
Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 1

Automatic Program Verification I:
A Logical Basis and its

Implementation

Igarashi, London, and Luckham

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 2

Verification Condition Generator

• Symbolic execution

• Backwards substitution

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 3

Backwards Substitution
Is: a mechanical method of generating

lemmas to be proved that guarantee the
consistency of a program and its
specifications

Needs: the programs to be verified must be
written in a language that is axiomatically
defined
A set of rules to generate subgoals and
ultimately verification conditions (VCs) to
be proved using the underlying deductive
system(s)

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 4

Verification Condition Generator
(VCG)

• Reformulate the axiomatic definition to
produce a deterministic set of rules

• Rules generate subgoals and verfication
conditions (VCs)

• This is a backwards substitution approach

• VCs correspond to Hoare's lemmas [ILL 75]

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 5

Rules are of the format

To prove:
the goal to be proved

We need to prove:
possibly empty list of subgoals

And to output:
possible empty list of lemmas

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 6

To prove
P{x := e}Q

Need to prove
P → Qe

More generally,

To prove
P{A; x := e}Q

Need to prove
P{A}Q e

x

x

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 7

Assignment Proof Rule (V1)

P{A} Q e

P{A; x := e}Q

x

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 8

Consequence Rules (V2)

P{A}Q, Q → R

P{A; assert Q} R

P → Q

P{}Q

P{A}(Q → R)

P{A; Q-if}R

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 9

The proof rules are just a reformulation of the
axioms and rules of inference to make the
approach deterministic and thus
mechanizable

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 10

Backwards Substitution Proof

A proof of P{S}Q is a sequence of sentences,
the first of which is P{S}Q, and each
sentence is either a lemma to be proved in
the underlying logical system or a simpler
sentence of the form P’{S’}Q’. Each
sentence in the sequence is derived from a
previous line by applying a verification rule.

The output of a backwards substitution proof
is the generated lemmas (VCs)

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 11

PROCEDURE TEST (A, B: INTEGER;
VAR X, Y, Z: INTEGER);

BEGIN

X := A + B;

Y := A - B;

Z := X + Y

END;

ENTRY: true

EXIT: X = A + B & Y = A - B & Z = 2A

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 12

true{x:=a+b; y:=a-b; z:=x+y} x=a+b & y=a-b

& z=2a

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 13

Compound Statement Rule (V6)

P{S1; … ; Sn}R

P{begin S1; … ; Sn end}R

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 14

Iteration Rule (V3)

P{A}R, R & B{S}R, R & ~B → Q

P{A; assert R; while B do S}Q

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 15

1 PROCEDURE FACT (N:INTEGER; VAR Y:INTEGER);
2 VAR X: INTEGER;
3 BEGIN
4 X := 0;
5 Y := 1;
6 ASSERT (Y = X! & X ≤ N);
7 WHILE X < N DO BEGIN
8 X := X + 1;
9 Y := Y * X
10 END
11 END;

ENTRY: N ≥≥≥≥ 0
EXIT: Y = N!

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 16

Conditional Rules (V4)

P{A; B-if; S1}R, P{A; ~B-if; S2}R

P{A; if B then S1 else S2}R

P{A; B-if; S}R, P{A; ~B-if}R

P{A; if B then S}R

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 17

PROCEDURE SAMPLE (X,Y: INTEGER; B:BOOLEAN;
VAR Z: INTEGER);

BEGIN

Z := X * Z;

IF B
THEN Z:= Z + Y
ELSE Z:=Z -Y

END;

ENTRY: TRUE

EXIT: (B & Z = Z’ * X’ + Y’ | ~B & Z = Z’ * X’ - Y’) & B = B’

Backwards Substitution GCMPSC 266 22 JAN 09 Pg. 18

What About Repeat-Until ?

P{A; repeat S assert Q until B}R

