiated from another by the
values of the state variables which can be changed only by
means of state transitions. Transitions are described in term of
entry and exit assertions by using an extension of first order
predicate calculus. Transition entry assertions describe the
constraints that state variables must satisfy in order for the
transition to fire, while exit assertions describe the constraints
that are fulfilled by state variables after the transition has
fired. An explicit nonnull duration is associated with each
transition. Transitions are executed as soon as they are en-
abled (i.e., when their entry assertion is satisfied).

Every process can export both state variables and transi-
tions; as a consequence the former are readable by other
processes while the latter are executable from the external
environment. Interprocess communication is accomplished
by broadcasting the value of exported variables, as well as
the start and end times of exported transitions.

In addition to specifying system state (through process
variables and constants) and system evolution (through tran-
sitions), an ASTRAL specification also defines system critical
requirements and assumptions on the behavior of the envi-
ronment that interacts with the system. The behavior of the
environment is expressed by means of environment clauses,
which describe assumptions about the pattern of invocation
of external transitions. Critical requirements are expressed by
means of invariants and schedules. Invariants represent re-
quirements that must hold in every state that may be reached
from the initial state, no matter what the behavior of the ex-
ternal environment is, while schedules represent additional
properties that must be satisfied provided that the external
environment behaves as assumed.

In what follows the computational model of ASTRAL is
first presented and then the main features of the language
are discussed.

2.1 The Computational Model
The computational model for ASTRAL is based on nonde-
terministic state machines and assumes maximal parallelism,
noninterruptable and nonoverlapping transitions in a single
process instance, and implicit one-to-many (multicast) mes-
sage passing communication.

Maximal parallelism assumes that each logical task is as-
sociated with its own physical processor, and that other
physical resources used by logical tasks (e.g., memory and
bus bandwidth) are unlimited. In addition, a processor is
never idle when some transition is able to execute. The
maximal parallelism approach was chosen on the basis of
separating independent concerns; that is, first demonstrate
that a design is satisfactory, then, and only then, consider
the scheduling problem imposed by a particular imple-
mentation’s limited resources. This approach, advocated in
[22] for realtime systems and in [13] for parallel systems,
allows for much cleaner designs than an approach that
starts with scheduling concerns. A design based on the
structure of the system rather than on its scheduling prob-
lems will usually be easier to maintain and/or modify. In

1. For space reasons, layering of specifications is not addressed in this
paper. The reader may refer to [16].
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addition, architectures that meet the maximal parallelism
assumptions are becoming more prevalent.

Process cooperation, which involves both communication
and synchronization, may be achieved in essentially two
ways: either by data sharing or by message passing [11]. The
interface specification of RT-ASLAN [6], which is an earlier
realtime specification language developed by the Reliable
Software Group at the University of California at Santa Bar-
bara, is an example of modeling communication with shared
data in a realtime specification language. At the implementa-
tion level, data sharing has obvious performance advantages
and is, therefore, often used in current realtime systems.
However, there is no apparent advantage in using data
sharing at the specification level for describing process inter-
actions at an abstract level. There are instead obvious disad-
vantages. For example, contention for shared data must be
addressed in the specification, which implies that mutual
exclusion also must be addressed. Furthermore, future real-
time systems are likely to be less tightly-coupled than exist-
ing systems. For these reasons, in ASTRAL cooperation is
modeled with implicit message passing rather than with data
sharing. Implicit rather than explicit message passing was
chosen to further simplify the design and to concentrate on
the structure of the realtime system. The message passing is
also assumed to be instantaneous. The specifics of the im-
plicit multicast message communication model are presented
in Section 2.2.6.

When designing a realtime specification language one
strives to construct models that are both abstract enough to
be understandable and yet realistic enough to be useful.
The ASTRAL computation model implicitly makes the as-
sumption that there is a global clock and that multicast
communication is instantaneous. The assumption of in-
stantaneous broadcasts of state changes is valid if the target
implementation uses shared memory, for then there is truly
a zero time communication delay. If, however, the imple-
mentation is distributed, then this assumption will hold
only if the actual delay times are less than the granularity of
the timing units. For example, if the communication delay
time is in the order of microseconds and the timing re-
quirements are measured in milliseconds, then the delay is
a “virtual zero” communication delay. Obviously, as the
processes being modeled are more widely distributed the
granularity of their critical timing requirements will need to
be greater. Thus, to be able to use the ASTRAL approach on
a truly distributed system the communication medium for
the system must be able to guarantee a “virtual zero” time
delay relative to the critical timing requirements. The as-
sumption about a global clock is acceptable for many sys-
tems, but may not be valid for some distributed systems.
This problem is one that is currently being addressed by a
number of researchers [47], [48], [21].

2.2 The ASTRAL Language
In this section the main features of ASTRAL are discussed
using an example  specification of a phone system composed
of multiple control centers. Each control center is responsible
for the phones belonging to its area, and it is provided with
all the functionality needed to set up a local call. Control
centers are also intended to deal with long distance calls (i.e.,

calls to other areas). Calls to outside areas are modeled by
exported variables (i.e., the data is sent to the external envi-
ronment), while calls from an outside area are modeled as
exported transitions (i.e., they are the information provided
in the parameters of a call to an exported transition from the
external environment). The example is a simplification of a
real phone system, every local phone number is seven digits
long, area codes are three digits long, a customer can be con-
nected to at most one other phone (either local or in another
area), and ongoing calls cannot be interrupted. The motiva-
tion for this example came from the telephony example in a
paper by Dasarathy [18]. Using Dasarathy’s example as a
starting point and the local phone system at the University of
California, Santa Barbara for further clarification, the exam-
ple specification was developed.

Most of the examples of the specification that appear in
this section are from the global specification and the Cen-
tral_Control specification. Complete specifications can be
found in Appendix A.

2.2.1 Processes
The phone system consists of two process type specifica-
tions: Phone, which models the phone instrument found in
most homes, and Central_Control.

The process declarations

Phones: array[1 .. Num_Phone] of Phone,
Centrals: array[1 .. Num_Area] of Central_Control,

which occur in the global specification, declare that there
are Num_Phone static instances of the phone process type
and Num_Area static instances of the central control proc-
ess type. Each of these is accessed as Phones[i] (Centrals[i]),
where i is in the range 1..Num_Phone (1..Num_Area).

2.2.2 Types
ASTRAL is a strongly typed language. Integer, Real, Boo-
lean, ID, and Time are the only primitive types. All other
simple and constructed types used in a process specifica-
tion must be either declared in the type section of the speci-
fication or must be declared in the global specification and
explicitly imported by the process type specification.

The following type declarations appear in the global
phone system specification.

Digit IS TYPEDEF d: Integer (d � 0 & d � 9)

indicates a subtype declaration, and

Digit_List IS LIST OF Digit

declares Digit_List as a list of Digits, while

Connection IS STRUCTURE OF (From_Area, From_Number,
To_Area, To_Number: Digit_List)

declares Connection as a structure composed of four fields
of type Digit_List. Connection represents the data structure
used to store the information related to a long distance call.

The type ID is one of the primitive types of ASTRAL.
Every instance of a process type has a unique id. An in-
stance can refer to its own id by using “Self.” There is also
an ASTRAL specification function idtype(i), which returns
the type of the process that is associated with the id i. Thus
the global declaration

Phone_ID IS TYPEDEF pid: ID (IDTYPE(pid) = Phone)
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declares Phone_IDs to be exactly those ids that are for proc-
ess instances of type Phone.

The central control process specification also defines a
new subtype Area_Phone representing the set of phones
actually connected to a single phone process instance:

Area_Phone IS TYPEDEF p: Phone_ID (In_Area(p) = Self)
2

Finally, the global type declaration

Enabled_State IS (Idle, Ready_To_Dial, Dialing, Ringing,
Waiting, Talk, Calling, Disconnecting, Busy,
Alarm)

is an enumerated type and indicates the various modes that
a customer’s phone can be in. These different modes are
used to determine what transitions the phone can execute
and how the central control should respond to certain ac-
tions of a customer’s phone.

2.2.3 Variables, Constants, and Definitions
In ASTRAL one state is differentiated from another by the
values of the state variables, and it is the state variables that
are referenced and/or modified by the state transitions. All
of the state variables must be declared in the variable sec-
tion of the formal specification.

A special variable called Now is used to denote the cur-
rent time. The value of Now is zero at system initialization
time. ASTRAL specifications can refer to the current time
(Now) or to an absolute value for time that must be less
than or equal to the current time.

In the central control specification there are eight state
variables all of which are parameterized by Area_Phone.
The first two

Phone_State(Area_Phone): Enabled_State,
Long_Distance(Area_Phone): Boolean

indicate the central control’s view of the mode of each of its
customer’s phones, and whether or not a phone is involved
in a long distance call, respectively.

The reader should note that the central control’s view of a
particular phone’s mode may differ from the actual mode of
the phone. For instance, when a customer P first picks up
his/her handset the central control may view that particular
phone as being idle (i.e., Phone_State(P) = Idle), but it is actu-
ally active. The central control, however, will not treat P as
active until P’s offhook response (i.e., P.Offhook) is processed
by the central control’s Give_Dial_Tone transition for P. Ob-
viously, this is an action that should occur in a timely fash-
ion. In fact, the global scheduling requirement that is used for
the phone system example addresses this issue.

The variables

Enabled_Ring_Pulse(Area_Phone): Boolean,
Enabled_Ringback_Pulse(Area_Phone): Boolean

are necessary because the central control actually pulses the
ring of the callee’s phone and the ringback tone of the caller’s
phone, and they are pulsed independent of each other. When
Enabled_Ring_Pulse(P) is true and the mode of phone P is
“Ringing” this indicates that phone P should be ringing its
bell (i.e., Ring = true for phone P). Note that the central con-

2. In_Area is a parameterized constant whose meaning will be discussed
in Section 2.2.3.

trol does not ring the bell, but rather indicates by means of an
exported variable (an electronic signal in the actual system)
that the bell should be ringing. The transition that actually
rings the bell is the Start_Ring transition of process Phone.
Enabled_Ringback_Pulse is used in an analogous fashion to
pulse the ringback tone in the caller’s phone.

The next two variables

Connected_To(Area_Phone): Area_Phone,
Number(Area_Phone): Digit_List

indicate to what other phone each phone is connected and
the number (or partial number) that is being dialed. Con-
nected_To(P) is meaningful only in case of a local call and if P
is in waiting, ringing, or talk mode. Likewise, Number(P) is
only meaningful when P is in ready to dial or dialing mode.

For long distance calls, the variables

LDOut_Line(Area_Phone): Connection,
LDOut_Status(Area_Phone): Connection_Status

indicate to whom the phone is connected and the status of
the connection. LDOut_Line is not meaningful if
Long_Distance is false.

Constants in ASTRAL are values that cannot change
over the lifetime of the system. In the global specification,
the constant

In_Area(Phone_ID): Central_Control_ID

is an example of a parameterized constant. It is used to de-
scribe that each phone is associated with a unique central
control, and that such a binding cannot change.

The first four constants in the central control specification

Uptime_Ring, Downtime_Ring, Uptime_Ringback,
Downtime_Ringback: Time

are of type Time and are used to indicate the pulse rate for
ringing a customer’s phone and for giving the ringback tone.

In ASTRAL, definitions are used to make the specification
more readable. They may contain zero or more parameters.

There are three definitions used in the central control
specification. The first one

DEFINE
Plug(L1, L2: Connection): Boolean ==
          L1[From_Area] = L2[To_Area]
    &  L1[From_Number] = L2[To_Number]
    &  L1[To_Area] = L2[From_Area]
    &  L1[To_Number] = L2[From_Number]

introduces a predicate which is used in the specification of
long distance calls to specify that L2 and L1 hold the same
values after having switched the To_Area and To_Number
fields of one with the corresponding From_Area and
From_Number fields of the other. The second one

Count(P:Area_Phone): Integer == LIST_LEN(Number(P))

is used to track how many digits have been processed for
each customer. LIST_LEN is an ASTRAL specification
function that indicates the number of items in the list.

The third one defines the predicate CallingOut (P:
Area_Phone, L: Connection) which is used to represent that
phone P is making a long distance call using line L.
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2.2.4 Interface Section
The interface section of an ASTRAL process specification
indicates what types, constants, and definitions declared in
the global specification are used by the process, what vari-
ables exported by other processes are referenced, and what
variables and transitions are exported by the process. These
are specified by the Import and Export clauses.

State variables and transitions may be explicitly ex-
ported by a process, which makes the variable values and
information about the transitions visible to other processes.
Exported variables and transitions must be explicitly im-
ported to be referenced in another process specification.
Exported transitions are visible to the external environment
and are executed in response to calls issued by the external
environment. The export clause for the phone process

EXPORT
Offhook, Next_Digit,
Pickup, Enter_Digit, Hangup

indicates that the values of Offhook and Next_Digit can be
imported by other processes and that the transitions
Pickup, Enter_Digit, and Hangup are made available to the
external environment.

The import clause indicates which globally declared
types and constants are used by a process and which vari-
ables and transitions exported by other processes are refer-
enced by this process. The central control specification’s
import clause

IMPORT
Digit, Digit_List, Connection, Phone_ID, Central_Control_ID,
Enabled_State, Connection_Status, In_Area, Max_Cust,
Phones.Offhook, Phones.Next_Digit, Phones.Pickup,
Phones.Enter_Digit

indicates the types and constants that are declared in the
Phone_System global specification that are imported, as
well as the exported variables Offhook and Next_Digit and
the exported transitions Pickup and Enter_Digit for each
declared instance of process phone. Fig. 2 shows the archi-
tecture of a local central control and its associated phones.

Fig. 2. The phone system.

2.2.5 Initial Clause
The initial clause of a process specification expresses the
restrictions on the initial state of the process type. That is,
for each state variable it is necessary to express the restric-
tions that are to be placed on its initial value.

For the central control the initial condition specifies that,
in the view of the central control, initially all phones are
idle, no digits have been processed, no phones are ringing
nor are any receiving a ringback tone, and no long distance
call is ongoing.

INITIAL
FORALL P: Area_Phone

(   Phone_State(P) = Idle
&  Number(P) = NIL
&  ~Enabled_Ring_Pulse(P)
&  ~Enabled_Ringback_Pulse(P)
&  ~Long_Distance(P)
&  LDOut_Status(P) = Available)

It is not necessary to specify an initial value for the Con-
nected_To variable because it is only meaningful when a
phone is in either waiting, ringing, or talk mode. By review-
ing the transitions for the central control process one can see
that before a phone can be placed in one of these modes its
connected value will be updated appropriately (See the Proc-
ess_Local_Call transition.). Likewise, it is not necessary to
specify a value for LDOut_Line if Long_Distance is false.

2.2.6 State Transitions
ASTRAL transitions are used to specify the ways in which
an instance of a process type can change from one state to
another. A transition is composed of a header, an entry as-
sertion, and an exit assertion. The header gives type infor-
mation for the transition’s parameters and specifies the ex-
act amount of time required for the transition to execute.
The entry assertion expresses the enabling conditions that
must hold for the transition to occur, and the exit assertion
specifies the resultant state after the transition occurs. That
is, it specifies the values of the state variables in the new
state relative to the values they had in the previous state.

In an ASTRAL specification exceptions are dealt with
explicitly. That is, a transition can have except/exit pairs in
addition to the standard entry/exit pair. An except assertion
expresses an exception that may occur when a transition is
invoked. The corresponding exit assertion specifies the re-
sultant state after the transition occurs.

A transition is executed as soon as its precondition is
satisfied (assuming no other transition is executing). If two
or more transitions are enabled simultaneously, a nonde-
terministic choice3 will occur and only one of them will be
executed. Whenever a process instance starts executing an
exported transition it broadcasts the start time and the val-
ues of the actual parameters to all interested processes (i.e.,
any process that has imported the transition). When the
transition is completed the end time as well as the new
value of any exported variables that were modified by the
transition are broadcast. Of course, any exported variables
that are modified by a nonexported transition are also
broadcast by the process when the transition completes
execution. Thus, if a process is referencing the value of an
exported variable while a transition is being executed by
the process exporting the variable, the value obtained is the
value the variable had when the transition commenced.
That is, the ASTRAL computation model views the values
of all variables being modified by a transition as being
changed by the transition in a single atomic action that oc-
curs when the transition completes execution.

3. To reduce the amount of nondeterminism it is possible to assign prior-
ity among transitions by means of the Further Assumption clause (see Sec-
tion 2.2.10).



COEN-PORISINI ET AL.:  SPECIFICATION OF REALTIME SYSTEMS USING ASTRAL 577

Start(T, t) is a predicate that is true if and only if transi-
tion T starts at time t and there is no other time after t and
before the current time (Now) when T starts (i.e., t is the
time of the last firing of T). For simplicity, the functional
notation Start(T) is adopted as a shorthand for “time t such
that Start(T, t)” whenever the quantification of the variable t
(whether existential or universal) is clear from the context.
Startk(T) is used to give the start time of the kth previous
occurrence of T. References to the end time of a transition T
may be specified similarly using End(T) and Endk(T).

The Process_Local_Call transition represents the central
control attempting to establish a connection for a caller who
has entered seven digits (i.e., the caller is making a local
phone call). It has both a normal entry/exit pair and an
except/exit pair. The entry/exit pair corresponds to the
case where the called party is in idle mode and the ex-
cept/exit pair corresponds to the case where the callee is
busy. The value Tim3 is the execution time for this transi-
tion.4 Notice that in exit assertions, variable names followed
by a prime (‘) indicate the value that the variable had when
the transition fired.

TRANSITION Process_Local_Call(P:Area_Phone) Tim3
ENTRY

P.Offhook
&  ~Long_Distance(P)
&  Count(P) = 7
&  Phone_State(P) = Dialing
&  ~Get_ID(Number(P)).Offhook
&  Phone_State(Get_ID(Number(P))) = Idle

EXIT
Phone_State(P) = Waiting

&  Phone_State(Get_ID(Number’(P))) = Ringing
&  ~Long_Distance(Get_ID(Number’(P)))
&  Connected_To(P) = Get_ID(Number’(P))
&  Connected_To(Get_ID(Number’(P))) = P
&  FORALL P1:Area_Phone
     (   P1 ��P & P1 � Get_ID(Number’(P))
     � NOCHANGE(Phone_State(P1))
     &  NOCHANGE (Connected_To(P1)))

EXCEPT
P.Offhook

&  ~Long_Distance(P)
&  Count(P) = 7
&  Phone_State(P) = Dialing
&  (   Get_ID(Number(P)).Offhook

|   Phone_State(Get_ID(Number(P))) � Idle)
EXIT

Phone_State(P) BECOMES Busy

The entry assertion for the success case specifies that the
caller’s phone must be offhook, the call is not long distance,
a seven digit number must have been processed, the phone
is in dialing mode, and the phone to be connected to must
not be offhook and it must be idle. The exit assertion speci-
fies that the caller’s phone is now in waiting mode, the
callee’s phone is in ringing mode, and the mode for all
other phones is unchanged. Furthermore, the caller is indi-
cated as being connected to the callee and vice versa, and

4. For simplicity, in this paper it is assumed that the same amount of time
is required for executing both the success case of a transition and any ex-
ception case. In the actual language design different times are provided for
each entry/exit or except/exit pair.

the value of Connected_To for all other phones is un-
changed. The last conjunct is necessary, because without it
the value of the parameterized variables Connected_To and
Phone_State would be undefined for all phones other than
the caller and the callee. It should be noted that any variable
not mentioned in an unprimed form in the exit clause is as-
sumed to not change. Thus, for the success case the variables
LDOut_Line, LDOut_Status, Number, Enabled_Ring_Pulse,
and Enabled_Ringback_Pulse do not change. The ASTRAL
specification processor automatically generates nochange
expressions for these variables when constructing the proof
obligations.

The entry assertion for the busy case is identical to the
success case except that the phone being called is either
not in idle mode or is offhook. The exit assertion for this
case indicates that the mode of the caller’s phone is now
busy and the mode for all other phones is unchanged. The
BECOMES operator that is used in this expression is a
shorthand provided by ASTRAL for asserting that the
value of a parameterized variable changes for some par-
ticular argument, but remains unchanged for all of the
other arguments. Thus

Phone_State(P) BECOMES Busy

is equivalent to

FORALL P1:Area_Phone
(   Phone_State(P1) =

IF P1 = P
THEN Busy
ELSE Phone_State’(P1)
FI )

The Enable_Ring and Disable_Ring transitions are used
for modulating the Enabled_Ring_Pulse exported state
variable to control the ringing of a customer’s phone. The
Enable_Ring transition sets this variable to true and the
Disable_Ring sets it to false. The Phone process type uses
the value of the Enabled_Ring_Pulse variable to determine
when to ring its bell. The length of time for the ring pulse to
be enabled is determined by the constant Uptime_Ring and
the time for it to be disabled is determined by the constant
Downtime_Ring.

TRANSITION Enable_Ring(P: Area_Phone) Tim4
ENTRY

~P.Offhook
&  Phone_State(P) = Ringing
&  ~Enabled_Ring_Pulse(P)
&  FORALL t: Time

(   End(Disable_Ring(P), t)
&  FORALL t1 (t � t1 � Now
                        � past(Phone_State(P), t1) = Ringing)
�  Now - t � Downtime_Ring)

EXIT
Enabled_Ring_Pulse(P) BECOMES True

The entry assertion for the Enable_Ring transition re-
quires that the phone not be offhook, that its mode be
ringing, and that the ring pulse is currently disabled. The
last conjunct of the entry assertion controls the time be-
tween ring pulses. This expression provides an example of
the use of the ASTRAL variable Now, which represents the
current value of time, and of the last end time of the Dis-



578 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  23,  NO.  9,  SEPTEMBER  1997

able_Ring transition with parameter value P. It also demon-
strates the use of the ASTRAL specification function past,
which is used to specify the value that a variable had at
some time in the past, that is, past(Phone_State(P), t1) rep-
resents the value that variable Phone_State(P) had at time
t1. The entry assertion specifies that if there has been a Dis-
able_Ring transition since the phone state became Ringing
then it has been at least Downtime_Ring seconds since the
last occurrence of the Disable_Ring transition completed
execution with parameter P. The reader should note that
because Disable_Ring is a transition of the process that is
performing the End inquiry, it is not necessary to precede
the inquiry with a unique id. The exit assertion for the En-
able_Ring transition specifies that the ring pulse for phone
P is now enabled.

The Disable_Ring transition works in an analogous
manner except that its entry assertion allows for the ring
pulse for phone P to be disabled early if phone P is taken
offhook.

The invocation of the exported transition Receive_LD by
the external environment models the occurrence of an in-
coming long distance call to a phone connected to the cen-
tral control. Notice that the entry assertion of the transition
requires that the phone not be offhook and that it is idle.

TRANSITION Receive_LD(LDIn_Line:Connection) Tim9
ENTRY

LDIn_Line[To_Area] = Get_Area(Self)
&  Phone_State(Get_ID(LDIn_Line[To_Number])) = Idle
&  ~Get_ID(LDIn_Line[To_Number]).Offhook

EXIT
Phone_State(Get_ID(LDIn_Line[To_Number]))
                     BECOMES Ringing

&  LDOut_Status(Get_ID(LDIn_Line[To_Number]))
                          BECOMES Connect
&  Long_Distance(Get_ID(LDIn_Line[To_Number]))
&  Plug(LDOut_Line(Get_ID(LDIn_Line[To_Number])),
               LDIn_Line)
&  FORALL P: Area_Phone

(     P � Get_ID(LDIn_Line[To_Number])
� NOCHANGE (LDOut_Line(P)))

LDIn_Line is information provided by the external envi-
ronment that identifies the local phone process that is about
to receive a long distance call. Thus, the conjunct:

Plug(LDOut_Line(Get_ID(LDIn_Line[To_Number])),
LDIn_Line),

which uses the Plug definition (presented in Section 2.2.3),
states that the local central control unit uses the variable
LDOut_Line to maintain the data provided by the parame-
ter LDIn_Line.

The last transition to be discussed is the Generate_Alarm
transition.

TRANSITION Generate_Alarm(P:Area_Phone) Tim14
ENTRY

P.Offhook
&  (   Phone_State(P) = Ready_To_Dial

|   (Phone_State(P) = Dialing
     &    P.Call(Enter_Digit) < Start(Process_Digit(P))))

&  (   Count(P) = 0 & (Now-End(Give_Dial_Tone(P))) > 30
|   (   Count(P) > 0

&  ( ~Long_Distance(P) & Count(P) < 7
     | Long_Distance(P) & Count(P) < 11)
&  Now - End(Process_Digit(P)) > 20)

|   Now - End(Give_Dial_Tone(P))) > 100 )
EXIT

Phone_State(P) BECOMES Alarm

This transition represents three of the dialing timing re-
quirements that Dasarathy presented in his paper [18]. The
restrictions are that

• “After receiving a dial tone, the caller shall dial the
first digit within 30 sec.”

• “After the first digit has been dialed, the second digit
shall be dialed no more than 20 sec later.” and

• “A dialer should dial seven digits in 30 sec or less ...”5

The first conjunct of the entry assertion for the Gener-
ate_Alarm transition requires the phone to be offhook while
the second one specifies that the caller is about to begin
dialing or in the process of dialing and has not entered a
digit since the last digit was processed. The last conjunct
captures the three requirements from Dasarathy’s paper.
The first disjunct specifies that no digits have been proc-
essed since the dial tone was enabled (Count(P) = 0) and
that more than 30 sec have elapsed since phone P was put
in ready to dial mode. The second disjunct specifies that
one or more, but less than seven (11 for long distance), dig-
its have been processed for phone P, and that either it has
been more than 20 sec since the last digit was processed or
more than 100 sec have elapsed since phone P was put in
Ready_To_Dial mode. The exit assertion specifies that
phone P is put in the alarm mode.

Fig. 3 gives a partial view of how variables Phone_State
(denoted as P) and LDOut_Status (denoted as L) are af-
fected by transitions of Central_Control when processing
incoming or outgoing long distance calls.

Fig. 3. The Central_Control.

2.2.7 Environment Clause
Because ASTRAL is intended to be used for designing reac-
tive systems, it is necessary to be able to express assump-

5. For the example specification, the second requirement was extended to
cover the time between any  two digits, and the total dial time was changed
to 100 sec, which seemed more reasonable.
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tions about the external environment in which the system
works. This is accomplished by using environment clauses,
which formalize the assumptions that must hold on the
behavior of the environment to guarantee some desired
system properties. These assumptions are expressed as
first-order formulas involving calls to the exported transi-
tions. If T is an exported transition, Call(T) may be used in
the environment clause to denote the time of the last occur-
rence of the call to T (with the same syntactic conventions
as Start(T) and End(T)), and Callk(T) denotes the time of the
kth previous occurrence of the call.6

There are both local and global environment clauses. Lo-
cal environment clauses refer to a single instance of the
process type they are associated with, while the global one
refers to the system as a whole. The local environment
clause for the process type Phone is:

FORALL t: Time (Call(Pickup, t) � ~past(Offhook, t))
&  FORALL t: Time (Call(Hangup, t) � past(Offhook, t))
&  FORALL t: Time

(   Call(Enter_Digit, t)
�   (   past(Dialtone, t)

|  EXISTS t1: Time, n: Integer, D: Digit
(   2 � n & Calln(Enter_Digit(D), t1)
& past(Dialtone, t1)
& (n � 7 & D � 1 | n � 11 & D = 1)
&  FORALL t2: Time (t1 � t2 � t
                                      � past(Offhook, t2))))

&  FORALL t: Time (     Call2(Pickup, t)
                                   � Call(Pickup) � Call2(Pickup) � 1)

This states that the phone must not be offhook in order
to pick it up, it must be offhook in order to hang it up, there
must be a dialtone in order to dial the first digit or the
phone has remained offhook ever since the first digit was
dialed, and a customer cannot pick up his/her phone more
than twice in a second.

The global environment clause for the phone system
specifies that no more than Max_Cust customers connected
to the same central control will pick up their phone to initi-
ate a call in any 2 sec time period. It is:

FORALL C: Central_Control_ID
(    SET_SIZE({ SETDEF P: Phone_ID(In_Area(P) = C
&  Now-2 � P.Call(Pickup) � Now)}) � Max_Cust)

where SET_SIZE and SETDEF are two ASTRAL operators.
SET_SIZE(S) returns the cardinality of the set S, while SET-
DEF is used to define a set of elements that satisfy a given
predicate.

2.2.8 Imported Variable Clause
ASTRAL also allows assumptions about the system context
provided by other processes in the system to be expressed
in the imported variable clause, which describes patterns of
changes to the values of imported variables, including
timing information about any transitions exported by other
processes that may be used by the process being specified
(e.g., Start(T) and End(T)). The imported variable clause is
optional and is not an essential part of an ASTRAL system
specification. It is used to aid in proving the correctness of a
system in a modular fashion. [15] provides the details of
how this clause is used to partition the correctness proof.

6. Note that there may be a delay from the time a transition T is called
until it is actually started.

The imported variable clause for the central control
process is:

SET_SIZE(
{ SETDEF P: Area_Phone
          (Now – 2 � P.Start(Pickup) � Now)
}) � Max_Cust

It states that there are no more than Max_Cust firings of the
imported Pickup transitions in any 2 sec time period.

2.2.9 Critical Requirements
For a realtime system there are two types of critical re-
quirements: behavioral and temporal. In ASTRAL both
types are expressed in the invariants, constraints, and
schedules.

The invariants express the critical requirements that are
to hold in every reachable state. That is, they state proper-
ties that must initially be true and must be guaranteed to
hold during system evolution. The constraints express the
critical requirements that must hold between any two states
that correspond to the start and end of a transition.7 Invari-
ants can be global or local; the global invariants represent
properties that need to hold for the realtime system as a
whole, while local invariants and constraints defined at the
process type level represent properties that must hold for
each process instance. Invariant and constraint properties
must be true regardless of the environment or the context in
which the process or system is running.

For the central control process type the invariant clause
specifies two restrictions on Count and several on phone
modes. The invariant is expressed as follows:

FORALL P: Area_Phone
(   (Long_distance(P) � Count(P) �  0 & Count(P) � 11)
&  (~Long_distance(P)
      � (Count(P) � 0 & Count(P) � 7)
      & (     Phone_State(P) = Waiting
          �  Phone_State(Connected_To(P)) = Ringing)
      & (     Phone_State(P) = Ringing
          � Phone_State(Connected_To(P)) = Waiting)
      & (     Phone_State(P) = Talk
          � Phone_State(Connected_To(P)) = Talk))))

The first conjunct of the invariant indicates that for long
distance calls the number being dialed by a user can never
be more than 11 digits long and that it is always greater
than or equal to zero. This invariant demonstrates the use
of the definition Count. The second part of the invariant
expresses a similar requirement on local calls (the number
of digits has to be less than or equal to seven). It also ex-
presses the requirement that when one customer is waiting
for another to answer, the other customer’s phone is in a
ringing state. Similarly, if one’s phone is ringing then the
phone of the caller should be waiting for an answer. Fi-
nally, if a phone is in talk mode the phone it is connected to
should also be in talk mode.

The only constraint in the central control specification is

FORALL P: Area_Phone
(   (     Phone_State’(P) = Busy
    |    Phone_State’(P) = Alarm

7. The requirements contained in a constraint could be expressed in an
invariant. Thus, the constraint is just a notational convenience.
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    |    Phone_State’(P) = Disconnect)
&  Phone_State(P) � Phone_State’(P)
�  Phone_State(P) = Idle )

This constraint specifies that if a user reaches a busy
number, doesn’t dial quickly enough and gets into alarm
mode, or is disconnected because the other party hangs up
the phone, then the only choice for the customer is to han-
gup (i.e., enter idle mode). Recall that in an ASTRAL ex-
pression a primed variable (e.g., ′x ) indicates the value that
variable had in the previous state; i.e., when the transition
was invoked.

Schedules are additional system properties that are re-
quired to hold under more restrictive hypotheses than in-
variants. Like invariants, schedules may be either local or
global and obey suitable scope rules in the same style as
invariants. Unlike invariants, however, they express re-
quirements that are to hold provided the environment and
system context produce stimuli as prescribed in the envi-
ronment and imported variables clauses.

Process scheduling clauses deal with timing require-
ments for that process only. A process schedule cannot pre-
scribe the value of variables for another process. It may re-
fer only to calls to its own exported transitions and refer-
ences to the values of imported variables from another
process.

The schedule clause for the phone process has three
conjuncts that specify the relationships between the tones
and rings of the phone.

The first conjunct

Dialtone � ~Ring & ~Ringback & ~Busytone

states that if a dialtone is present, then the ring, ringback,
and  busy tones are not. This is a schedule rather than an
invariant because to prove that it holds it is necessary to
have information about other processes in the system. In
particular, the central control process enables these signals.
The other two conjuncts of the phone system are similar.

The schedule clause for the central control process con-
sists of seven conjuncts, each of them representing a sched-
uling requirement. The first one is very similar to the global
schedule, which is presented below. The difference between
the two is that the central control schedule is dealing only
with phones in its area while the global schedule is dealing
with all of the phones in the phone system.

FORALL P: Area_Phone, t, t1, t2: Time
(    t ≤ t1 ≤ t2
&  Change2(Phone_State(P), t) & past(Phone_State(P), t) = Idle
&  P.End(Pickup, t1) & P.Offhook
&  Change(Phone_State(P), t2)
� t2 ≤ t1 + 2
&  (    past(Phone_State(P), t2) = Ringing
     |   past(Phone_State(P), t2) = Ready_To_Dial))

It also shows the use of the ASTRAL predicate Change
which is used to denote the last time that a variable has
changed its value, that is Change(var, t) is true iff at time t
variable var has changed value and there is no other time
between t and the current time (Now) in which the variable
value has changed.

The six remaining scheduling requirements that com-
pose the schedule clause of the central control specification

deal with the pulsing of the Enabled_Ring_Pulse and the
Enabled_Ringback_Pulse.

The global schedule clause specifies timing requirements
which involve multiple processes. It describes additional
properties that the system must satisfy, when all its proc-
esses satisfy their own schedules and the assumptions on
the behavior of the global environment hold. Only exported
variables and the call, start, and end times of exported tran-
sitions can be used in the global schedule clause.

The global schedule clause for the example system speci-
fies another of Dasarathy’s timing requirements: “The caller
shall receive a dialtone no later than 2 sec after lifting the
phone receiver.” The corresponding specification clause is

FORALL P: Phone_ID, t, t1, t2: Time
(    t ≤ t1 ≤ t2
&  past(In_Area(P).Phone_State(P), t) = Idle
&  Change2(In_Area(P).Phone_State(P), t)
&  P.Offhook & P.End(Pickup, (t1))
&  Change(In_Area(P).Phone_State(P), t2)
� (    past(In_Area(P).Phone_State,t2) = Ringing
     |   past(In_Area(P).Phone_State, t2) = Ready_To_Dial)
&  t2 ≤ t1 + 2)

The first conjunct of the antecedent is used to set up the
time line for the schedule; that is t ≤ t1 ≤ t2. The next two
conjuncts of the antecedent specify that the central control’s
view of phone P’s previous mode was idle, and it changed
to that mode at time t. The fourth conjunct specifies that
phone P went offhook at time t1 and it is still offhook. The
final conjunct of the antecedent specifies that the central
control’s view of phone P’s mode last changed at time t2.
The first conjunct of the consequent states that the mode of
phone P (as viewed by the central control) at time t2 is ei-
ther ready to dial or ringing. Furthermore, if it is ready to
dial, then the mode change occurred within two secs of P
going offhook. The possibility of P’s mode going to ringing
is necessary because of the race condition caused by an-
other party being in the process of completing a call to P
when P’s phone was taken offhook.

Note that this expression does not specify that phone P
actually gets a dialtone, but that it can get a dialtone. In or-
der for the global schedule clause to express that phone P
gets the dialtone the variable Dialtone would have to be
exported by the phone process.

2.2.10 Further Assumptions and Restrictions
Schedules are not required to be proved using the basic
elements of the ASTRAL specification. It is important, how-
ever, to know that the schedule is feasible. There may be
several ways to assure that a schedule is satisfied, such as
giving one transition priority over another or making addi-
tional assumptions about the environment. Even though
this kind of decision should often be postponed until a
more detailed design phase, it is important to know that if
further restrictions are placed on the specification and/or if
further assumptions are made about the environment, then
the schedule could be satisfied. For this reason a further
assumptions and restrictions clause can be included as part
of a process specification. Unlike other components of an
ASTRAL specification this clause is only used as guidance
to the implementer; it is not a hard requirement.
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The further assumptions and restrictions clause consists of
two parts: 1) a further environment assumptions section
and 2) a further process assumptions section. The further
environment assumptions section obeys the same syntactic
rules as the local environment. It states further hypotheses
on the admissible behaviors of the environment interacting
with the system. A further process assumptions section re-
stricts the possible system implementations by specifying
suitable selection policies in the case of nondeterministic
choice between several enabled transitions, transition selec-
tion, or by further restricting constants, constant refinement.
In general, the further process assumptions reduce the level
of nondeterminism of the system specification. For more
information on the further assumptions and restrictions
clause and its role in the proof methodology see [15].

The further assumptions and restrictions clause for the
central control process is:

FURTHER ASSUMPTIONS #1
FURTHER PROCESS ASSUMPTIONS

TRANSITION SELECTION
enabled_transitions CONTAINS {Give_Dial_Tone }

&  TRUE
�  elgible_transitions = {Give_Dial_Tone}

CONSTANT REFINEMENT
2 > MAX(Tim1, …, Tim16) + (Max_Cust + 1)* Tim1

The above clause gives transition Give_Dial_Tone priority
over the other transitions belonging to the central control
process and states further constraints on the relationship of
some constant values. These assumptions are needed to
prove that the process schedule holds, that is, they describe a
possible implementation choice that designers can follow to
satisfy the critical requirements expressed by the schedule.

3 COMPOSING ASTRAL S PECIFICATIONS

As seen in the previous section, the ASTRAL language
contains structuring mechanisms that allow one to build
modularized specifications of complex systems. It is often
desirable to combine these system specifications into an
even more complex system. Consider two ASTRAL specifi-
cations: each of these specifications contains one or more
process type specifications and a global specification. Com-
posing these specifications means to build a new specifica-
tion, that is the specification of a system obtained by mak-
ing the processes of the original specifications interact. The
behavior, the environment, and the properties of the new
system are obtained from those of its components, once
their interaction is formally described. In order to compose
ASTRAL specifications one needs to define how to formally
describe the interconnection between two or more specifi-
cations, how the resulting new specification can be built
starting from the specification of its components and the
description of their interaction, and under what conditions
the properties verified about the components will still be
valid in the composed system.

In the next subsection a compose clause, which describes
the interaction between two ASTRAL system specifications
is introduced. Then, the specification of a long distance
network system is introduced, and it is shown how this
specification can be composed with the phone system speci-

fication to produce the specification of a long distance
phone system.

3.1 The Compose Clause
A compose clause provides the information needed to com-
pose two or more specifications into a single specification of
the combined system. Let S1 and S2 denote two ASTRAL
top level specifications. The interaction between the proc-
esses of S1 and S2 is described by specifying which exported
transitions of the processes of S1 (S2) are no longer exported
to the external environment, i.e., the stimuli needed to fire
such transitions are produced by a process of the sibling
system S2 (S1) rather than by the external environment.

Fig. 4a shows two systems, S1 and S2. S1 exports transi-
tions T1 and T2 and state variables x1, x2, and x3, while S2
exports transition T3 and state variables y1 and y2.

When S1 and S2 are composed some transitions of S1 (S2)
will not need an external call, since S2 (S1) is now providing
part of the environment in which S1 (S2) works. For in-
stance, in Fig. 4b transitions T1 and T3 are no longer ex-
ported since the events that trigger them are now repre-
sented by particular values of y2, x1, and x3, respectively.
Thus, the composed system, C, will export only transition
T2. That is, the external environment of C can call only
transition T2 (See Fig. 4c).

Fig. 4. The composition of S1 and S2 into C.

In general a compose clause contains the following parts:

• A process clause defining how many instances of each
process type belonging to S1 or S2 are present in the
resulting system.

• A set of clauses defining types, constants, and defini-
tions that are used in the compose clause.

• A name clash resolution clause, which is used to solve
any possible name clashes that can arise because of
overloaded identifiers (i.e., the same identifier is used
in both S1 and S2 with different meanings).

• A call generation clause which describes how ex-
ported transitions of S1 (S2) processes  are triggered by
events occurring in S2 (S1) processes. These events are
described by formulas of the following form:

FORALL t: Time , … (P(S1) � Call(T(a1, …an), t)),

where P(S1) is an ASTRAL well formed formula describing
the occurrence of the events in S1 that are equivalent to
calling the exported transition T of S2, and a1, …, an are the
actual parameters of T.

3.2 Long Distance Network
The long distance network specification is composed of a
global specification and a single process type specification
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(Long_Distance_Unit). Each area code is controlled by one
process instance of type Long_Distance_Unit. For simplic-
ity, it is assumed that each long distance unit instance is
connected with all other instances, so that a direct commu-
nication between two long distance unit instances is always
possible. The complete long distance network specification
can be found in Appendix B.

The global type Line is used to represent the physical
lines used for connecting one long distance unit to another
and to the external environment.

Long_Distance_Unit has four variables all of which are
parameterized by Line:

NetOut(Line), LocOut(Line): Connection,
NetStatus(Line), LocStatus(Line): Connection_Status

NetOut and NetStatus are used to communicate with another
long distance unit, while LocOut and LocStatus are exported
to send the information about the connection and the status
occurring on a given line to the external environment.

The long distance unit process also exports four transi-
tions:

Receive_Local_Req   called whenever a long distance call has
been requested from the local area.

Local_Established     called to notify the unit that an incoming
call to the local area has been received.

Started_Local_Talk   called to notify the unit that an incoming
call, previously received has been an-
swered.

End_Local                  called to notify the unit that an incoming
call has ended.

Fig. 5 shows the interface of the long distance process with
the external environment, while Fig. 6 shows how the vari-
ables of Long_Distance_Unit are affected by its transitions
when processing incoming or outgoing long distance calls.

The specification of transition Receive_Local_Req is as
follows:

TRANSITION Receive_Local_Req(In_Line:Connection) Ti1
ENTRY

In_Line[From_Area] = Get_Area(Self)
EXIT

EXISTS L: Line
(   NetStatus’(L) = Available
&  Connect(NetOut(L), In_Line)
&  NetStatus(L) BECOMES In_Progress
&  FORALL L1:Line (L1 ≠ L � NOCHANGE(NetOut(L1))))

A complete discussion of the specification can be found in
[14].

3.3 Composition Example
In this section the phone system specification is composed
with the long distance network to obtain the specification of
a long distance phone network. This requires the introduc-
tion of a compose section to define how the composition is
carried out:

COMPOSITION OF Phone_System, Long_Distance_Network
AS Phone_Network

The compose section contains the declaration of the process
type instances composing the new system:

Fig. 5. Long_Distance_Unit Interface.

Fig. 6. The Long_Distance_Unit.

PROCESSES
Phones: array[1 .. Num_Phone] of Phone,
Centrals: array[1 .. Num_Area] of Central_Control
Units: array[1 .. Num_Area] of Long_Distance_Unit

It also contains the declaration of constant LD_Unit which
defines the association of every Central_Control process
instance with its corresponding Long_Distance_Unit proc-
ess instance.

CONSTANTS
LD_Unit(Central_Control_ID): LDU_ID

In order to specify that each long distance unit is associ-
ated with a single central control, the compose section con-
tains the following axiom:

AXIOM
FORALL C1, C2: Central_Control_ID
(LD_Unit(C1) = LD_Unit(C2) � C1 = C2)

The above axiom is necessary to formally describe the to-
pology of the composed system, and it is used to discharge
the proof obligations of the composed system (See [14] for
further information about proof obligations for the com-
posed system).

Finally, the compose section describes how events occur-
ring in the central control process instances are equivalent to
calling the exported transitions of the long distance unit
process instances and vice versa. As an example, long dis-
tance unit transition Receive_Local_Req for process instance
LD_Unit(In_Area(P)) is triggered every time a customer P
dials a long distance number; that is, whenever the status of
the incoming line from a central control process instance
(In_Area(P).LD_Out_Status) becomes “In_Progress”:
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FORALL t: Time, P: Phone_ID
(    Change(In_Area(P).LDOut_Status(P), t)
&  In_Area(P).LDOut_Status(P) = In_Progress
� LD_Unit(In_Area(P)).Call(Receive_Local_Req
                                                 (In_Area(P).LDOut_Line(P)), t))

In a similar manner, the central control transition Re-
ceive_LD is triggered every time an incoming long distance
call is detected by a long distance unit. That is, the status of
the outgoing line from a long distance unit (LD_Unit(C).
Local_Status) becomes “In_Progress”:

FORALL t: Time, C: Central_Control_ID, L: Line
(    Change(LD_Unit(C).LocStatus(L), t)
&  LD_Unit(C).LocStatus(L) = In_Progress
� C.Call(Receive_LD(LD_Unit(C).LocalOut(L)), t))

Fig. 7 shows how the variables and transitions from the
phone system and the long distance network system inter-
act in the composed system (For simplicity, the exported
items of the phone process are not depicted). The complete
composition section is presented in Appendix C.

Fig. 7. The composed system.

As a result of the composition, the above transitions are
no longer exported and their ENTRY/EXIT pair is extended
to include the triggering mechanism whose aim is to enable
a transition T only if the events described in the call gen-
eration clause occurred after the last firing of T. This will
result in adding to the entry clause of such transitions a
formula such as:

EXISTS t: Time …
(P(S1) & FORALL t1: Time(t ≤ t1 < Now � ~Start(T, t1)))

where P(S1) is the predicate used in the related call genera-
tion clause.
Note that a similar clause may also be needed in the exit
assertion.

Moreover, if transition T had any formal parameter
which is bound in the call generation clause to some ex-
ported variables of the triggering process, any occurrence
thereof in the ENTRY/EXIT pair is substituted with the
corresponding actual parameter, and the formal parameter
is dropped from the transition header.

For example, transition Receive_Local_Req becomes (the
italic part is what has been added):

TRANSITION Receive_Local_Req Ti1
ENTRY

EXISTS t: Time, P: Phone_ID
(   Change(In_Area(P).LDOut_Status(P), t)
&  In_Area(P).LDOut_Status(P) = In_Progress
&  FORALL t1:Time
    (t ≤ t1 < Now
    � ~Start(Receive_Local_Req, t1))
&  In_Area(P).LDOut_Line(P)[From_Area] = Get_Area(Self))

EXIT
EXISTS t: Time, P: Phone_ID
(   past(Change(In_Area(P).LDOut_Status(P), t)
&  In_Area(P).LDOut_Status(P) = In_Progress
&  FORALL t1:Time
    (     t�≤ t1 < Now
     �  ~Start(Receive_Local_Req, t1))
&  In_Area(P).LDOut_Line(P) [From_Area] =
            Get_Area(Self),  Now - Ti1)
&  EXISTS L: Line

(    NetStatus’(L) = Available
&  Connect(NetOut(L), In_Area(P).LDOut_Line’(P))
&  NetStatus(L) BECOMES In_Progress
&  FORALL L1:Line
    (L1 � L � NOCHANGE (NetOut(L1)))))

3.4 Automatic Generation of Composed Specification
When composing two or more system specifications using
the compose clause it is desirable to produce the specifica-
tion of the composed system. Since an ASTRAL specifica-
tion is composed of a global specification and a set of proc-
ess type specification, this means that it is necessary to
build the new global specification, and the new process
specifications using the compose clause.

The new global specification contains a set of clauses de-
fining types, constants and definitions built by taking the
corresponding clauses declared in the compose clause and
those belonging to both of the global specifications and us-
ing the name clash clause to resolve any name clashes.

Every process type specification in both of the systems is
included in the composed system; however, the following
transformations are needed:

• The import/export clause of each process type is
modified since some transitions are no longer ex-
ported and some state variables are now imported in-
stead. As a consequence both the local environment
clause and the imported variables clause are modified
in order to account for the no longer exported transi-
tion and the newly imported variables, respectively;

• Each transition belonging to a process type referred to
in the call generation clause of the compose section is
modified using the related call generation clause.

• The local schedule is modified using the related call
generation clause if it refers to the call of a no longer
exported transition.

Notice that the local invariant and the further process as-
sumptions are not modified.

This composition can be constructed automatically. The
details of how to construct the composite specifications can
be found in [14].



584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  23,  NO.  9,  SEPTEMBER  1997

4 RELATED WORK

ASTRAL is an outgrowth of the authors’ previous work on
realtime formal specification languages. The Reliable Soft-
ware Group at the Univeristy of California at Santa Barbara
had already developed a layered formal specification lan-
guage for sequential systems. This formal specification lan-
guage, as well as the specification language processor, is
called ASLAN. ASLAN’s strengths include layered refine-
ment, a state machine process model, and the ability to
specify non-timing requirements and behavior. An over-
view of the ASLAN language can be found in [5], [6], and
further information and use of the language processor are
detailed in the ASLAN User’s Manual [4]. ASTRAL builds
on ASLAN by introducing time to the nondeterministic
state machine modeling style of ASLAN, where states are
specified via predicates, and state changes occur as a con-
sequence of the application of atomic operations. Modular-
ity and hierarchy of specifications are also inherited from
ASLAN, and the syntactic flavor of ASLAN is retained.

RT-ASLAN is an earlier extension of ASLAN for speci-
fying realtime systems [6]. In RT-ASLAN a system is mod-
eled by a collection of state machine specifications. Proc-
esses are represented by communicating subspecifications,
and shared data interfaces are represented by interface sub-
specifications. Each communicating subspecification de-
fines the local state variables, state transitions and critical
requirements of a single process. Each interface subspecifi-
cation is essentially a data object protected by a monitor.
The experience gained from specifying timing properties
using RT-ASLAN were useful in designing the ASTRAL
approach. The RT-ASLAN data sharing approach for mod-
eling process interaction, however, was determined to be
unsatisfactory for ASTRAL.

TRIO is a logic language designed at the Politecnico di
Milano as a formal notation for specifying and verifying
timing requirements [31]. The research and experimenta-
tion on TRIO initially addressed the issue of executing
TRIO specifications  [50]. Thus, TRIO can be considered as a
realtime machine level formal language and this is why  it
was decided to build a high level language that could be
translated to TRIO. The TRIO language was later extended
with suitable object oriented mechanisms for modularizing
a complex specification [53]. However, it still lacks many
useful concepts which are specific to ASTRAL, such as as-
sumptions about the environment, critical requirements,
and a modular proof system.

Although the ASTRAL language  was based on the
authors’ experience with ASLAN and TRIO, it was devel-
oped as a new language. The ASLAN state machine ap-
proach with layering is retained, but ASTRAL uses a novel
approach to modeling interprocess communication, and
many new specification ideas are introduced for expressing
interaction with the environment and timing relationships.
The experience of basing the ASTRAL language on the
ASLAN and TRIO approaches prompted the selection of
the name for the language: an ASlan based TRio Assertion
Language.

Several different approaches to formal specification of re-
altime systems can be found in the literature. Among them:

• Operational approaches based on different kinds of
automata, including extensions to finite state ma-
chines, such as Statecharts [33], [36], Modecharts [41],
different kinds of timed automata [2], [3] and various
kinds of high level Petri nets, such as [51] and [30].

• Formalism based on temporal logics such as [40], [46],
[44], [45], [39] and previous work on temporal logic
[55], [54].

• Extensions to algebraic based languages like CCS [52]
such as [58] and Constrained Expressions [19].

In [2] timed automata are used both for specifying the
system and describing its properties. Thus, the problem of
verifying whether a system satisfies a given property is re-
duced to the problem of checking the emptiness of the in-
tersection between the languages accepted by the automata
representing the system and the one describing the prop-
erty respectively.8 Alur, Feder, and Henzinger [3] show
how to translate formulas written in the MITL temporal
logic into timed automata. This approach allows one to
check the correctness of a system modeled by timed auto-
mata against critical requirements expressed as MITL for-
mulas. Instead, ASTRAL allows one to prove that a system
meets its critical requirements by means of a proof system.
That is, by providing an axiomatization of the behavior of
the ASTRAL abstract machine. Moreover, timed automaton
is a low level formalism when compared to ASTRAL.

An approach similar to ASTRAL’s is presented in [7]
where Abadi and Lamport show how TLA can be used to
specify realtime systems. A TLA specification is a formula
that describes the set of allowed behaviors of the system.
The formula refers to a set of variables that can be viewed
as the system state variables. Properties of the system are
also expressed by TLA formulas, and to show that a given
specification satisfies a given property one must prove that
the former formula implies the latter.  More recently, in [8]
Abadi and Lamport show how to specify a system as a
conjunction of the specifications of its components. As is
the case with ASTRAL, properties of the system as a whole
are proved by reasoning about the components.  Further-
more, their presentation of conditional implementations,
where certain assumptions are made, is similar to AS-
TRAL’s use of environment clauses and imported variable
clauses.  The ASTRAL approach differs, however,  in that
invariants that depend on outside assumptions to be
maintained are separated from those that don’t (i.e., the
distinction between invariants and schedules in ASTRAL).

ASTRAL also inherits some features from synchronous
languages, such as ESTEREL [12], LUSTRE [34], [37], and
SIGNAL [26]. These languages describe programs that react
instantaneously to external events. The former is an im-
perative language, providing assignments, conditionals,
loops, etc. The latter two are dataflow languages. For ex-
ample, ESTEREL’s intermodule communication via signals
transferred in an instantaneous broadcast network is mir-
rored by ASTRAL’s interprocess communication. ASTRAL
differs from these languages, however, in that the actions

8. Actually the interesection is between the language accepted by the
automata representing the system and the one accepted by the complement
of the automata representing the property.
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performed by the system in response to external stimuli
take a nonnull time (i.e., there is a delay between external
events and responses). Thus, ASTRAL’s model is asynchro-
nous, whereas ESTEREL, LUSTRE, and SIGNAL are syn-
chronous. In the case of LUSTRE, validation of specifica-
tions is supported by model checking.

Like ASTRAL, the work of Gerber and Lee [29] provides
a layered approach to the verification of realtime systems.
With their approach the CSR application language is used
to specify processes, and these processes are mapped to
system resources using a configuration schema. A CSSR
specification is then automatically generated. This approach
is similar to the ASTRAL to TRIO translation; although,
their approach is much more operational than the AS-
TRAL/TRIO approach.

Another language supporting layered specifications is
HMS [25]. However the HMS notion of multilevel specifi-
cations is quite different from ASTRAL’s. In HMS higher
level specifications impose constraints on lower levels; the
final specification is therefore composed of all levels. In
ASTRAL each level is shown to be a correct refinement of
the corresponding upper level; as a consequence the lowest
level constitutes the final specification.

Recently, a number of approaches have been proposed
to build formal proofs for realtime systems [1], [24], [25],
[35], [41], [49], [54], [57]. In most cases, they are based on
low level formalisms, i.e., abstract machines and/or asser-
tion languages that are not provided with modularization
and abstraction mechanisms. As a consequence, the proofs
lack structure, which makes them unsuitable for dealing
with complex real-life systems. In contrast, ASTRAL is pro-
vided with structuring mechanisms that allow one to build
modularized specifications of complex systems with layer-
ing. As a result, one of the distinguishing feature of AS-
TRAL is that formal proofs are also structured [15], [16].

5 CONCLUSIONS AND FUTURE WORK

This paper introduces ASTRAL, a new formal specification
language for realtime systems. The language is an out-
growth of the authors’ previous work on realtime formal
specification languages.

ASTRAL was designed to support good software engi-
neering practice. The structuring mechanisms that allow one
to build modularized specifications of complex systems with
layering are an example of this. This modular separation of
processes allows for a better understanding of the system
design by being able to consider each component separately.
It also provides the lead designer with reasonable units to be
assigned to different design teams. The modular approach
also simplifies the proof process by allowing the process
properties to be proved independently and then using these
properties to prove the properties of the total system, as ex-
pressed in the global specification. The layering also allows
the proof of the implementation of a process to be simplified.

ASTRAL also supports good software engineering prac-
tice by having both invariants and schedules, which con-
tributes to the reuse of process specifications. That is, be-
cause properties expressed in the invariant are guaranteed
to hold for the process, regardless of what environment it

runs in, the process can be reused in any system design that
requires only the properties expressed in the invariant. If in
addition the properties expressed in the schedule were nec-
essary, then the system for which the process was being
considered would have to assure that the environment and
imported variables properties were also satisfied. By split-
ting the environment dependent properties from the envi-
ronment independent properties, processes are likely to be
reused more than if they were grouped together.

Another feature of the language that supports good soft-
ware engineering practice is the further assumptions clause.
By including this clause the schedule requirements can be
proved to be satisfiable without requiring the specifier to
include implementation details that are inappropriate for the
more abstract level of design. This avoids the common prob-
lem of over specifying a system in the early stages of design.
In addition, by including more than one  further assumptions
clause the designer can document several possible imple-
mentation approaches in the higher level design.

This paper also describes how to compose two or more
ASTRAL system specifications into a more complex realtime
system. To accomplish this a compose clause was added to
the basic specification language. It was also demonstrated
how the compose clause can be used to transform two or
more existing system specifications into a new specification
for the composite system. This too contributes to reuse.

ASTRAL has been used to specify a number of interest-
ing realtime systems.  In [15] the results of using it to for-
mally specify a CCITT system that consists of a packet as-
sembler process and several input processes is reported.
The use of ASTRAL as a hardware description language
was demonstrated in [10]. In that paper it was used to for-
mally specify a checksum generator and a universal asyn-
chronous receiver transmitter (UART) between a modem
and a microprocessor. The first of these examples had four
distinct process types and the second had six. At Delft Uni-
versity of Technology (The Netherlands) ASTRAL was
used to specify a robot control system [9]. These case stud-
ies as well as the phone system example presented in this
paper demonstrate the expressiveness and the power of the
language. They also show ASTRAL’s usefulness for speci-
fying varying types of realtime systems from basic hard-
ware to complete communication systems.

In order to get designers to use formal methods to de-
velop realtime systems it is necessary to provide them with
an integrated set of tools for writing and analyzing their
specifications. The ASTRAL Software Development Envi-
ronment (SDE), which is an integrated set of tools based on
the ASTRAL formal framework, is intended to meet this
need. The tools that make up the support environment are a
syntax-directed editor, a  specification processor, a verifica-
tion condition generator (vcg), a mechanical theorem
prover, and a browser kit. The SDE offers features that re-
duce errors and facilitate use throughout all stages of the
specification development process.  In the initial specifica-
tion phase, the editor prevents syntax errors and the for-
matter enhances readability.  In the middle phase, the vali-
dation function reports type errors, scoping errors, missing
parameters, etc., and the vcg component generates the
proof obligations needed to prove the specification correct
with respect to its critical requirements.  Finally, the brows-
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ers and compose/build features provide for easy mainte-
nance and reuse of  specifications. For more details on the
SDE see [43].

Future work will proceed in several directions. One di-
rection is to experiment further with the ASTRAL approach
in more complex real life cases. Although the case studies
have shown that the language is highly expressive and
powerful, more experimentation is needed to further assess
the approach.

Another research direction consists of enhancing and
extending the theory behind the approach. The relationship

between the target physical architecture and the ASTRAL
computation model needs to be examined more closely.
Which assumptions need to be relaxed or modified in order
to fit target architectures more closely? A typical example is
the assumption that as soon as a task terminates a transi-
tion, the changed values of the exported variables are im-
mediately visible to all other tasks. Another assumption of
the computation model that needs to be addressed is the
global clock.

APPENDIX A—THE PHONE SYSTEM SPECIFICATION

GLOBAL SPECIFICATION Phone_System

PROCESSES
Phones: array[1 .. Num_Phone] of Phone,
Centrals: array[1 .. Num_Area] of Central_Control

TYPE
Positive_Integer IS TYPEDEF p:Integer (p > 0),
Digit IS TYPEDEF d: Integer (d � 0 & d � 9),
Digit_List IS LIST OF Digit,
Connection IS STRUCTURE OF (From_Area, From_Number, To_Area, To_Number: Digit_List),
Phone_ID IS TYPEDEF pid: ID (IDTYPE(pid) = Phone),
Central_Control_ID IS TYPEDEF pid: ID (IDTYPE(pid) = Central_Control),
Enabled_State IS (Idle, Ready_To_Dial, Dialing, Ringing, Waiting, Talk, Calling, Disconnecting, Busy, Alarm),
Connection_Status IS (Available, In_Progress, Disconnect, Connect, Talking)

CONSTANT
In_Area(Phone_ID): Central_Control_ID,
Max_Cust, Num_Phone, Num_Area : Positive_Integer

ENVIRONMENT /* No more than Max_Cust phone calls are initiated in any 2 sec interval */
FORALL C: Central_Control_ID
(SET_SIZE({ SETDEF P: Phone_ID (In_Area(P) = C & Now - 2 � P.Call(Pickup) � Now)} ) � Max_Cust)

SCHEDULE /* The phone should receive a dial tone within 2 sec */
FORALL P:Phone_ID, t, t1, t2: Time

(   t � t1 � t2

&  past(In_Area(P).Phone_State(P), t) = Idle & Change2(In_Area(P).Phone_State(P), t)
&  P.Offhook & P.End(Pickup, t1) & Change(In_Area(P).Phone_State(P), t2)
� (past(In_Area(P).Phone_State(P), t2) = Ringing | past(In_Area(P).Phone_State(P), t2) = Ready_To_Dial) & t2 � t1 + 2)

END Phone_System

SPECIFICATION Phone
LEVEL Top_Level

IMPORT
Digit, Phone_ID, Central_Control_ID, Enabled_State, In_Area,
Centrals.Phone_State, Centrals.Enabled_Ring_Pulse, Centrals.Enabled_Ringback_Pulse

EXPORT
Offhook, Next_Digit, Pickup, Enter_Digit, Hangup

CONSTANT
T1, T2, T3, T4, T5, T6, T7, T8, T9, T10: Time

VARIABLE
Offhook, Dialtone, Ring, Ringback, Busytone: Boolean,
Next_Digit: Digit
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DEFINE
My_Central: Central_Control_ID == In_Area(Self)

ENVIRONMENT
FORALL t: Time (Call(Pickup, t) � ~past(Offhook, t)) /* To pick up the phone it must not be offhook */

&  FORALL t: Time (Call(Hangup, t) � past(Offhook, t)) /* To hang up the phone it must be offhook */

&  FORALL t: Time /* Digits are entered after the dialtone is received, */
(    Call(Enter_Digit, t) /* LD numbers begins with 1 and have 11 digits, */
�  (   past(Dialtone, t) /* local numbers have 7 digits, and */
 |  EXISTS t1: Time, n: Integer, D: Digit /* the phone is offhook while digits are entered */

   (   2 � n & Calln(Enter_Digit(D), t1)
&  past(Dialtone, t1) & (n � 7 & D � 1 | n � 11 & D = 1) & FORALL t2: Time (t1 � t2 � t � past(Offhook, t2)))))

&  FORALL t: Time (Call2(Pickup, t) � Call(Pickup) - Call2(Pickup) � 1) /* The phone is picked up no more than once a */
/* second */

INITIAL
~Offhook & ~Dialtone & ~Busytone & ~Ring & ~Ringback

INVARIANT
((Dialtone | Ringback | Busytone)� Offhook)

&  (Ring � (~Offhook & ~DialTone & ~Ringback & ~Busytone))

SCHEDULE
(Dialtone � ~Ring & ~Ringback & ~Busytone)

&  (Busytone �  ~Dialtone & ~Ring & ~Ringback)
&  (Ringback �  ~Dialtone & ~Ring & ~Busytone)

IMPORTED VARIABLE
(   My_Central.Phone_State(Self) = Busy /* A phone’s state can only change to Busy from Dialing */
�   past(My_Central.Phone_State(Self), Change2(My_Central.Phone_State(Self))) = Dialing
&   EXISTS t: Time (Change2(My_Central.Phone_State(Self)) < t & past(End(Enter_Digit) = Now, t)))

&  (   My_Central.Phone_State(Self) = Waiting /* A phone’s state can only change to Waiting from Dialing */
�   past(My_Central.Phone_State(Self), Change2(My_Central.Phone_State(Self))) = Dialing
&   EXISTS t: Time (Change2(My_Central.Phone_State(Self)) < t & past(End(Enter_Digit) = Now, t)))

&   (   My_Central.Phone_State(Self) = Dialing /* A phone’s state can only change to Dialing from Ready_To_Dial */
�  past(My_Central.Phone_State(Self), Change2(My_Central.Phone_State(Self))) = Ready_To_Dial
&  EXISTS t: Time (Change2(My_Central.Phone_State(Self)) < t & past(End(Enter_Digit) = Now, t)))

&  (   My_Central.Phone_State(Self) = Ready_To_Dial /* A phone’s state can only change to Ready_To_Dial from Idle */
�  past(My_Central.Phone_State(Self), Change2(My_Central.Phone_State(Self))) = Idle)

&   (   EXISTS t, t1: Time /* From the time a phone’s state is idle until it is waiting */
(   past(My_Central.Phone_State(Self), t) = Idle /* the phone’s ringback pulse must be disabled */
&   FORALL t1: time
&                   (t > t1 � Now

�   past ( My_Central.Phone_State ( Self ), t1 ) � Waiting )  )
�  ~My_Central.Enabled_Ringback_Pulse(Self))

FURTHER ASSUMPTIONS #1
FURTHER PROCESS ASSUMPTIONS

TRANSITION SELECTION
enabled_transitions CONTAINS any_subset({Stop_Ringback, Stop_Busytone})

&  TRUE
�  elgible_transitions = {Stop_Ringback, Stop_Busytone} INTERSECT enabled_transitions

TRANSITION Pickup T1 TRANSITION Start_Ring   T4
ENTRY ENTRY

~Offhook ~Offhook & ~Ring
EXIT & My_Central.Phone_State(Self) = Ringing

Offhook & ~Dialtone & ~Busytone & My_Central.Enabled_Ring_Pulse(Self)
&  ~Ring & ~Ringback EXIT

Ring
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TRANSITION Start_Tone T2
ENTRY TRANSITION Stop_Ring T5

Offhook & ~Dialtone ENTRY
&   My_Central.Phone_State(Self) = Ready_To_Dial             Ring
&   FORALL t: Time      & ~My_Central.Enabled_Ring_Pulse(Self)

(Change(Dialtone,t) � t < Change(Offhook)) EXIT
EXIT     ~Ring

Dialtone TRANSITION Start_Ringback T6

TRANSITION Enter_Digit(D:Digit) T3 ENTRY
ENTRY           Offhook & ~Ringback

Offhook      &  My_Central.Phone_State(Self) = Waiting
&  (   My_Central.Phone_State(Self) = Ready_To_Dial      &  My_Central.Enabled_Ringback_Pulse(Self)

&  Dialtone EXIT
|   My_Central.Phone_State(Self) = Dialing)      Ringback

EXIT
Next_Digit = D & ~Dialtone

TRANSITION Stop_Ringback T7 TRANSITION Stop_Busytone T9
ENTRY ENTRY

Ringback           Busytone
&  ~My_Central.Enabled_Ringback_Pulse(Self)      &  My_Central.Phone_State(Self) � Busy

EXIT EXIT
~Ringback           ~Busytone

TRANSITION Start_Busytone T8 TRANSITION Hangup T10
ENTRY ENTRY

Offhook & ~Busytone           Offhook
&   My_Central.Phone_State(Self) = Busy EXIT

EXIT           ~Offhook & ~Dialtone & ~Busytone
Busytone      &    ~Ring & ~Ringback

END Top_Level
END Phone

SPECIFICATION Central_Control
LEVEL Top_Level

IMPORT
Digit, Digit_List, Connection, Phone_ID, Central_Control_ID, Enabled_State, Connection_Status,
In_Area, Max_Cust, Phones.Offhook, Phones.Next_Digit, Phones.Pickup, Phones.Enter_Digit

EXPORT
Phone_State, Enabled_Ring_Pulse, Enabled_Ringback_Pulse, LDOut_Line, LDOut_Status,
Receive_LD, Start_LD, Start_Talk_2, Terminate_LD_2

TYPE
Area_Phone IS TYPEDEF p: Phone_ID (In_Area(p) = Self)

CONSTANT
Uptime_Ring, Downtime_Ring, Uptime_Ringback, Downtime_Ringback, LD_Timeout, Delta: Time,
Tim1, Tim2, Tim3, Tim4, Tim5, Tim6, Tim7, Tim8, Tim9, Tim10, Tim11, Tim12, Tim13, Tim14, Tim15, Tim16: Time,
Get_ID(Digit_List): Area_Phone,
Get_Number(Area_Phone), Get_Area(Central_Control_ID), Pick_Area(Digit_List), Pick_Number(Digit_list): Digit_List

VARIABLE
Phone_State(Area_Phone): Enabled_State,
Long_Distance(Area_Phone): Boolean,
Enabled_Ring_Pulse(Area_Phone): Boolean,
Enabled_Ringback_Pulse(Area_Phone): Boolean,
Connected_To(Area_Phone): Area_Phone,
Number(Area_Phone): Digit_List,
LDOut_Line(Area_Phone): Connection,
LDOut_Status(Area_Phone): Connection_Status

AXIOM
FORALL d: Digit_List (LIST_LEN(Pick_Number(d)) = 7 & LIST_LEN(Pick_Area(d)) = 3)
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DEFINE
Plug(L1, L2: Connection):Boolean ==         /* L1 is connected to L2 */

L1[From_Area] = L2[To_Area]
&  L1[From_Number] = L2[To_Number]
&  L1[To_Area] = L2[From_Area]
&  L1[To_Number] = L2[From_Number]

Count(P: Area_Phone): Integer == LIST_LEN(Number(P)),

Calling_Out(P: Area_Phone, L: Connection): Boolean ==          /* Phone P is making a long distance call through line L */
P.Offhook

&  Long_Distance(P)
&  Get_Area(Self) = L[To_Area]
&  Get_Number(P) = L[To_Number]
&  Plug(LDOut_Line(P), L)

ENVIRONMENT
FORALL t: Time, L: Connection /* The termination of a LD call implies that someone has initiated it */
(   Call(Terminate_LD_Call_2(L), t)
� EXISTS t1: Time, LS: Connection_Status (t1 < t & (Call(Receive_LD(L), t1) | Call(Start_LD(L,LS), t1))))

&  FORALL t: Time, L: Connection /* For any LD call, starting to talk requires that the call has occurred */
(Call(Start_Talk_2(L), t) � EXISTS t1: Time, LS: Connection_Status (t1 < t & Call(Start_LD(L, LS), t1)))

&  FORALL t: Time, L: Connection, LS: Connection_Status
(   Call(Start_LD(L, LS), t)
�  EXISTS t1: Time, P: Area_Phone (t1 < t & Start(Connect_Long_Distance(P), t1) & past(Calling_Out(P, L), t)))

&  FORALL t: Time (Call2(Receive_LD, t) � Call(Receive_LD) –  t > LD_Timeout)    /* LD_timeout is the time between two */
   /* subsequent LD calls received by central control*/

INITIAL
FORALL P: Area_Phone

(   Phone_State(P) = Idle & Number(P) = NIL
&  ~Enabled_Ring_Pulse(P)
&  ~Enabled_Ringback_Pulse(P)
&  ~Long_Distance(P)
&  LDOut_Status(P) = Available)

INVARIANT
FORALL P: Area_Phone
(    (Long_Distance(P)  �  Count(P) � 0 & Count(P) � 11 )
&  (~Long_Distance(P)  �  (   Count(P) � 0 & Count(P) � 7 )

&  (Phone_State(P) = Waiting  �  Phone_State(Connected_To(P)) = Ringing)
&  (Phone_State(P) = Ringing  �  Phone_State(Connected_To(P)) = Waiting)
&  (Phone_State(P) = Talk �  Phone_State(Connected_To(P)) = Talk))))

CONSTRAINT         /* The only way in which P can change its state is by becoming idle */
FORALL P: Area_Phone
(   (Phone_State’(P) = Busy | Phone_State’(P) = Alarm | Phone_State’(P) = Disconnect)
&  Phone_State(P) � Phone_State’(P)
� Phone_State(P) = Idle )

SCHEDULE
FORALL P: Area_Phone, t, t1, t2: Time /* The maximum time to give the dial tone to a phone */
(   t � t1 � t2
&  Change2(Phone_State(P), t) & past(Phone_State(P), t) = Idle
&  P.End(Pickup, t1) & P.Offhook
&  Change(Phone_State(P), t2)
� t2 � t1 + 2
&  (past(Phone_State(P), t2) = Ringing | past(Phone_State(P), t2) = Ready_To_Dial))

&  FORALL P: Area_Phone /* Phone ringing is enabled every Downtime_Ring time units */
(   Phone_State(P) = Ringing
&  Now - Change(Phone_State(P)) � Downtime_Ring
�  EXISTS n: Integer

(   Endn(Enable_Ring(P)) > Change(Phone_State(P))
&  Endn(Enable_Ring(P)) � Change(Phone_State(P)) + Downtime_Ring ) )
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&   FORALL P: Area_Phone /* Phone ringing is disabled every Uptime_Ring time units */
(   Phone_State(P) = Ringing
&  End(Enable_Ring(P)) > Change(Phone_State(P))
&  Now � End(Enable_Ring(P)) + Uptime_Ring + Delta
�      End(Disable_Ring_Pulse(P)) � End(Enable_Ring(P)) + Uptime_Ring

&  End(Disable_Ring_Pulse(P)) � End(Enable_Ring(P)) + Uptime_Ring + Delta)

&  FORALL P: Area_Phone /*Ringback tone is enabled every Downtime_Ringback time units */
(   Phone_State(P) = Ringing
&  End(Disable_Ring_Pulse(P)) > Change(Phone_State(P))
&  Now � End(Disable_Ring_Pulse(P)) + Downtime_Ring + Delta
�     End(Enable_Ring(P)) � End(Disable_Ring_Pulse(P)) + Downtime_Ring

&  End(Enable_Ring(P)) � End(Disable_Ring_Pulse(P)) + Downtime_Ring+ Delta)

&  FORALL P:  Area_Phone   /* The phone rings no later than Downtime_ring time units after the connection is established */
(   ~Long_Distance(P)
&  Phone_State(P) = Waiting
&  Now - End(Process_Local_Call(P)) � Downtime_Ring
� EXISTS n, m: Integer

(   Endn(Enable_Ring(Connected_To(P))) > End(Process_Local_Call(P))
&  Endn(Enable_Ring(Connected_To(P))) � End(Process_Local_Call(P)) + Downtime_Ring
&  Endm(Enable_Ringback(P)) > End(Process_Local_Call(P))
&  Endm(Enable_Ringback(P)) � Endn(Enable_Ring(Connected_To(P))) + 0.5))

&   FORALL P:  Area_Phone /*Ringback tone is disabled every Uptime_Ringback time units */
(   Phone_State(P) = Waiting
&  End(Enable_Ringback(P)) > Change(Phone_State(P))
&  Now � End(Enable_Ringback(P)) + Uptime_Ringback + Delta
� End(Disable_Ringback_Pulse(P)) � End(Enable_Ringback(P)) + Uptime_Ringback
&  End(Disable_Ringback_Pulse(P)) ≤ End(Enable_Ringback(P)) + Uptime_Ringback + Delta )

&  FORALL P: Area_Phone /* The ringback tone starts no later than Downtime_ringback time units */
(   Phone_State(P) = Waiting /* after the connection is established */
&  End(Disable_Ringback_Pulse(P)) > Change(Phone_State(P))
&  Now � End(Disable_Ringback_Pulse(P)) + Downtime_Ringback + Delta
�  End(Enable_Ringback(P)) � End(Disable_Ringback_Pulse(P)) +Downtime_Ringback
&  End(Enable_Ringback(P)) � End(Disable_Ringback_Pulse(P)) +Downtime_Ringback + Delta )

IMPORTED VARIABLE CLAUSE            /* No more than Max_Cust phones are picked up in a 2” interval */
SET_SIZE( { SETDEF P: Area_Phone (Now – 2 � P.Start(Pickup) � Now)} ) � Max_Cust

FURTHER ASSUMPTIONS #1
FURTHER PROCESS ASSUMPTIONS

TRANSITION SELECTION /* Gives priority to Give_Dial_Tone over all other transitions */
enabled_transitions CONTAINS {Give_Dial_Tone }
&  TRUE
�  elgible_transitions = {Give_Dial_Tone}

CONSTANT REFINEMENT
2 > MAX(Tim1, …, Tim16) + (Max_Cust + 1)*Tim1

TRANSITION Give_Dial_Tone(P:Area_Phone) Tim1 /* P has picked up the phone */
ENTRY

P.Offhook & Phone_State(P) = Idle
EXIT

Phone_State(P) BECOMES Ready_To_Dial & Number(P) BECOMES NIL

TRANSITION Process_Digit(P:Area_Phone) Tim2 /* P has entered a digit */
ENTRY

P.Offhook
&  ( (Long_Distance(P) & Count(P) < 11) | (~Long_Distance(P) & Count(P) < 7))
&  (   (   Phone_State(P) = Ready_To_Dial & P.End(Enter_Digit) > End(Give_Dial_Tone(P)))

|   (   Phone_State(P) = Dialing & P.End(Enter_Digit) > End(Process_Digit(P))))
EXIT

IF Count’(P) = 0
THEN

IF P.Next_Digit’ = 1
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THEN Long_Distance(P) BECOMES True
ELSE Long_Distance(P) BECOMES False
FI
& Phone_State(P) BECOMES Dialing

FI
&  Number(P) BECOMES Number’(P) CONCAT LISTDEF(P.Next_Digit’)

TRANSITION Process_Local_Call(P: Area_Phone)   Tim3  /* P has dialed a local number */
ENTRY

P.Offhook & ~Long_Distance(P) & Count(P) = 7 & Phone_State(P) = Dialing
&  ~Get_ID(Number(P)).Offhook & Phone_State(Get_ID(Number(P))) = Idle

EXIT
Phone_State(Get_ID(Number’(P))) = Ringing & Phone_State(P) = Waiting & ~Long_Distance(Get_ID(Number’(P)))

&  Connected_To(P) = Get_ID(Number’(P)) & Connected_To(Get_ID(Number’(P))) = P
&  FORALL P1: Area_Phone

(P1 ≠ P & P1 � Get_ID(Number’(P)) � NOCHANGE(Phone_State(P1)) & NOCHANGE(Connected_To(P1)))
EXCEPT

P.Offhook & ~Long_Distance(P) & Count(P) = 7 & Phone_State(P) = Dialing
&  (Get_ID(Number(P)).Offhook | Phone_State(Get_ID(Number(P))) � Idle)

EXIT
Phone_State(P) BECOMES Busy

TRANSITION Connect_Long_Distance(P:Area_Phone) Tim4 /*P has dialed a LD number */
ENTRY

P.Offhook & Long_Distance(P) & Count(P) = 11
&  Phone_State(P) = Dialing & Pick_Area(Number(P)) � Get_Area(Self)

EXIT
LDOut_Line(P)[From_Area] = Get_Area(Self) & LDOut_Line(P)[From_Number] = Get_Number(P)

&  LDOut_Line(P)[To_Area] = Pick_Area(Number’(P)) & LDOut_Line(P)[To_Number] = Pick_Number(Number’(P))
&  LDOut_Status(P) BECOMES In_Progress & Phone_State(P) BECOMES Calling
&  FORALL P1: Area_Phone (P1 � P � NOCHANGE(LDOut_Line(P1)))

EXCEPT
P.Offhook & Long_Distance(P) & Count(P) = 11

&  Phone_State(P) = Dialing & Pick_Area(Number(P)) = Get_Area(Self)
EXIT

Long_Distance(P) BECOMES False & Number(P) BECOMES Pick_Number(Number’(P))

TRANSITION Enable_Ring(P:Area_Phone) Tim5        /* Makes phone P ringing */
ENTRY

~P.Offhook & Phone_State(P) = Ringing & ~Enabled_Ring_Pulse(P)
&  FORALL t: Time

(   End(Disable_Ring_Pulse(P), t) & FORALL t1 : Time (t � t1 � Now � past(Phone_State(P), t1) = Ringing)
�  Now – t � Downtime_Ring)

EXIT
Enabled_Ring_Pulse(P) BECOMES True

TRANSITION Disable_Ring_Pulse(P: Area_Phone) Tim6       /* Prevent phone P from ringing */
ENTRY

Enabled_Ring_Pulse(P) & (P.Offhook | Now – End(Enable_Ring(P)) � Uptime_Ring)
EXIT

Enabled_Ring_Pulse(P) BECOMES False

TRANSITION Enable_Ringback(P:Area_Phone) Tim7 /* The ringback tone is started */
ENTRY

P.Offhook & Phone_State(P) = Waiting & ~Enabled_Ringback_Pulse(P)
&  FORALL t: Time

(   End(Disable_Ringback_Pulse(P), t) & FORALL t1 : Time (t � t1 � Now � past(Phone_State(P), t1) = Waiting)
�  Now - t � Downtime_Ringback)

EXIT
Enabled_Ringback_Pulse(P) BECOMES True

TRANSITION Disable_Ringback_Pulse(P: Area_Phone) Tim8       /* Prevent the ringback tone */
ENTRY

Enabled_Ringback_Pulse(P) & (~P.Offhook | Now - End(Enable_Ringback(P)) � Uptime_Ringback)
EXIT

Enabled_Ringback_Pulse(P) BECOMES False



592 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  23,  NO.  9,  SEPTEMBER  1997

TRANSITION Receive_LD (LDIn_Line: Connection)  Tim9            /* An incoming LD call has arrived from line LDIn_Line */
ENTRY

LDIn_Line[To_Area] = Get_Area(Self)
&  Phone_State(Get_ID(LDIn_Line[To_Number])) = Idle
&  ~Get_ID(LDIn_Line[To_Number]).Offhook

EXIT
Phone_State(Get_ID(LDIn_Line[To_Number])) BECOMES Ringing

&  LDOut_Status(Get_ID(LDIn_Line[To_Number])) BECOMES Connect
&  Long_Distance(Get_ID(LDIn_Line[To_Number]))
&  Plug(   LDOut_Line(Get_ID(LDIn_Line[To_Number])), LDIn_Line)
&  FORALL P: Area_Phone (P � Get_ID(LDIn_Line[To_Number]) �  NOCHANGE(LDOut_Line(P)))

TRANSITION Start_Talk_1(P: Area_Phone)  Tim10            /* Phone P was ringing and someone picked it up */
ENTRY

P.Offhook & Phone_State(P) = Ringing
EXIT

Phone_State(P) = Talk
&  IF ~Long_Distance’(P)

THEN
Phone_State(Connected_To’(P)) = Talk
&  FORALL P1:Area_Phone (P1 � P & P1 � Connected_To’(P)  �  NOCHANGE(Phone_State(P1)))

ELSE LDOut_Status(P) BECOMES Talking
FI

TRANSITION Start_Talk_2(LDIn_Line:Connection)  Tim11 /* Phone P has made a LD call through LDIn_Line */
ENTRY /* and someone has answered the call */

EXISTS P: Area_Phone (Calling_Out(P, LDIn_Line) & Phone_State(P) = Waiting & LDOut_Status(P) = Connect)
EXIT

EXISTS P: Area_Phone
(   Calling_Out’(P,LDIn_Line) & Phone_State’(P) = Waiting & LDOut_Status’(P) = Connect
&  LDOut_Status(P) BECOMES Talking & Phone_State(P) BECOMES Talk)

TRANSITION Start_LD(LDIn_Line: Connection, LDIn_Status: Connection_Status)  Tim12 /* Phone P made a LD call and the */
ENTRY /* connection is established */

LDIn_Status = Connect
&  EXISTS P: Area_Phone (Calling_Out(P, LDIn_Line) & Phone_State(P) = Calling & LDOut_Status(P) = In_Progress)

EXIT
EXISTS P: Area_Phone
(   Calling_Out’(P, LDIn_Line) & Phone_State’(P) = Calling & LDOut_Status’(P) = In_Progress
&  LDOut_Status(P) BECOMES Connect & Phone_State(P) BECOMES Waiting)

EXCEPT
LDIn_Status = Disconnect

&  EXISTS P: Area_Phone (Calling_Out(P, LDIn_Line) & Phone_State(P) = Calling & LDOut_Status(P) = In_Progress)
EXIT

EXISTS P: Area_Phone
(   Calling_Out’(P, LDIn_Line) & Phone_State’(P) = Calling & LDOut_Status’(P) = In_Progress
&  LDOut_Status(P) BECOMES Disconnect & Phone_State(P) BECOMES Busy)

TRANSITION Terminate_LD_1(P: Area_Phone)  Tim13 /* P has ended the LD call that it initiates */
ENTRY

~P.Offhook & Long_Distance(P) & Phone_State(P) ≠ Idle & Phone_State(P) � Ringing
&  LDOut_Line(P)[From_Area] = Get_Area(Self) & LDOut_Line(P)[From_Number] = Get_Number(P)
&  LDOut_Status(P) ≠ Available

EXIT
Phone_State(P) BECOMES Idle & LDOut_Status(P) BECOMES Available & ~Enabled_Ringback_Pulse(P)

TRANSITION Generate_Alarm(P: Area_Phone)  Tim14
ENTRY

P.Offhook
&  (   Phone_State(P) = Ready_To_Dial

|   (Phone_State(P) = Dialing & P.Call(Enter_Digit) < Start(Process_Digit(P))))
&  (   Count(P) = 0 & (Now-End(Give_Dial_Tone(P))) > 30

|  (   Count(P) > 0
&  ( ~Long_Distance(P) & Count(P) < 7 | Long_Distance(P) & Count(P) < 11)
&  Now - End(Process_Digit(P)) > 20)
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|  Now – End(Give_Dial_Tone(P))) > 100 )
EXIT

Phone_State(P) BECOMES Alarm

TRANSITION Terminate_Local_Call(P: Area_Phone)  Tim15 /* P has terminated a local call */
ENTRY

~P.Offhook & ~Long_Distance(P) & Phone_State(P) ≠ Idle & Phone_State(P) ≠ Ringing
EXIT

Phone_State(P) = Idle
&  ~Enabled_Ringback_Pulse(P)
&  IF Phone_State’(P) = Talk | Phone_State’(P) = Waiting

THEN
IF Phone_State’(P) = Talk
THEN Phone_State(Connected_To’(P)) = Disconnecting
ELSE Phone_State(Connected_To’(P)) = Idle & ~Enabled_Ring_Pulse(Connected_To’(P))
FI

&  FORALL P1: Area_Phone (P1 ≠ P & P1 � Connected_To’(P) �  NOCHANGE(Phone_State(P1)))
ELSE FORALL P1: Area_Phone (P1 � P � NOCHANGE(Phone_State(P1)))
FI

TRANSITION Terminate_LD_2(LDIn_Line:Connection) Tim16 /* P’s correspondent terminated the LD call */
ENTRY

EXISTS P: Area_Phone (Calling_Out(P, LDIn_Line) & Phone_State(P) = Talk & LDOut_Status(P) = Talking)
EXIT

EXISTS P: Area_Phone
(   Calling_Out’(P, LDIn_Line) & Phone_State’(P) = Talk & LDOut_Status’(P) = Talking
&  LDOut_Status(P) BECOMES Disconnect & Phone_State(P) BECOMES Disconnecting)

EXCEPT
EXISTS P: Area_Phone (Calling_Out(P, LDIn_Line) & Phone_State(P) = Ringing & LDOut_Status(P) = Connect)

EXIT
EXISTS P: Area_Phone
(   Calling_Out’(P,LDIn_Line) & Phone_State’(P) = Ringing & LDOut_Status’(P) = Connect
&  LDOut_Status(P) BECOMES Available & Phone_State(P) BECOMES Idle & ~Enabled_Ring_Pulse(P))

END Top_Level
END Central_Control

APPENDIX B – THE LONG DISTANCE NETWORK

GLOBAL SPECIFICATION Long_Distance_Network

PROCESSES
Units: array[1 .. Num_Area] of Long_Distance_Unit

TYPE
Digit IS TYPEDEF d: Integer (d � 0 & d � 9),
Positive_Integer IS TYPEDEF p: Integer (p > 0),
Line,
LDU_ID IS TYPEDEF pid: ID (IDTYPE(pid) = Long_Distance_Unit),
Digit_List IS LIST OF Digit,
Connection_Status = (Available, In_Progress, Disconnected, Connected, Talk),
Connection IS STRUCTURE OF (From_Area, From_Number, To_Area, To_Number: Digit_List)

CONSTANT
Num_Area: Positive_Integer

DEFINE
Connect(L1, L2: Connection): Boolean ==

L1[From_Area] = L2[From_Area]
&  L1[From_Number] = L2[From_Number]
&  L1[To_Area] = L2[To_Area]
&  L1[To_Number] = L2[To_Number],

Disconnect(L: Connection): Boolean ==
L[From_Area] = NIL

&  L[To_Area] = NIL
&  L[From_Number] = NIL



594 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  23,  NO.  9,  SEPTEMBER  1997

&  L[To_Number] = NIL,

Plug(L1, L2: Connection): Boolean ==
L1[From_Area] = L2[To_Area]

&  L1[From_Number] = L2[To_Number]
&  L1[To_Area] = L2[From_Area]
&  L1[To_Number] = L2[From_Number]

END Long_Distance_Network

SPECIFICATION Long_Distance_Unit
LEVEL Top_Level

IMPORT
Digit, Digit_List, Line, LDU_ID, Connection_Status, Connection, Plug, Connect, Disconnect

EXPORT
NetOut, LocOut, NetStatus, LocStatus, Receive_Local_Req, Local_Established, Started_Local_Talk, End_Local

VARIABLE
NetOut(Line), LocOut(Line): Connection,
NetStatus(Line), LocStatus(Line): Connection_Status

CONSTANT
Ti1, Ti2, Ti3, Ti4, Ti5, Ti6, Ti7, Ti8, Ti9, Timeout, Max_Calls: Time,
Get_Area(LDU_ID): Digit_List

ENVIRONMENT
FORALL t: Time, L: Connection  /* Relates the calls to exported variables to the value of NetOut,LocOut and NetStatus */
(   Call(End_Local(L), t) � EXISTS L1: Line (Connect(past(NetOut(L1), t), L) & past(NetStatus(L1), t) ≠ Available)
&  Call(Local_Established(L), t) � EXISTS L1:Line (Plug(past(LocOut(L1), t), L) & past(NetStatus(L1), t) ≠ Connected)
&  Call(Started_Local_Talk(L), t)� EXISTS L1:Line (Plug(past(LocOut(L1), t), L) & past(NetStatus(L1), t) = Connected))

&  FORALL t:Time (Call2(Receive_Local_Req, t) � Call(Receive_Local_Req) - Call2(Receive_Local_Req) > Max_Calls)

INITIAL
FORALL L: Line
(Disconnect(NetOut(L)) & Disconnect(LocOut(L)) & NetStatus(L) = Available & LocStatus(L) = Available)

TRANSITION Receive_Local_Req (In_Line: Connection) Ti1
ENTRY

In_Line[From_Area] = Get_Area(Self)
EXIT

EXISTS L: Line
(   NetStatus’(L) = Available
&  Connect(NetOut(L), In_Line)
&  NetStatus(L) BECOMES In_Progress
&  FORALL L1:Line(L1 � L ��NOCHANGE(NetOut(L1))))

TRANSITION Receive_Long_Req Ti2
ENTRY

EXISTS U: LDU_ID, L: Line
(   U.NetOut(L)[To_Area] = Get_Area(Self)
&  U.NetStatus(L) = In_Progress
&  FORALL L1:Line(~Connect(U.NetOut(L), LocOut(L1))))

EXIT
EXISTS U: LDU_ID, L: Line
(   U.NetOut’(L)[To_Area] = Get_Area(Self)
&  U.NetStatus’(L) = In_Progress
&  FORALL L1: Line(~Connect(U.NetOut’(L), LocOut’(L1))
&  Connect(LocOut(L), U.NetOut’(L))
&  LocStatus(L) BECOMES In_Progress
&  FORALL L1: Line(L1 � L � NOCHANGE(LocOut(L1))))

TRANSITION Local_Established (In_Line: Connection) Ti3
ENTRY

In_Line[From_Area] = Get_Area(Self)
&  EXISTS L: Line (Plug(LocOut(L), In_Line) & NetStatus(L) � Connected)
EXIT
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EXISTS L: Line
(   Plug(LocOut’(L), In_Line)
&  NetStatus’(L) � Connected
&  NetStatus(L) BECOMES Connected
&  Connect(NetOut(L), In_Line)
&  FORALL L1: Line(L1 � L � NOCHANGE(NetOut(L1))))

TRANSITION Long_Established Ti4
ENTRY

EXISTS U: LDU_ID, L: Line
(  U.NetOut(L)[To_Area] = Get_Area(Self)
&  U.NetStatus(L) = Connected & LocStatus(L) � Connected)

EXIT
EXISTS U: LDU_ID, L: Line
(  U.NetOut’(L)[To_Area] = Get_Area(Self)
&  U.NetStatus’(L) = Connected & LocStatus’(L) � Connected
&  LocStatus(L) BECOMES Connected
&  Connect(LocOut(L), U.NetOut’(L))
&  FORALL L1:Line (L1 � L � NOCHANGE(LocOut(L1))))

TRANSITION Started_Local_Talk (In_Line: Connection) Ti6
ENTRY

EXISTS L: Line (Plug(LocOut(L), In_Line) & NetStatus(L) = Connected)
EXIT

EXISTS L: Line
(   Plug(LocOut’(L), In_Line’ & NetStatus’(L) = Connected
&  NetStatus(L) BECOMES Talk)

TRANSITION Send_Local_Timeout Ti5
ENTRY

EXISTS L: Line
(   NetStatus(L) = In_Progress & LocStatus(L) = Available
&  Now-End(Receive_Loc_Req(NetOut(L))) � Timeout)

EXIT
EXISTS L: Line
(   NetStatus’(L) = In_Progress
&  Now-End(Receive_Local_Req(NetOut’(L))) � Timeout + Ti5
&  LocStatus(L) BECOMES Disconnected
&  NetStatus(L) BECOMES Available)

TRANSITION Started_Long_Talk Ti7
ENTRY

EXISTS U: LDU_ID, L: Line
(   Connect(U.NetOut(L), LocOut(L))
&  U.NetStatus(L) = Talk
&  LocStatus(L) = Connected)

EXIT
EXISTS U: LDU_ID, L: Line
(   Connect(U.NetOut’(L), LocOut’(L))
&  U.NetStatus’(L) = Talk
&  LocStatus(L) BECOMES Talk)

TRANSITION End_Local (In_Line: Connection) Ti8
ENTRY

EXISTS L: Line (Connect(NetOut(L), In_Line))
EXIT

EXISTS L: Line
(  Connect(NetOut’(L), In_Line’)
&  Disconnect(NetOut(L))
&  Disconnect(LocOut(L))
&  NetStatus(L) BECOMES Available
&  LocStatus(L) BECOMES Available
&  FORALL L1: Line (L1 � L � NOCHANGE(LocOut(L1)) & NOCHANGE(NetOut(L1))))

TRANSITION End_Long Ti9
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ENTRY
EXISTS L: Line
(  ~Disconnect(LocOut(L))
&  LocStatus(L) � Available
&  FORALL U: LDU_ID, L1: Line (~Connect(U.NetOut(L1), LocOut(L))))

EXIT
EXISTS L: Line
(  ~Disconnect(LocOut’(L))
& LocStatus’(L) � Available
&  FORALL U: LDU_ID, L1: Line (~Connect(U.NetOut’(L1), LocOut’(L)))
&  Disconnect(LocOut(L)) & Disconnect(NetOut(L))
&  LocStatus(L) BECOMES Available
&  NetStatus(L) BECOMES Available
&  FORALL L1: Line (L1 � L � NOCHANGE(LocOut(L1)) & NOCHANGE(NetOut(L1))))

END Top_Level
END Long_Distance_Unit

APPENDIX C—THE COMPOSE SECTION

COMPOSITION OF Phone_System, Long_Distance_Network AS Phone_Network

PROCESSES
Phones: array[1 .. Num_Phone] of Phone,
Centrals: array[1 .. Num_Area] of Central_Control
Units: array[1 .. Num_Area] of Long_Distance_Unit

CONSTANT
LD_Unit(Central_Control_ID): LDU_ID

AXIOM
FORALL C1, C2: Central_Control_ID (LD_Unit(C1) = LD_Unit(C2) � C1 = C2)

TRIGGERS
CALL GENERATION FOR Long_Distance_Unit.Receive_Local_Req

FORALL t: Time, P: Phone_ID
(   Change(In_Area(P).LDOut_Status(P),t) & In_Area(P).LDOut_Status(P) = In_Progress
�  LD_Unit(In_Area(P)).Call(Receive_Local_Req(In_Area(P).LDOut_Line(P)), t))

CALL GENERATION FOR Long_Distance_Unit.Local_Established
FORALL t: Time, P: Phone_ID
(  Change(In_Area(P).LDOut_Status(P), t) & In_Area(P).LDOut_Status(P) = Connected
&  Change(In_Area(P).Phone_State(P), t) & In_Area(P).Phone_State(P) = Ringing
�  LD_Unit(In_Area(P)).Call(Local_Established(In_Area(P).LDOut_Line(P)), t))

CALL GENERATION FOR Long_Distance_Unit.Started_Local_Talk
FORALL t: Time, P: Phone_ID
(   Change(In_Area(P).LDOut_Status(P), t) & In_Area(P).LDOut_Status(P) = Talk
&  EXISTS t1: Time
(   FORALL t2 : Time (t2 � t1 & t2 < t � ~past(Change(In_Area(P).LDOut_Status(P), t2), t2))
&  past(In_Area(P).LDOut_Status(P), t1) = Connected & past(In_Area(P).Phone_State(P), t1) = Ringing)
�  LD_Unit(In_Area(P)).Call(Started_Local_Talk(In_Area(P).LDOut_Line(P)), t))

CALL GENERATION FOR Long_Distance_Unit.End_Local
FORALL t: Time, P: Phone_ID
(   Change(In_Area(P).LDOut_Status(P), t) & In_Area(P).LDOut_Status(P) = Available
�  LD_Unit(In_Area(P)).Call(End_Local(In_Area(P).LDOut_Line(P)), t))

CALL GENERATION FOR Central_Control.Receive_LD
FORALL t: Time, C: Central_Control_ID, L: Line
(   Change(LD_Unit(C).LocStatus(L), t) & LD_Unit(C).LocStatus(L) = In_Progress
�  C.Call(Receive_LD(LD_Unit(C).LocOut(L)), t))

CALL GENERATION FOR Central_Control.Start_LD
FORALL t: Time, C: Central_Control_ID, L: Line
( Change(LD_Unit(C).LocStatus(L), t) & past(LD_Unit(C).LocStatus(L), t) = Connected & ~Change(LD_Unit(C).NetOut(L), t)
& (LD_Unit(C).NetStatus(L) = Connected | LD_Unit(C).NetStatus(L) = Available)
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�  C.Call(Start_LD(LD_Unit(C).LocOut(L), LD_Unit(C).LocStatus(L)), t))

CALL GENERATION FOR Central_Control.Terminate_LD_2
FORALL t: Time, L: Line, P: Phone_ID
(   Change(LD_Unit(In_Area(P)).LocOut(L), t) & past(LD_Unit(In_Area(P)).LocStatus(L), t) = Available
&  Change(LD_Unit(In_Area(P)).NetOut(L), t) & past(LD_Unit(In_Area(P)).NetStatus(L), t) = Available
&  (past(In_Area(P).LDOut_Status(P), t) = Talk | past(In_Area(P).LDOut_Status(P), t) = Connected)
�  In_Area(P).Call(Terminate_LD_Call_2(LD_Unit(In_Area(P)).LocOut(L)), t))

END COMPOSITION
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