
6. Farber, D.J., and Larson, K,C. The structure of a distributed
computing system--the communication system. Proc. Symp.
Computer-Communications Networks and Traffic, Polytechnic Inst.
of Brooklyn, Brooklyn, N.Y., April 1972, pp. 21-27.
7. Fultz, G.L. Adaptive routing techniques for message switching
computer communication networks. Ph.D. Th., UCLA-ENG-7252,
U. of California, Los Angeles, July 1972.
8. Gerla, M. The design of store- and forward (S/F) networks for
computer communication. Ph.D. Th., UCLA-ENG-7319, U. of
California, Los Angeles, 1973.
9. Harary, F. Graph Theory. Addison-Wesley, Reading, Mass., 1969.
10. Metcalfe, R.M. Packet Communication. Ph.D. Th., Harvard,
Proj. Mac Tech. Rep. No. 114, M.I.T., Cambridge, Mass., Dec. 1973.
II . Metcalfe, R.M., and Boggs, D.R., Ethernet: Distributed packet
switching for local computer networks. Comm. ACM 19, 7 (July
1976), 395-404.
12. McQuillan, J.M. Adaptive routing algorithms for distributed
computer networks. Ph.D. Th., Harvard, BBN Rep. 2831, May 1974;
available as AD781467, N.T.I.S., Springfield, Va.
13. Paoletti, L.M. AUTODIN. In Computer Communication
Networks, R.L. Grimsdale and F.F. Kuo, Eds. (Proc. NATO
Advanced Study Inst. Comptr. Comm. Networks, Sussex, U.K., Sept.
1973), Noordoff Int. Publ., Leyden, 1975.
14. Roberts, L.G., and Wessler, B.D. The ARPA computer network.
In Computer Communication Networks, N. Abramson and F. Kuo,
Eds., Prentice-Hall, Englewood Cliffs, N.J., 1972.

Corrigendum. Programming Languages

David Gries, An Exercise in Proving Parallel Programs
Correct, Comm. ACM 20, 12 (Dec. 1977), 921-930.

Dr. Leslie Lamport detected what appeared to be a
methodological mistake in the proof of the on-the-fly
garbage collector. The assignment atleastgray(m[t].left)
of the Collector (see the algorithm labeled (3.6) on page
925) contains references to the two shared variables
m[z].lefi and m[m[t].leftl.color, and this clearly violates
the restriction (2.10) found on page 923.

The problem is not a methodological error but a
missing footnote. The statement atleastgray(m[t].left) in
(3.6) does have a footnote number 3 attached to it, and
an earlier version of the paper [Springer Lecture Notes
in Computer Science 46, 1976, 57-81] contained the
footnote

This should be written as "t:= m[t].left; atleastgray(t)'" where t is a
local variable. Since the mutator never tests the color of a node and
only grays a node using also atleastgray, the single statement atleast-
gray(m[t].left) is equivalent under parallel operation to this sequence
of two operations.

Dr. Lamport also noted that the informal discussion
of noninterference of assertions (4.5. l) and (4.5.2) in the
first four paragraphs of Section 4.5 could be interpreted
as using circular reasoning, but that a formal proof of
noninterference does indeed work.

My thanks to Dr. Lamport for pointing out these
problems and my apologies for any inconvenience they
have caused the reader.

Programming J.J. Homing
Languages Editor

Abstract Data Types
and Software
Validation
John V. Guttag, Ellis Horowitz, and
David R. Musser
University of Southern California

A data abstraction can be naturally specified using
algebraic axioms. The virtue of these axioms is that
they permit a representation-independent formal
specification of a data type. An example is given which
shows how to employ algebraic axioms at successive
levels of implementation. The major thrust of the paper
is twofold. First, it is shown how the use of algebraic
axiomatizations can simplify the process of proving the
correctness of an implementation of an abstract data
type. Second, semi-automatic tools are described which
can be used both to automate such proofs of
correctness and to derive an immediate implementation
from the axioms. This implementation allows for limited
testing of programs at design time, before a
conventional implementation is accomplished.

Key Words and Phrases: abstract data type,
correctness proof, data type, data structure,
specification, software specification

CR Categories: 4.34, 5.24

1. Introduction

The key problem in the design and validation of
large software systems is reducing the amount of corn-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This research was supported in part by the National Science
Foundation under Grant MCS76-06089, by the Defense Research
Projects Agency under Contract DAHC 15 72 C 0308, and by the Joint
Services Electronics Program Monitored by the Air Force Office of
Scientific Research under Contract F44 620-76-C-0061.

Authors' addresses: J.V. Guttag and E. Horowitz, Computer Sci-
ence Department, University of Southern California, Los Angeles, CA
90007; D.R. Musser, USC Information Sciences Institute, 4676 Admi-
ralty Way, Marina del Re),, CA 90291.
© 1978 ACM 0001-0782/78/1200~1048 $00.75

1048 Communications December 1978
of Volume 21
the ACM Number 12

plexity or detail that must be considered at any one time;
two common and effective solution methods are decom-
position and abstraction. One decomposes a task by
factoring it into two or more separable subtasks. Unfor-
tunately, for many problems the separable subtasks are
still too complex to be mastered in toto. The complexity
of this sort of problem can be reduced via abstraction.
By providing a mechanism for separating those attributes
of an object or event that are relevant in a given context
from those that are not, abstraction serves to reduce the
amount of detail that must be comprehended at any one
time.

If one is to make full use of abstraction, it is critical
to have available a good notation for expressing abstrac-
tions. It is obvious that a reasonable language is a
prerequisite to communicating something as intangible
as an abstraction; it is less obvious, but equally true, that
a reasonable language is a prerequisite to the creation of
such abstractions. Even if a language need not be avail-
able for the initial formulation of an abstraction (an
argument we leave to psychologists and linguists), it is
certainly necessary if the abstraction is to be retained
and developed over any significant period of time.

A recent trend in programming is the development
of the abstract data type or data abstraction. In data
abstraction, a number of functional abstractions are
grouped together. The clustered operations are related
by the fact that they, and only they, operate on a
particular class or type of object. Some typical data
abstractions are a symbol table, a priority queue, and a
set.

In this paper we shall use a notation, which we call
algebraic axioms, for describing data abstractions. In
order to show how these specifications can be used
during the design process, we exhibit, in Sections 2 and
3, their use in the creation of a symbol table which allows
for block structure.

However, the point we wish to stress in this paper is
not the design of data abstractions, but the use of alge-
braic axioms for proofs of correctness and for program
testing. In Section 4 we show how this axiomatic tech-
nique can be employed to prove the correctness of an
implementation of a data abstraction. The strength of
the technique is that it factors the proving process into
distinct, manageable stages; further, it simplifies the
proof at each stage. In Section 5 we discuss an automated
system which processes algebraic axiomatizations of data
abstractions in such a way that correctness proofs of
implementations can be carried out semi-automatically;
in addition, programs may be tested before an imple-
mentation in a conventional programming language is
achieved. This coupling of testing and correctness is a
valuable by-product of the algebraic axiom approach
and is a strong argument for its worth.

It is important to note that the techniques developed
in this paper are essentially programming language in-
dependent. While languages with the compile time facil-
ities of Simula 67 [2] (with the extensions of [18]), CLU

[14], or Alphard [24] will make these techniques easier
to apply, they are by no means essential. I f one exercises
enough self- (or project-wide) discipline to ensure the
validity of what we have called data type induction (see
Section 4.3), the techniques described should prove use-
ful in the development of programs in a wide class of
languages.

Related work has been done by a number of other
people. The relation of our work to that of Zilles and of
Goguen, Thatcher, Wagner, and Wright will be discussed
in Sections 2 and 4.5. Spitzen and Wegbreit, [20] and
[23], have taken a similar approach to proofs about
abstract data types, but most of their specifications were
in a form more akin to Hoare's system, than to the
conditional equations which we employ. Our proof techo
niques are related to those of Boyer and Moore [1] (see
also Section 4.1) and Suzuki [22], who have made exten-
sive use of axioms and lemmas in the form of rewrite
rules in automated proof systems, but have not stressed
the organization of rules into specifications of data types.

2. Def'mitions, Concepts, and Examples

Rather than present formal definitions of our data
abstraction mechanism and related concepts, we give
informal and (hopefully) intuitively appealing defini-
tions and illustrate the main ideas with a number of
examples. We shall view a data type T as a class of values
and a collection of operations on the values. If the
properties of the operations are specified only by axioms,
we call T an abstract data type or a data abstraction. An
implementation of a data abstraction is an assignment of
meaning to the values and operations in terms of the
values and operations of another data type or set of data
types. A correct implementation is an implementation
which satisfies the axioms. If this implementation is to
be useful, it must also be possible to correctly implement
the underlying types used. The danger here is that if one
writes an inconsistent specification of one of these un-
derlying types, it will not be implementable, yet techni-
cally speaking we still have a correct implementation at
the higher level.

An algebraic axiom specification of a data type T
consists of a syntactic and a semantic specification. The
syntactic specification defines the names, domains, and
ranges of the operations of T. The semantic specification
contains a set of axioms in the form of equations which
relate the operations of T to each other. The term
"algebraic" is appropriate because the values and oper-
ations can be regarded as an abstract algebra. Goguen
[3] and Zilles [25] have strongly emphasized the algebraic
approach, developing the theory of abstract data types
as an application of many-sorted algebras. Implementa-
tions are treated under this approach as other algebras,
and the problem of showing the correctness of an imple-
mentation is treated as one of showing the existence of
a homomorphic mapping from one algebra to another.

1049 Communications December 1978
of Volume 21
the ACM Number 12

We shall in this paper deemphasize the explicit use of
algebraic terminology, preferring instead the terminol-
ogy of programming. In spite of this difference in ter-
minology, there are many similarities between our ap-
proach and the more purely algebraic approach. A brief
discussion of a technical difference between the two
approaches is contained in Section 4.5.

The choice of a language in which to express the
specifications is important. We must be able to express
the relationships among the operations precisely and
clearly. In addition, the specification language itself must
be axiomatically defined to facilitate correctness proofs.
We begin by assuming a base language with five primi-
tives: functional composition, an equahty relation (=),
two distinct constants (TRUE and FALSE), and an
unbounded supply of free variables. From these primi-
tives, one can construct an arbitrarily complex specifi-
cation language, for once an operation has been defined
in terms of the primitives, it may be added to the
specification language. An IF-THEN-ELSE operation,
for example, may be det'med by the axioms:

IF -THEN-ELSE(TRUE, q, r) = q,
IF-THEN-ELSE(FALSE, q, r) = r.

We shah assume that the expression IF-THEN-ELSE(b,
q, r), which we shall write as IF b THEN q ELSE r, is
part of the specification language. We shall also assume
the availability of infix Boolean operators such as ^, v,
D, =, and the prefLx operator --1. Finally, we allow for
the conventional operations on integers: PLUS, MINUS,
TIMES, DIV, MOD, and use the conventional infix
operators when convenient.

2.1 Stack Example
One of the simplest examples of an abstract data type

is the unbounded Stack. In the example of Figure 1 we
have defined a data type Stack with six operations via a
syntactic specification of these operations, and a seman-
tic specification which is a set of seven equations relating
the operations. Certain notational conventions exhibited
by this example will be used throughout. Operation
names are written using all capital letters. The name of
a data type begins with a capital. In the equations the
lowercase symbols are free variables ranging over the
domains indicated, e.g. stk ranges over the Stack type.
The symbol elementtype is a variable ranging over the
set of types and elm ranges over elementtype. This says
that we can have a Stack of any type of elements (but all
must be of the same type); what we have defined is thus
not a single abstract type but rather a type schema. The
binding of elementtype to a particular type, e.g.
Stack[Integer], reduces the schema to a specification of
a single abstract type. Using the syntactic specification
of the operations, one can check that each of the expres-
sions in the axiomatic equations is well-formed in the
sense that each operator is applied to the correct number
of arguments and each argument is of the correct type.

The equations are statements of fact (axioms) relating

1050

Fig. 1. Stack data type.

type Stack[elementtype:Type]

syntax
N E W S T A C K ~ Stack,
PUSH(Stack, elementtype) ~ Stack,
POP(Stack) ~ Stack,
TOP(Stack) ~ elementtype O {UNDEFINED},
ISNEW(Stack) ~ Boolean,
REPLACE(Stack, elementtype) --~ Stack.

semantics
declare stk: Stack, elm: elementtype;

POP(NEWSTACK) = N E W S T A C K ,
POP(PUSH(stk, elm)) = stk,
T O P (N E W S T A C K) = U N D E F I N E D ,
TOP(PUSH(stk, elm)) = elm,
I S N E W (N E W S T A C K) = TRUE,
ISNEW(PUSH(stk, elm)) = FALSE,
REPLACE(stk, elm) = PUSH(POP(stk), elm).

the values which are created by the operations, e.g. the
equation

P O P (N E W S T A C K) = N E W S T A C K

states that an attempt to POP the empty stack will always
yield NEWSTACK. (The decision to return NEWS-
TACK, rather than, say, UNDEFINED, is an arbitrary
one, and may not coincide with some readers' precon-
ceptions about the behavior of stacks.)

TOP(PUSH(stk, elm)) = elm

means that for any Stack value stk and any elementtype
value elm, the result of PUSH(stk, elm) is a Stack value,
stk 1, such that TOP(stk 1) yields the value elm. In viewing
the equations in this way, we are not required to give
any particular interpretation to the values; the "useful"
properties of the values can be derived solely from the
relations determined by the axioms. Thus in designing
computer implementations of the operations, we are free
to represent the values in many different ways.

The (unbounded) Stack data type can be imple-
mented in terms of an (Array, Integer) pair. Each Stack
value is represented by a structure with two components:
an (unbounded) array, whose components are of type
elementtype, and an integer indicating the position in
the array of the top element of the stack. The specifica-
tions for an Array data type are given in Figure 2.

ASSIGN(arr, t, elm) means the array identical to arr
except possibly in the t-th position where the value is elm
[16]. ACCESS(arr, t) returns the value in position t of
the array arr. Note the assumption (in the Boolean
expression dval = dvall) that there exists an operation,
=, from domaintype × domaintype ~ Boolean. It is a
requirement that this operation exist for the actual value
of domaintype (see Alphard's requires clause [24]).

The implementation of the Stack data type with
(Array, Integer) pairs is given in Figure 3. We have
divided the implementation into a representation part
and a programs part. In this paper the language used to
express programs is the same as the language used to

Communicat ions December 1978
of Volume 21
the A C M Number 12

Fig. 2. Array data type.

type Array[domaimype :Type, rangetype:Type]

syntax
N E W A R R A Y -+ Array,
ASSIGN(Array, domaintype, rangetype) --~ Array,
ACCESS(Array, domaintype) -+ rangetype U (UNDEFINED}

semantics
declare art :Array, dval, dvall :domaimype, rval:rangetype;
ACCESS(NEWARRAY, dval) = UNDEFINED,
ACCESS(ASSIGN(arr , dval, rval), dval l)

= IF dval = dvall THEN rval ELSE ACCESS(arr, dvall).

Fig. 3. An implementation of the Stack data type with (Array, Integer)
pairs.

representation STAK(Array[Integer, elementtype], Integer)
Stack[elementtype],

programs

declare arr: Array, t: Integer, elm: elementtype;
NEWSTACK = STAK(NEWARRAY, 0),
PUSH(STAK(arr , t), elm)

= STAK(ASSIGN(arr , t + 1, elm), t + 1),
POP(STAK(arr, t)) = IF t = 0 THEN STAK(arr, 0)

ELSE STAK(arr, t - 1),
TOP(STAK(arr, t)) = ACCESS(arr, t),
ISNEW(STAK(arr , t)) = (t = 0),
REPLACE(STAK(arr , t), elm)

= IF t = 0 THEN STAK(ASSIGN(arr , 1, elm), 1)
ELSE STAK(ASSIGN(arr , t, elm), t).

express axioms. Though we recognize that a richer lan-
guage is usually more desirable, we have chosen to
restrict ourselves here for several reasons. Most impor-
tantly, the proof procedure described in Section 4 derives
much of its simplicity from the use of this restricted set
of constructs. Since all conventional programming con-
trol constructs can be automatically translated into our
basic set, see [15], there is no limitation in principle. We
are able to avoid issues of language design and concen-
trate on how the basic command set can be axiomatized,
used for correctness proofs, and used to synthesize im-
plementations. In [5] and [12] the basic language for
axiomatizing data types has been applied to an extensive
set of examples, with explanations, so the formalism can
be further studied there.

We intend that all of the operations be purely "func-
tional" or "applicative," i.e., have no side effects. This
can imply an unrealistic degree of inefficiency for imple-
mentations. In the Stack implementation of Figure 3, for
example, the call of PUSH must involve copying the
Array component as well as the Integer component of
the Stack representation. The basic framework can be
extended to permit specification of operations with side
effects so that the obvious efficient implementations are
possible. However, since the exposition of our proof
techniques is facilitated by this restriction, we will con-
tinue in this paper to assume no side effects, and refer
the reader to [6] for a discussion of the extensions re-
quired to remove this restriction.

1051

The correctness of an implementation of a data type
can be proved by showing that each axiom of the seman-
tic specification is satisfied by the programs. As a partic-
ularly simple example of such a proof, consider the
fourth Stack axiom. Assuming stk = STAK(arr, t),

TOP(PUSH(stk, elm)) = TOP(PUSH(STAK(arr , t), elm))
= TOP(STAK(ASSIGN(arr , t + 1, elm),

t + l))
= ACCESS(ASSIGN(arr , t + 1, elm),

t + 1)
= elm.

The other Stack axioms can be shown to be satisfied in
a similar manner, although not quite so straightfor-
wardly. The complications that arise will be dealt with
in Section 4, which discusses in detail verification of
implementations.

2.2 Programs as Ax ioms and Ax ioms as Programs
In the discussion of the implementation for the Stack

data type, we described STAK(arr, t) as a pair whose
first component is an Array and second component is an
Integer. We viewed equations such as

TOP(STAK(arr, t)) = ACCESS(arr, t)

as definitions of programs for operating on the STAK
pairs. Suppose, however, that we now view STAK
as an operation whose syntactic specification is
STAK(Array[Integer, elementtype], Integer)
Stack[elementtype]. Then the above equation for TOP
and the other program equations can be viewed as
axioms which comprise a semantic specification for
STAK. Looking at it as an axiom, we would read the
above equation as "if stk is the result of applying STAK
to an Array arr and an Integer t, the value returned by
TOP(stk) is ACCESS(arr, t)."

As an axiomatic specification of the Stack data type,
the implementation of Figure 3 is inferior to the specifi-
cation of Figure 1 in that it is not self-contained (it
requires knowledge of properties of Arrays and Integers).
We have called attention to the view of programs as
axioms mainly because it suggests a duality between
programs and axioms whose other half--axioms aspro-
grams--can be fruitfully exploited. We discuss this dual-
ity both here and in Section 5.2.

We can, in fact, view the axioms of Figure 1 as
programs by regarding NEWSTACK and PUSH(stk,
elm) as trees rather than operations. All structures built
with NEWSTACK and PUSH can be pictured as trees.
For example,

PUSH(PUSH(NEWSTACK, 3), 7)

can be diagrammed as

~ 7

INEWSTACK] 3

Communications December 1978
of Volume 21
the ACM Number 12

The Stack axioms can be viewed as defining operations
which produce and access such tree structures:

Fig. 4. The Symboltable data type.

type Symboltable

NEWSTACK = I NEWSTACK]

PUSH (sfk, elm) =
/ N

slk elm

stk elm

etc.

The two equations for POP together define POP as an
operation which first checks which kind of node it is
given and then proceeds accordingly. This is an example
of a direct implementation.

Direct implementations are useful from a number of
standpoints. In the first place, the concept of a direct
implementation can serve as an aid to constructing spec-
ifications, i.e., one can try to write the semantic axioms
so that they can serve as programs operating on tree
structures. If this can be done, and one has a compiler
which produces running implementations of such pro-
grams, then one can experiment with the operations,
testing to a limited extent whether they have the prop-
erties intended. More importantly, one can also test high-
level algorithms which are programmed in terms of the
data type, before fLxing upon a particular implementa-
tion of the data type. Thus a true top-down implemen-
tation methodology can be achieved.

2.3 A Richer Example
The Stack data type is too simple, in a number of

respects, to illustrate properly the properties and uses of
algebraic axiom specifications. A richer example is pro-
vided by the symbol table data type. In this example we
deal with a common but nontrivial data structuring
problem: the design of a symbol table for a compiler for
a block-structured language. We wish to specify and
implement a set of operations for maintaining the symbol
table during compilation of a program. An informal
specification of the operations might be as follows:

INIT: allocate and initialize the symbol table for the
outermost scope.

ENTERBLOCK: prepare a new local naming scope.
ADDID: add an identifier and its attributes to the symbol

table.
LEAVEBLOCK: discard entries from the most current scope and

reestablish the next outer scope. If already in the
outermost scope, do nothing.

ISINBLOCK: has a specified identifier already been declared in
this scope? (Used to check for duplicate declara-
tions.)

RETRIEVE: return the attributes associated with the most local
definition of a specified identifier.

A formal specification is given in Figure 4. As an aid
to understanding these axioms, it is useful to consider a

syntax

INIT ~ Symboltable,
ENTERBLOCK(Symboltable) ~ Symboltable,
ADDID(Symboltable, Identifier, Attributelist)

Symboltable,
LEAVEBLOCK(Symboltable) ~ Symboltable,
ISINBLOCK(Symboltable, Ident i f ier)~ Boolean,
RETRIEVE(Symboltable, Identifier)

Attributelist U {UNDEFINED}.

s e m a n t i c s

declare symtab: Symboltable, id, id I : Identifier, attrlist: Attributelist;
1) LEAVEBLOCK(INIT) = INIT,
2) LEAVEBLOCK(ENTERBLOCK(symtab))

= symtab,
3) LEAVEBLOCK(ADDID(symtab, id, attrlist))

= LEAVEBLOCK(symtab),
4) ISINBLOCK(INIT, id) = FALSE,
5) ISINBLOCK(ENTERBLOCK(symtab), id)

= FALSE,
6) ISINBLOCK(ADDID(symtab, id, attrlist), idl)

= IF id = idl
THEN TRUE
ELSE ISINBLOCK(symtab, idl),

7) RETRIEVE(INIT, id) = UNDEFINED,
8) RETRIEVE(ENTERBLOCK(symtab), id)

= RETRIEVE(symtab, id),
9) RETRIEVE(ADDID(symtab, id, attrlist), idl)

= IF id = idl
THEN attrlist
ELSE RETRIEVE(symtab, idl).

direct implementation. We let the representation be trees
of INIT, ENTERBLOCK, and ADDID nodes and use
the set of semantic axioms as programs. Then, for ex-
ample, if this direct implementation is used by a compiler
in processing the following program segment,

begin
real X, Y;

begin
integer Y;

end
end

the symbol table

SYM = ADDID(ENTERBLOCK(ADDID(ADDID(INIT, X, Real),
Y, Real)), Y, Integer)

will be created within the innermost block. Diagrammed
as a tree structure, this is shown below

] ENTERBLOCK I Y Integer

eol

1 0 5 2 Communications December 1978
of Volume 2 !
t h e ACM Number 12

Suppose now that we apply RETRIEVE to SYM and X.
Simulating the RETRIEVE operation using the direct
implementation, we have

RETRIEVE (SYM,X)

: [by o×iorn 9] ;, R E T R I E V E (~ ,X)

ieol Reol

= [by oxiom 9] : ' R E T R ~ = [by oxlorn 9] =" Real

ilNITI x Reol

= [.y o,iom 8] :, R E T R y)

~ e o l Real

If tree structure operations are implemented with
reasonable efficiency, then this direct implementation
could be used in a compiler to test the Symboltable
specification more extensively and to test other compo-
nents of the compiler. However, because this implemen-
tation requires potentially long searches for the RE-
TRIEVE, ISINBLOCK, and LEAVEBLOCK opera-
tions, it is not very efficient. In the next section we turn
to the problem of designing a more efficient implemen-
tation.

3. Algebraic Axioms as an Aid to Top-Down
Development of Implementations

The key to successful top-down design is the ability
to construct, at each level of refinement, abstractions
which suppress all irrelevant detail while clearly exposing
the relevant concepts and structure. By deferring detail,
one reduces the number of decisions that must be made
at any one time. Verifying the correctness of each refine-
ment as it is developed is crucial. Therefore, the specifi-
cation of a refinement, though possibly quite abstract,
must be complete and unambiguous. All symbols that
appear in it must be well-defined.

Though systems have occasionally been designed in
a top-down fashion, they have for the most part been
tested from the bottom up. This was necessary because
the upper levels could not be easily tested in the absence
of an implementation of lower levels. By eliminating (via
direct implementations) the necessity of supplying such
implementations, one eliminates the need to delay testing
while awaiting the implementation of other modules.
More importantly, if one executes with specifications
rather than implementations of abstract operations, the
possible sources of a known error are far more limited.

The ability to use specifications for testing is closely
related to the policy of restricted information flow [19].
If a programmer is supplied with algebraic definitions of
the abstract operations available to him and is forced to
write and test his module with only that information, he
is denied the opportunity to rely intentionally or acci-
dentally upon information that should not be relied
upon. This serves not only to localize the effect of
implementation errors, but also to increase the ease with

1053

which one implementation may be replaced by another.
This should, in general, limit the danger of choosing a
poor representation and becoming inextricably locked
into it.

In this section we carry out a design of a hierarchi-
cally structured implementation of the Symboltable data
type, using algebraic specifications of the data types
employed at each level of the implementation. In an
earlier presentation of this design [7] the lowest level of
the implementation was expressed as a set of PL/l-like
programs. We differ here in that we continue to use the
restricted set of language features described in Section 2.

Let us now consider how we might proceed to design
a reasonably efficient implementation of the Symbolta-
ble data type. First, note that if we ignore the complica-
tion introduced by block structure, a symbol table can
be viewed abstractly as providing a mapping from iden-
tifiers to attribute lists. One way to handle block struc-
ture, especially suitable in a one-pass compiler, is to have
a stack of mappings, each mapping from identifiers to
attribute lists, with the top mapping on the stack corre-
sponding to the current innermost block being processed.
This is the method we have chosen in the implementation
given in Figure 5.

This implementation uses the operations of the Stack
data type schema of Figure 1 and the Mapping data type
schema of Figure 6. Note that we have bound the
parameters of the Stack and Mapping types. The Map-
ping data type is the same as the Array data type of
Figure 2, except for the addition of an ISDEFINED
operation.

Before continuing to refine these operations, i.e. be-
fore supplying implementations for types Stack and
Mapping, we should consider the problem of ascertain-
ing whether or not the above implementation of the
Symboltable data type is correct. This can be approached
formally by using the proof techniques to be described
in Section 4, or less formally by using testing techniques
based on direct implementations of types Stack and
Mapping. Had we, for example, tested portions of the
compiler by using a direct implementation of type Sym-
boltable (Figure 4), we might now run the same tests
using the current implementation of type Symboltable
and direct implementations of types Stack and Mapping.
We shall not discuss such testing here, but in Section 4
we shall carry out parts of the formal proof of correctness.

Earlier we noted that the development process could
be halted when one arrived at a program all of whose
operations were either primitive or efficiently directly
implementable. We have not yet reached that point.
While the use of the Stack yields a significant improve-
ment in the time required for the LEAVEBLOCK op-
eration (over the time required by the direct implemen-
tation of the Symboltable type), the time required for the
RETRIEVE operation has not been improved at all. A
solution to this problem, in the form of a hash-table
implementation of the Mapping data type, is given in the
Appendix.

Communications December 1978
of Volume 21
the ACM Number 12

Fig. 5. An implementation of the Symboltable data type with a stack
of mappings.

representation

SYMT(Stack[Mapping[Identifier, Attributelist]]) ~ Symboltable.

programs

declare stk: Stack, id: Identifier, attrlist: Attributelist;
INIT = SYMT(PUSH(NEWSTACK, NEWMAP)),
ENTERBLOCK(SYMT(stk)) = SYMT(PUSH(stk, NEWMAP)),
ADDID(SYMT(stk), id, attdist)

= SYMT(REPLACE(stk, DEFMAP(TOP(stk), id, attrlist))),
LEAVEBLOCK(SYMT(stk))

= IF ISNEW(POP(stk))
THEN SYMT(REPLACE(stk, NEWMAP))
ELSE SYMT(POP(stk)),

ISINBLOCK(SYMT(stk), id) = ISDEFINED(TOP(stk), id),
RETRIEVE(SYMT(stk), id)

= IF ISNEW(stk)
THEN UNDEFINED
ELSE IF ISDEFINED(TOP(stk), id)

THEN EVMAP(TOP(stk), id)
ELSE RETRIEVE(SYMT(POP(stk)), id).

Fig. 6. Mapping data type.

type Mapping[domaintype: Type, rangetype: Type]

syntax

NEWMAP ~ Mapping,
DEFMAP(Mapping, domaintype, rangetype) ---, Mapping,
EVMAP(Mapping, domaintype) ---,

rangetype O {UNDEFINED},
ISDEFINED(Mapping, domaintype) ---, Boolean.

semantics

declare map: Mapping, dval, dval 1 : domaintype,
rval: rangetype;

EVMAP(NEWMAP, dval) = UNDEFINED,
EVMAP(DEFMAP(map, dval, rval), dvall)

= IF dval = dvall THEN rval
ELSE EVMAP(map, dvall),

ISDEFINED(NEWMAP, dvall) = FALSE,
ISDEFINED(DEFMAP(map, dval, rval), dvall)

= IF dval = dvall THEN TRUE
ELSE ISDEFINED(map, dvall).

4. Proving Correctness

In this section we turn to the problem of proving
correctness of implementations of data types. We shall
continue to center the discussion upon the example of
the Symboltable data type, showing parts of the proof of
correctness of the example implementation given in Sec-
tion 3.

One of the most important aspects of the proof
techniques used to prove correctness of algebraically
specified data types, is that the proofs are factored into
levels corresponding to the implementation levels. To
prove the correctness of a data type implemented in
terms of other data types, we need to rely only on the
axiomatic specifications of the other data types, not on
their implementations. For example, as we will show in

Section 4.2, to verify the top level of the implementation
of the Symboltable data type, we use the semantic axioms
for the Stack and Mapping data types and ignore their
implementations. In fact, we could (and, in general,
would) have proceeded with the proof of the top level
before implementing the Stack or Mapping data types.

Another highly significant aspect of the use of axioms
for other data types in the proof of an implementation,
is the computational nature of the proof steps: the axioms
are used as rewrite rules and proofs proceed via a series
of reductions. Therefore, to a large extent, the proof
process can be automated. In Section 5 we shall discuss
some of the details of an interactive system we are
developing to verify implementations of data types.

4.1 Formal Deduction Using The Boolean Data Type
Although we will not be completely formal in the

example proofs in the following sections, it is useful to
discuss at this point the basis we have chosen for auto-
mating such proofs, since it fits well with the overall
approach of using algebraically specified data types. In
fact, many of the formal deductions will be based on the
algebraic specification of the Boolean data type given in
Figure 7.

In this specification, each of the usual logical opera-
tors is related by an axiom to the IF-THEN-ELSE
operator which is axiomatized by relating it to TRUE
and FALSE in the first two axioms. The use of ^, v, etc.
in infix rather than prefLx form is purely for convenience.
Although the above specification defines IF-THEN-
ELSE only for Boolean operands, we assume that every
data type T 1 can use IF-THEN-ELSE with the syntactic
specification

(IF Boolean THEN T1 ELSE TI) ---, T1

and the same axioms as the first two in the above
specification.

We shall make frequent use of the following rewrite
rules for IF-THEN-ELSE, which are theorems provable
from the Boolean axioms:

1. [Repeated result rule]
(IF p THEN q ELSE q) = q

2. [Redundant IF rule]
(IF p THEN TRUE ELSE FALSE) = p

3. [IF-distribution rule]
(IF(IF p THEN q ELSE r) THEN a ELSE b)

= IF p THEN (IF q THEN a ELSE b)
ELSE (IF r THEN a ELSE b)

4. [Logical substitution rules]
(IF p THEN qIP] ELSE r)

= IF p THEN q[TRUEfor p] ELSE r)
(IF p THEN q ELSE rip])

= (IF p THEN q ELSE r[FALSEfor p]).

In the left-hand side of a rule, "q[p]" means q must be
an expression in which p occurs as a subexpression
(possibly p = q). In the right-hand side, "q[TRUE for
p]" is the result of substituting TRUE for all occurrences
of p in q. We require that p occur as a subexpression of
q to limit applicability of the rule to those places where

1054 Communications December 1978
of Volume 21
the ACM Number 12

Fig. 7. Boolean data type.

type Boolean

syntax

TRUE --* Boolean,
FALSE --~ Boolean,
(IF Boolean THEN Boolean ELSE Boolean) -* Boolean,
(Boolean ^ Boolean) --* Boolean,
(Boolean v Boolean) --, Boolean,
~Boolean -* Boolean,
(Boolean D Boolean) --~ Boolean,
(Boolean -= Boolean) --, Boolean.

semantics

declare p, q, r:Boolean;
(IF TRUE THEN q ELSE r) = q,
(IF FALSE THEN q ELSE r) = r,
(p ^ q) = IF p THEN q ELSE FALSE,
(p v q) = IF p THEN TRUE ELSE q,
~p = IF p THEN FALSE ELSE TRUE,
(p D q) -- IF p THEN q ELSE TRUE,
(p --- q) = IF p THEN q ELSE -~q,

it will effect a change. Rules 1-4 are also theorems for
IF-THEN-ELSE in other data types.

As noted in [16] and [1], the Boolean axioms and
rules 1-4 combine to yield a system for simplifying
expressions of the propositional calculus. It is easily
shown that the Boolean axioms and rules 1-4 are com-
plete with respect to the propositional calculus in that
any valid expression in propositional calculus (i.e. prov-
able by truth table) is reducible to TRUE by use of these
rewrite rules. These rules form the basis for an automatic
simplifier for logical expressions which is described in
Section 5.

It is, of course, necessary to go beyond propositional
calculus and include deductive rules for equality and
other operators. We will not go into the details of the
formal rules here except to mention the following im-
portant rule:

5.]Case analysis rule]
f(al (IF p THEN x ELSE y) a,)

= IF p THEN f(al x an)
ELSE f(al y an)

when f # IF-THEN-ELSE.

This is a "second-order" rewrite rule and the rule applies
to IF-THEN-ELSE expressions in any operand position.
The case in which f is IF-THEN-ELSE is already cov-
ered in part by the IF-distribution rule. Note that if f
were permitted to be IF-THEN-ELSE, then the expres-
sion IF al THEN (IF p THEN x ELSE y) ELSE a3 could
be transformed to IF p THEN (IF al THEN x ELSE a3)
ELSE (IF al THEN y ELSE aa) and the rule would
apply again, leading to an infinite sequence of applica-
tions. An important application of this case analysis rule
occurs when f is "--," e.g.

((IF p THEN x ELSE y) = z) = = [by case analysis rule]
(IF p THEN (x = z) ELSE (y = z)).

4.2 Verif ication of One of the Symboltable A x i o m s
T h e b a s i c p r o o f t e c h n i q u e fo r v e r i f y i n g a n i m p l e -

m e n t a t i o n o f a d a t a t y p e is to s h o w t h a t e a c h o f t h e

a x i o m a t i c s p e c i f i c a t i o n s fo r t h e d a t a t y p e is s a t i s f i ed

w h e n t h e p r o g r a m s fo r t h e o p e r a t i o n s o f t h e d a t a t y p e

a re s u b s t i t u t e d i n t o t h e a x i o m s . A s o u r f i rs t e x a m p l e ,

c o n s i d e r t h e n i n t h a x i o m fo r t h e S y m b o l t a b l e d a t a type :

RETRIEVE(ADDID(symtab, id, attrlist), idl)
= IF id = idl THEN attrlist

ELSE RETRIEVE(symtab, idl). (1)

To start, we assume there exists a stack, stk, such that
symtab = SYMT(stk). (We will show in Section 4.3 how
to verify this assumption.) Substituting, we obtain the
verification condition

RETRIEVE(ADDID(SYMT(stk), id, attrlist), idl)
= IF id = idl THEN attrlist

ELSE RETRIEVE(SYMT(stk), idl). (2)

The goal now is to show that this equation is true using
the programs for RETRIEVE and ADDID (Figure 5)
and the axioms for the Stack and Mapping data types
(Figures 1 and 6) as rewrite rules. We must also use the
axioms and some theorems for the Boolean data type, as
discussed in Section 4.1.

Working first on the left-hand side of (2), we make
the following reductions:

LHS = = [by ADDID program]
RETRIEVE(SYMT(stkl), idl)

where stkl = REPLACE(stk, DEFMAP(TOP(stk), id, attrlist))

= = [by RETRIEVE program]
IF ISNEW(stkl)

THEN UNDEFINED
ELSE IF ISDEFINED(TOP(stkl), idl)

THEN EVMAP(TOP(stkl), id 1)
ELSE RETRIEVE(SYMT(POP(stkl)), idl)

= = [by REPLACE, ISNEW, POP and TOP axioms (and definition of
stkl)]

IF ISDEFINED(DEFMAP(TOP(stk), id, attrlist), idl)
THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl)
ELSE RETRIEVE(SYMT(POP(stk)), idl)

= = [by ISDEFINED axiom]
IF (IF id = idl

THEN TRUE ELSE ISDEFINED(TOP(stk), idl))
THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl)
ELSE RETRIEVE(SYMT(POP(stk)), idl)

= = [by IF-distribution Rule]
IF id = idl

THEN IF TRUE
THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl)
ELSE RETRIEVE(SYMT(POP(stk)), idl)

ELSE IF ISDEFINED(TOP(stk), idl)
THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl)
ELSE RETRIEVE(SYMT(POP(stk)), idl)

= = [by IF axiom]
IF id = idl

THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl)
ELSE IF ISDEFINED(TOP(stk), idl)

THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl)
ELSE RETRIEVE(SYMT(POP(stk)), idl)

1055 Communications December 1978
of Volume 21
the ACM Number 12

= = [by EVMAP axiom]
IF id = id 1

THEN (IF id = idl THEN attrlist
ELSE EVMAP(TOP(stk), idl))

ELSE IF ISDEFINED(TOP(stk), idl)
THEN (IF id = idl THEN attrlist

ELSE EVMAP(TOP(stk), idl))
ELSE RETRIEVE(SYMT(POP(stk)), idl)

= = [by Logical substitution rule]
IF id = id 1

THEN (IF TRUE THEN attrlist
ELSE EVMAP(TOP(stk), idl))

ELSE IF ISDEFINED(TOP(stk), idl)
THEN (IF FALSE THEN attrlist

ELSE EVMAP(TOP(stk), idl))
ELSE RETRIEVE(SYMT(POP(stk)), icll)

= = [by IF axioms]
IF id = idl

THEN attrlist
ELSE IF ISDEFINED(TOP(stk), idl)

THEN EVMAP(TOP(stk), idl)
ELSE RETRIEVE(SYMT(POP(stk)), idl)

Having already substituted once for RETRIEVE, we do
not substitute again for the recursive call. We need now
only show that the right-hand side of (2) reduces to the
same expression. We begin by substituting in the imple-
mentation of RETRIEVE.

= = [by RETRIEVE program]
IF id = idl THEN attrlist

ELSE IF ISNEW(stk)
THEN UNDEFINED
ELSE IF ISDEFINED(TOP(stk), idl)

THEN EVMAP(TOP(stk), idl)
ELSE RETRIEVE(SYMT(POP(stk), idl).

At this point we observe that no further reductions are
possible, yet we do not have the expression to which the
left-hand side was reduced. To reduce this expression to
the desired form, we need to prove the lemma:
ISNEW(stk) --- FALSE. How such a lemma is proved is
discussed in Section 4.3. At this juncture, let us merely
assume the lemma and use it immediately to reduce the
above expression to the expression derived for the left-
hand side. Equation (2) has thus been shown to be true,
and axiom (1) verified for the implementation.

We have shown this proof in detail to illustrate its
largely straightforward nature. Up to the use of the
lemma ISNEW(stk) = FALSE, each step was merely the
application of a rewrite rule. The rules could have been
applied in a different order, but this would not have
altered the final result since, if the axioms are complete
as rewrite rules, all possible reduction sequences will
terminate with the same result. It should be noted that
to ensure rewrite rule completeness, we restrict the form
that the axioms may take [17]. We must also take care in
the unfolding of recursive implementations. This is not
done automatically, but only under user control.

Verification of the axioms in the manner of the above
proof establishes only partial correctness of the imple-
mentation, i.e. that if the programs terminate they give
results satisfying the axioms. Proof of termination must

1056

be done separately. However, implementations of data
types are often simple enough that termination is ob-
vious, and we shall not deal with the issue of formal
proofs of termination in this paper.

4.3 Data Type Induction
In the proof of axiom (2) in the previous section, we

made use of the unproved lemma:

ISNEW(stk) -- FALSE. (3)

To prove (3), we recall that stk is not just an arbitrarily
chosen stack, but one assumed to be generated as a
representation of a symbol table. If we examine the
syntactic specification of the Symboltable data type, we
see that the only operations which produce symbol tables
as their output are INIT, ENTERBLOCK, ADDID, and
LEAVEBLOCK. Examining the program for each of
these operations, we see that INIT generates an initial
stack, stk, for which (3) is true, and that if (3) is true of
the stack representing the symbol table argument of any
of the other operations, then it is true of the stack
produced in the result. Therefore, (3) must be true of all
stacks produced as representations of symbol tables by
operations of the Symboltable data type.

The general principle being used in the above proof
is that of data type induction (called "generator induc-
tion" in [20] and [23]). Paraphrasing the discussion in
[20, p. 141], we suppose that a data type T has, according
to its syntactic specification, exactly the operations F1,
..., Ft whose range is the set of values of T. Let P(x) be
a property of values of type T. Then if the truth of P for
arguments of type T of each Fi implies the truth of P for
the results of calls of Fi allowed by the syntactic specifi-
cation of T, then it follows that P is true of all values of
the data type. If strong type-checking is assumed, the
validity of this rule follows by induction on the number
of computation steps involving values of type T. As
Spitzen and Wegbreit point out, the data type induction
principle "is analog to the principle of complete induc-
tion over the integers. As with complete induction, one
of the results which must be established is the base step,
that P is true of the results of those primitives F with no
arguments of type T." In the case of symbol tables, INIT
is the only such primitive.

Let us examine more carefully the proof of (3) by
data type induction. We can regard any property, P1,
that we wish to prove about symbol tables by data type
induction as an operation with the syntactic specification:

PffSymboltable) --* Boolean,

and the semantic specifications:

PffINIT)
Pl(symtab) D PI(ENTERBLOCK(symtab))
Pffsymtab) D P~(ADDID(symtab, id, attrlist))
Pffsymtab) D PI(LEAVEBLOCK(symtab)). (4)

These specifications can be generated automatically from
the syntactic specification of the Symboltable data type.

Communications December 1978
of Volume 21
the ACM Number 12

To prove (3), we let the interpretation of P1 in terms of
the implementation values be:

PI(SYMT(stk)) = (ISNEW(stk) = FALSE). (5)

We then prove each of the conditions in (4) using this
interpretation of P1 and the implementation programs of
the Symboltable operations. For example, the fourth
condition becomes:

P1(SYMT(stk)) ~ PI(LEAVEBLOCK(SYMT(stk)))

---= [by (5) and LEAVEBLOCK program]
(ISNEW(stk) = FALSE)

D PI(IF ISNEW(POP(stk))
THEN SYMT(REPLACE(stk, NEWMAP))

ELSE SYMT(POP(stk)))

= = [by case analysis rule]
(ISNEW(stk) = FALSE)

D (IF ISNEW(POP(stk))
THEN P~(SYMT(REPLACE(stk, NEWMAP)))

ELSE P~(SYMT(POP(stk)))

= = [by (5)]
(ISNEW(stk) = FALSE)

D (IF ISNEW(POP(stk))
THEN ISNEW(REPLACE(stk, NEWMAP)) = FALSE

ELSE ISNEW(POP(stk)) = FALSE)

= = [by ISNEW axiom and logical substitution rule]
(ISNEW(stk) = FALSE)

D (IF ISNEW(POP(stk))
THEN FALSE = FALSE

ELSE FALSE = FALSE)

which reduces to TRUE with the application of the
reflexive property of Boolean equality, the repeated re-
sult rule, and the D axiom.

If the proof of a property P of a data type requires
interpretation of P in terms of the implementation, then
it is called an implementation invariant. Thus [with the
establishment of the other three conditions in (4)], we
have aimost completed showing that (3) is an implemen-
tation invariant of the Symboltable data type. What
remains to be shown is that

P(symtab) = (3 stk E Stack such that symtab = SYMT(stk)) (6)

holds always. Again, this can easily be verified using
data type induction. The lemma (6) is an example of a
representation invariant, which we define to be that im-
plementation invariant which describes how the abstract
values are represented. The representation invariant can
be constructed automatically from the representation part
of the implementation.

The normal form lemma for a data type is the repre-
sentation invariant for its direct implementation. Con-
sider, for example,

P(symtab) = (symtab = INIT)
~/(3 symtab I such that symtab = ENTERBLOCK(symtab 1))
V (3 symtabl, id, attrlist such that

symtab = ADDID(symtabl , id, attrlist)). (7)

This can be shown to satisfy each of the conditions in
(4) by using the syntactic specification and axioms
for the Symboltable data type to demonstrate that
LEAVEBLOCK is an extension, i.e. it does not allow us

1057

to generate any values of type Symboltable that cannot
be generated using only INIT, ENTERBLOCK, and
ADDID. For a complete discussion of this see [8]. Nor-
mal form lemmas are useful in proofs which make use of
the data type, in that they can be used to reduce the
number of cases that must be considered in a proof by
case analysis. In the proof of (5), for example, (7) tells us
that we need not consider the fourth formula in (4).

4.4 Interpretation of the Equality Operator
Another important consideration in proving that an

implementation satisfies an axiom is the interpretation
of the equal sign in the axiom in terms of the implemen-
tation. To illustrate this, consider the axiom for stacks,
POP(PUSH(stk, elm)) = stk, and the implementation of
Figure 2. We assume there exists an array, arr, and an
integer, t, such that stk = STAK(arr, t). Substituting this
into the axiom, we obtain

POP(PUSH(STAK(arr, t), elm)) = STAK(arr, t)

= = [by PUSH program]
POP(STAK(ASSIGN(arr, t + 1, elm), t + 1)) = STAK(arr, t)

= = [by POP program and integer theorem ((t + 1) - 1 = t)]
(IF t + I -- 0 THEN STAK(ASSIGN(arr, t + 1, elm), 0)

ELSE STAK(ASSIGN(arr, t + 1, elm), t)) = STAK(arr, t).

Assuming t _> 0, which can be proved as an implemen-
tation invariant by the methods of Section 4.3, we can
make a further reduction so that the equation becomes

STAK(ASSIGN(arr, t + 1, elm), t) = STAK(arr, t). (8)

What we now need to establish the validity of (8), is a
proof that STAK(ASSIGN(arr, t + 1, elm), t) and
STAK(arr, t) are indistinguishable by any sequence of
operations mapping us out of type Stack. To do this we
introduce an equality interpretation for this representation
of type Stack. To the implementation of Figure 3 we
thus add

equality interpretation
(STAK(arr, t) = STAK(arrl , t l))

= (t = t l) / x Vk(1 _< k _< t D ACCESS(arr, k)
= ACCESS(arrl , k)) (9)

Using (9), (8) becomes:

(t = t) A Vk(1 _ k _< t D ACCESS(ASSIGN(arr, t + 1, elm), k)
= ACCESS(arr, k))

==[by equality axiom for integers and ACCESS axiom for arrays]
Vk(l _< k ~ t D (IF t + 1 = k THEN elm ELSE ACCESS(arr, k))

-- ACCESS(arr, k))
= = [by inequality property of integers]

Vk(1 _< k ~ t D (IF FALSE THEN elm ELSE ACCESS(arr, k))
= ACCESS(arr, k))

which is reduced to TRUE by use of the IF and D
axioms, the repeated result rule, and the property
Vk(TRUE) = TRUE.

As part of the verification of the implementation, it
is necessary to prove that the chosen interpretation of
equality of stacks has the properties of an equality op-
erator. These properties are

Communications December 1978
of Volume 21
the ACM Number 12

1. (Reflexivity) x -- x
2. (Symmetry) x = y D y = x
3. (Transitivity) x = y A y = z ~ X = z
4. (Substitution) x = y D p = p [y f o r x] where p is any expression.

Properties 1-3 are easily proved for the equality inter-
pretation (9) for stacks, since they reduce to the corre-
sponding properties for equality in type elementtype. To
prove the substitution property it suffices to show that
the implementation satisfies

4a. stk = stkl D PUSH(stk, elm) = PUSH(s tk l , elm)
4b. stk = stkl D POP(stk) = POP(s tk l)
4c. stk = stkl D TOP(stk) = TOP(s tk l)
4d. stk = stkl D ISNEW(s tk) = ISNEW(s tk l)
4e. stk = stkl D REPLACE(stk , elm) = REPLACE(s tk l , elm)

since, by the syntactic specification, Stack values can
appear in expressions only as the arguments of PUSH,
POP, TOP, ISNEW, or REPLACE operations. The
proof of 4a is, letting stk = STAK(a, t), stkl =
STAK(b, u),

STAK(a, t) = STAK(b , u) D PUSH(STK(a , t), elm) =
P U S H (S T A K (b , u), elm)

= = [by P U S H program and Stack equality interpretation]
[(t = u) A Vk(1 <_ k _< t D ACCESS(a , k) = ACCESS(b , k))]

D [(t + l = u + 1) A V k (l _ _ k _ < t + 1
ACCESS(ASSIGN(a , t + 1, elm), k)
--- A C C E S S (A S S I G N (b , u + 1, elm), k))]

= = [by substi tut ion of u for t]
[(t = u) A Vk(1 <- k _< u D ACCESS(a , k) = ACCESS(b, k))]

D Vk(l <_ k _< u + 1 D ACCESS(ASSIGN(a , u + 1, elm), k)
-= A C C E S S (A S S I G N (b , u + 1, elm), k)).

The equation relating ACCESS expressions reduces to
IF u + 1 = k THEN elm = elm ELSE ACCESS(a, k)
- ACCESS(b, k), and thus the conclusion is reduced to
the second hypothesis. We omit the details of the proofs
of 4b-4e, but note that they have been proved automat-
ically by the programs described in Section 5.

In the general case of a data type T with abstract
operations F1 Fn, the verification conditions for the
substitution property are

x = y D F i (.... x, ...) = Fi(.... y, ...), i = l n

where the other arguments are held fLxed.
Our use of equality interpretations is a generalization

of an earlier method using abstraction functions [9]. An
abstraction function is a function A(x) which maps rep-
resentation values x onto the abstract values which they
represent. As an example, an abstraction function for the
implementation of the Stack data type by Array/Integer
pairs can be defined by

A(arr, t) ---- IF t = 0 T H E N N E W S T A C K
ELSE PUSH(A(ar r , t - 1), ACCESS(arr , t)).

Given an abstraction function, an equality interpretation
can be defined in terms of it, e.g.

(STAK(a, t) = STAK(b , u)) = (A(a, t) = A(b, u));

but the opposite is not true.

1058

4.5 Summary and Comparison to Another Proof Tech-
nique

Let us now summarize the main steps of the proof
procedure for verifying data type implementations using
algebraic specifications. We suppose that we have an
algebraic specification of a data type and an implemen-
tation expressed in terms of other data types for which
we also have algebraic specifications. Then the main
steps are as follows:
1. State the representation invariant of the implementa-

tion and prove it using data type induction (as ex-
plained at the end of Section 4.3).

2. State the equality interpretation of the implementation
as discussed in Section 4.4.

3. Using the representation invariant, substitute the rep-
resentation into the axioms of the data type and into
the equality axioms (reflexive, symmetric, transitive,
substitution), obtaining a set of verification conditions
(see Section 4.2).

4. Prove each of the verification conditions, using as
rewrite rules the programs of the implementation, the
equality interpretation, and the axioms of the data
types used in the programs (including the Boolean,
Integer, etc. data types). In some cases, completion of
a proof will require one or more assumptions to be
made about the representation of the data types used
in the implementation (see Section 4.2).

5. Prove that the assumptions made in step 4, or a
stronger set of assumptions, are valid, using data type
induction (Section 4.3).
In Section 5 we will discuss an interactive program

which guides the user through steps 1, 3, 4, and 5,
accomplishing many of the tasks automatically.

We conclude this section with a brief discussion of a
technical difference between our proof technique and
that of Zilles [25] and Goguen [3]. Regarding equality of
the values of an abstract data type, we recall our basic
assumption that the properties of the values can be
derived solely from the relations determined by the
axioms (Section 2.1). On the basis of this assumption, we
conclude that two values may be assumed to be the same
unless provably different. Zilles [251 and Goguen [31
make the opposite assumption, i.e. that values should be
considered to be different unless they are demonstrably
equal.

This difference in viewpoint is formally expressed in
terms of the congruence relations defined by the axioms
of the type. "The congruence relations used are the
smallest congruence relations which contain all of the
defining relations [axioms]. This means that two expres-
sions are equivalent if and only if there is a consequence
of expressions such that the first and last expressions are
the expressions in question and every adjacent pair of
expressions can be shown to be equivalent using some
defining relation." [25] We, on the other hand, permit
any congruence relation (including the smallest) consist-
ent with the axioms. An example may help to clarify this
distinction.

Communica t ions December 1978
of Volume 21
the A C M N u m b e r 12

Consider the abstract type Symboltable as defined in
Figure 4 and examine two possible Symboltable values:

S = ADDID(ADDID(INIT, Y, Integer), X, Real)
T ~ ADDID(ADDID(INIT, X, Real), Y, Integer).

Using the axioms, it cannot be shown that S = T; hence,
under the smallest congruence viewpoint these values
would be considered unequal. We prefer to regard S and
T as equal, ignoring the difference in the order in which
the identifiers are entered.

The practical ramifications of this difference in view-
point are important. If one interprets the axioms as
defining the smallest congruence relations, then the al-
gebra defined by the axioms is unique up to isomorph-
ism. All acceptable implementations of the abstract type
must, therefore, yield algebras that are isomorphic to one
another and to the original algebra. This observation is
the basis of the technique used by both [25] and [3] to
show the correctness of implementations of abstract data
types.

This is a somewhat restrictive notion of correctness.
It requires that abstract values that are not provably
equal be mapped onto distinct concrete values. That this
is a significant restriction may be easily shown through
reference to our example. One efficient implementation
of the Symboltable data type was achieved by using a
hashing function (Figure 8). However, this implementa-
tion does not preserve the information necessary to
distinguish between the expressions S and T; it is there-
fore not a correct implementation with respect to the
smallest congruence definition of correctness.

It should be pointed out that this restrictive notion of
correctness does have certain advantages. The require-
ment that no information be lost increases the likelihood
of being able to add new operations to the type without
having to make extensive changes to existing implemen-
tations. Implementations which conform to our notion
of correctness do not, in general, exhibit this property.

It should also be pointed out that by simply adding
the axiom

ADDID(ADDID(symtab, id, attrs), idl, attrsl)
= ADDID(ADDID(symtab, idl, attrsl), id, attrs),

our hash table implementation becomes acceptable un-
der the smallest congruence viewpoint. Unfortunately,
commutative axioms such as the above lead to rewrite
rules that once applied can always be applied to their
result. This will not lead to a problem in verifying the
correctness of an implementation of the type being de-
freed (Symboltable in this example). Nor will it lead to
a problem when verifications of programs that use the
operations of the type are done by hand. In performing
semi-automated verifications, however, there is a danger
that the system will go into an infinite loop. To prevent
this, it is necessary to recognize this possibility in ad-
vance, and mark this (or similar axioms) for special
treatment. This special treatment basically involves re-
stricting application of the rewrite rule derived from the

1059

axiom to occasions specifically requested by the user of
the system.

5. Automatic Tools

The previous sections have presented a methodology
for the specification of data types, and discussed the use
of such specifications in design, implementation, testing,
and verification. Much of the work involved in applying
the methodology can be profitably automated with tools
whose use will speed up the application of the methods
and avoid the errors which would inevitably occur amidst
the tedium of applying such straightforward steps by
hand. While we would argue that the results of using the
methodology are valuable enough that it should be used
even if it must be done by hand, we hope to show in this
section that useful automatic tools can be achieved with
a modest investment of software development.

We first discuss in Section 5.1 the concepts of direct
implementations, expression data types, and reduction sys-
tems. Direct implementations are useful for testing and
in some cases can serve as actual implementations. Re-
duction systems are useful for carrying out proofs of
correctness of applications of abstract data types. In
Section 5.2 we discuss the realization of reduction sys-
tems and direct implementations with a simple pattern-
match compiler based mainly on ideas from [13].

This pattern-match compiler is one of the main com-
ponents of a "Data Type Verification System" (DTVS)
which we have implemented for testing and verifying
abstract data types. Another important component is a
simple deductive system called CEVAL ("Conditional
Evaluator"), which is used to carry out proofs of data
type verification conditions, mainly as a series of reduc-
tion steps. The main part of the implementation of
CEVAL is a Boolean Expression Reduction System ob-
tained from the Boolean data type specification of Figure
7 and extended to include the basic Boolean theorems
1-4 as reduction rules. (This implementation was ob-
tained by hand coding, but, except for some hand opti-
mization, it could have been obtained by applying the
pattern-match compiler of the system to the axioms and
theorems of Section 4.1.) In addition to this basic knowl-
edge of propositional calculus, CEVAL also incorporates
the Case Analysis Rule of Section 4.1, and some basic
rules for equality substitution, ordering properties, and
quantifier and lambda-variable reduction.

5.1 Direct Implementations, Expression Data Types,
and Reduction Systems

An important point about direct implementations is
that they do not require any additions to the simple
language for specifications used in Section 2. In fact, we
define a direct implementation of a data type T to be an
implementation whose representation part is a subset of
the syntactic specification of T and whose program part
is a subset of the semantic specification of T. The maxi-

Communications December 1978
of Volume 21
the ACM Number 12

mal direct implementation of a data type T is the imple-
mentation whose representation part is the entire syntac-
tic specification of T and whose program part is the
entire semantic specification for T.

Direct implementations need not deal with terms
containing free variables. In performing proofs of cor-
rectness, on the other hand, we must deal with variables
whose values are not known. We begin by supplementing
the syntactic specification of the Symboltable data type
(Figure 4) with

SYMVAR(Integer) ---* Symboltable

but add no axioms relating the new operation, SYM-
VAR, to the other operations. By doing this, we obtain
a different data type which can be regarded as a Sym-
boltable Expression data type. This is because SYM-
VAR(1), SYMVAR(2), etc., can be regarded as variables
of type Symboltable, and because the lack of axioms
relating SYMVAR to other operations makes it neces-
sary to include expressions such as

LEAVEBLOCK(SYMVAR(1)),
ENTERBLOCK(LEAVEBLOCK(SYMVAR(I)))

among the values of the data type. In terms of the tree
structures introduced in Section 2 to explain direct im-
plementations, the values of a direct implementation
should include trees such as

I LEAvEBLOCK I I ENTERBLOCK [
'

ond I,E vEB,oc.I

1

as well as trees built from INIT, ENTERBLOCK, and
ADDID nodes.

In general, for a given data type T and operation
F(D1 D,) ~ T, we define the T(F)-expression data
type to be the data type obtained by adding F(D1
Dn) "--* T to the syntactic specification of T. The T(F)-
expression reduction system is defined to be the maximal
direct implementation of the T(F)-expression data type.

The example discussed above is the Symbol-
table(SYMVAR) Expression data type. The Symbolta-
ble(SYMVAR) Expression Reduction System not only
provides an implementation of the Symboltable data
type, but also is capable of making reductions such as

LEAVEBLOCK (ENTERBLOCK (LEAVEBLOCK (SYMVAR (t))))

: LEAVEBLOCK ([ENTERBLOCK 1):: [by Qxiom 2]::> I LEAVEBLOCK I
,

I LEAVEBLOCKI

1

=LEAVEBLOCK (SYMVAR (l))

1060

Consequently, this reduction system can be used to carry
out steps in proofs about applications of the Symboltable
operations in, for example, proofs of properties of other
parts of a compiler.

5.2 Compilation of Reduction Systems
We now turn to a more detailed discussion of how

reduction systems (and therefore direct implementations)
are realized by a pattern-match-compilation process
(which we shall call PMC). The key to this process is the
full exploitation of the duality between programs and
axioms discussed in Section 2.2.

We shall confine ourselves in this paper to an infor-
mal description in terms of the Symboltable example.
From the syntactic specification S of the Symboltable
data type, PMC first produces a set of node constructor
operations INITNODE, ENTERBLOCKNODE
RETRIEVENODE, and projection (or selector) opera-
tions ENTERBLOCKA, ADDID__A, ADDID__B,
ADDID__C, etc. The constructor operations have the
same syntactic specification as the corresponding oper-
ations in S, while projection operations are from the
constructor range type to one of the argument types of
the constructor, e.g.

ADDID__NODE(Symboltable, Identifier, Attributelist) --~
Symboltable,

ADDID__A(Symboltable) --~ Symboltable,
ADDID__B(Symboltable) ~ Identifier,
ADDID__C(Symboltable) --~ Attributelist.

The projection operations satisfy the semantic axioms
implied by their name, e.g.

A D D I D ~ (A D D I D _ _ N O D E (s y m t a b , id, attrlist)) = symtab,
ADDID__B(ADDID__NODE(symtab, id, attrlist)) = id,
ADDID__C(ADDID__NODE(symtab, id, attrlist)) = attrlist

PMC also constructs a node discriminator operation,

NODEKIND(Symboltable) --~
{INITOP, ENTERBLOCKOP, ADDID__OP, LEAVEBLOCK-
oP)

such that

NODEKIND(INITNODE) = INITOP
N O D E K I N D (E N T E R B L O C K N O D E (s y m t a b)) = ENTER-

BLOCKOP
NODEKIND(ADDID__NODE(symtab, id, attrlist)) = ADDID__OP
N O D E K I N D (L E A V E B L O C K N O D E (s y m t a b)) = LEAVE-

BLOCKOP.

The actual implementation of these constructor, projec-
tion, and discriminator operations could of course be
any of a variety of implementations which satisfy these
axioms, e.g. with Lisp operations:

ADDID~NODE(symtab , id, attrlist)
= LIST(ADDID__OP, symtab, id, attrlist),

ADDID__A(symtab) = CADR(symtab),
ADDID__B(symtab) = CADDR(symtab),
ADDID__C(symtab) = CADDDR(symtab),
NODEKIND(symtab) = CAR(symtab).

Essentially this implementation is used in our Data Type

Communications December 1978
of Volume 21
the ACM Number 12

Verification System. Alternatively, each of these opera-
tions could be implemented by machine language code
for allocating memory blocks of one or more words and
accessing fields within these blocks, as discussed in [11].

PMC then proceeds to translate the semantic axioms
into programs operating on the nodes. The translation is
done incrementally (axiom by axiom). Each operation is
first given an initial program definition, in terms of only
its corresponding node constructor:

INIT = INITNODE
ENTERBLOCK(symtab) = ENTERBLOCKNODE(symtab)
etc.

Then, as each axiom is processed, it is used to modify
the existing program of one of the operations. The first
axiom, for example, LEAVEBLOCK(INIT) = INIT, is
used to modify the program for LEAVEBLOCK to
become

LEAVEB LOCK(symtab)
= IF NODEKIND(symtab) = INITOP

THEN INIT
ELSE LEAVEBLOCKNODE(symtab).

From the next axiom, LEAVEBLOCK(ENTER-
BLOCK(symtab)) -- symtab, PMC produces

LEAVEB LOCK(symtab)
= IF NODEKIND(symtab) = ENTERBLOCKOP
THEN ENTERBLOCKA(symtab)

ELSE IF NODEKIND(symtab) = INITOP
THEN INIT
ELSE LEAVEBLOCKNODE(symtab).

The third axiom, LEAVEBLOCK(ADDID(symtab, id,
attrlist)) = LEAVEBLOCK(symtab), produces

LEAVEB LOCK(symtab)
= IF NODEKIND(symtab) = ADDID__OP

THEN LEAVEB LOCK(ADDID__A(symtab))
ELSE IF NODEKIND(symtab) = ENTERBLOCKOP

THEN LEAVEBLOCKA(symtab~
ELSE IF NODEKIND(symtab) = INITOP

THEN INIT
ELSE LEAVEBLOCKNODE(symtab).

Note the recursive call in this program. The next three
axioms lead to a similar program for ISINBLOCK, and
the final three determine the RETRIEVE program. (Al-
though the axioms are grouped according to the main
operator of the left-hand side, this is not necessary.) In
general, given an axiom LHS - RHS, PMC modifies the
program for F, where F is the main operator of LHS,
from its existing program body B to a new body of the
form

IF P THEN RHS' ELSE B,

where P is a test for the argument pattern of LHS, and
RHS' is obtained from RHS by substituting node pro-
jection operations for composite parameters in LHS. If
no composite argument occurs in LHS (as in the case of
the Stack axiom REPLACE(stk, elm) -- PUSH(POP-
(stk), elm)), the new program body is simply RHS.

The code output by this straightforward approach is

1061

often not very efficient because it may contain redun-
dancy in the pattern tests. CEVAL can then be used to
remove these redundant tests. After this has been done,
the IF-THEN-ELSE expressions that remain can then
be replaced by c a s e selection constructs where appropri-
ate. We are currently experimenting with these optimi-
zations in our Data Type Verification System.

5.3 A Data Type Verification System
The Data Type Verification System under develop-

ment at the USC Information Sciences Institute accepts
specifications and implementations of data types and
performs three classes of operations on them: (1) main-
taining a "database for data types," i.e. storage and
retrieval for display or manipulation; (2) compiling direct
implementations and expression reduction systems from
the specifications; (3) carrying out proofs about data
types, particularly proofs that given implementations of
a data type satisfy its specification. Input to the system
is first processed by a command interpreter, which per-
mits interactive, incremental use of the system. (A file
read command also permits commands to be batched on
a file.) Specification and implementations are accepted
in a syntax very close to that used in this paper. All
expressions in user input are subjected to strong type
checking using declarations of variables and interface
specifications of operations. During type checking, op-
erators are renamed to internal names. This device per-
mits generic operators and avoids conflict at later stages
with names of Interlisp functions. For equations in the
user input (those expressing axioms and programs), the
resulting internal form is then fed into a simple pattern-
match compiler based on the ideas of Section 5.2. Thus
a set of Interlisp functions is obtained which may then
be compiled by the Interlisp compiler into machine code.
Execution of this code or of the original functions (via
the EVAL interpreter) has the effect of application of
the original equations as rewrite rules. Presently, we are
building a large database of data type specifications and
implementations, both in the form of Interlisp files con-
taining the EVAL and compiled versions of the functions
output by the pattern-match compiler and runable core
images containing many different types.

The facilities for testing using direct implementations
and proving using expression reduction systems have
been used for testing and carrying out proofs about a
number of data types. To verify our implementation of
Symboltable in terms of a stack of mappings, for exam-
ple, the user inputs the Symboltable, Stack, and Mapping
specifications and the Symboltable implementation. He
then directs the system to generate the verification con-
ditions for the implementation. These would consist of
the Symboltable axioms and the equality axioms for the
Symboltable equality operator (see Section 4.4), all in-
terpreted in terms of the representation.

The user then attempts to prove each of the verifi-
cation conditions using CEVAL. In these proofs the
rewrite rules from the Symboltable programs and Stack

Communications December 1978
of Volume 21
the ACM Number 12

and Mapping axioms are used automatically, without
further direction from the user. In some cases, as noted
in Section 4, completion of a proof will require one or
more assumptions to be made about the representation
or about the Stack or Mapping data types. If this is the
case, the system will stop with a reduced form of the
original verification condition. Examination of this out-
put will often lead the user to the necessary assumptions
which are input by the user and used as needed without
justification. To complete the verification of the imple-
mentation, it is necessary to prove these assumptions, or
a stronger set of assumptions, as theorems (of the Sym-
boltable data type implementation or of the Stack or
Mapping data types). The proof system keeps track of
the status of the proof of each of the original verification
conditions and the assumptions made, plus enough other
information that the current stage of the proof can be
recreated automatically by a "recheck" command. By
making a transcript tracing the operation of the proof
system during a recheck of a completed proof, one
obtains detailed documentation of the proof, unobscured
by proof steps that did not contribute to the fmal result.

6. Summaff

Elsewhere it has been argued that abstract data types
can be effectively employed as a "thought tool" in the
structured development of programs ([7], [21], [24],
[14]). In this paper we have attempted to show that the
use of algebraic axioms as a means for describing data
abstractions is also valuable, when properly used, for
both formal and informal program validation.

In Sections 2 and 3 we discussed the axiom language
and some techniques for constructing algebraic axioma-
tizations. A complete implementation of a moderately
complex symbol table was developed to show how these
specifications might be used in practice. In Section 4 we
demonstrated how properly written axioms can be used
in formal program verification. Abstract data types pro-
vide a mechanism for factoring proofs into manageable
sections. At one level of abstraction, the axiomatic spec-
ification provides us with theorems that may be applied
in the verification of programs that use abstract data
types. Writing the axioms in a certain style allows them
to be used as reduction rules so that the proofs become
largely symbol manipulation exercises. We have illus-
trated how such axioms may be used to verify the
correctness of implementations of higher-level abstract
data types in terms of lower-level ones.

In Section 5 we have described and given the formal
basis for the symbol manipulation processes needed to
prove correctness and to provide direct implementations.
This system can carry out large parts of the proofs
without a theorem prover; therefore, the cost of execution
and the software sophistication normally required for
such proofs is substantially reduced. Furthermore, this

1062

system is able to exploit the duality between axioms and
programs as described in Section 3. A direct implemen-
tation of a data type is achieved by using the axioms.
This allows for the interpretive execution of programs
that make use of algebraically axiomatized data types.
The coupling of early testing with proofs of correctness
within the same automated framework is a valuable tool
in the programming process.

Appendix. Hash-Table Implementation of Mapping
Data Type

The Mapping data type has many implementations
that would be reasonably efficient for the Symboltable
application, e.g. using balanced tree structures or hash
tables. Figure 8 depicts an implementation using a hash
table. The hierarchical relationship of the types used in
this implementation is reflected in Figure 9.

Note that the parameters domaintype and rangetype
have been bound to Identifier and Attributelist. A hash
table can be viewed abstractly as a composition of map-
pings, of which one is implementable by "random ac-
cess" techniques to provide efficiency in searching. The
actual implementation of the Mapping data type is given
in Figure 10. In this implementation we have assumed
that Arrays with integer domains have random access
characteristics. We have left the other mappings abstract;
i.e. Mapping 1 is a data type identical to Mapping, except
for renaming. For convenience we have assumed an
operation for initializing an Array:

INITIALIZE(Array[Integer, Attributelist], Integerrange,
Mapping 1 [Identifier, Attributelist]) --~
Array[Integer, Mappingl[Identifier, Attributelist]]

with the axiom

declare arr: Array, irange: Integerrange, int: Integer,
mapl: Mappingl[Identifier, Attributelist];

ACCESS(INITIALIZE(arr, irange, mapl), int)
= IF ISIN(int, irange)

THEN mapl
ELSE ACCESS(arr, int)

Thus INITIALIZE is a generalization of the ASSIGN
operator. In most programming languages, no INITIAL-
IZE operator for arrays is provided, but, of course, it is
easily implemented with a loop over the elements of
irange.

Regarding the HASH operation, we assume only that
its syntactic specification is

HASH(Identifier) --, Hashrange

for some particular range Hashrange of Integer values.
This is sufficient to show the correctness of the imple-
mentation of Figure 10; the distribution of identifiers
over the range is of concern only as a matter of efficiency.

We will use a direct implementation of the Mapping 1

Communications December 1978
of Volume 21
the ACM Number 12

Fig. 8. Symboltable implementation via hash tables.

I I I I

• M , ~ . f • Moppiogl

Stack ~ ~ I I I ~ I I I ~ I I I I
(of mappings) Hash

Taile l
Ma~ing (of identifier- attributlist)

Fig. 9. Hierarchy of types in Symboltable implementation.

Symboltable

Mapping
~ r r a y ~ %ppingl

Integer

ords, as already given in Figure 2. Ano the r possibili ty is
the direct imp lemen ta t ion using tree structures composed
of P U S H and N E W S T A C K nodes, as discussed in Sec-
t ion 2.2.

In a complete implementa t ion the Identif ier and
Attr ibutel is t data types also must be dealt with, but we
shall ignore them here, as we do not regard them as
being part of the Symbol tab le data type. (The Symbol-
table implementa t ion as we have given it requires very
little in teract ion with the Identif ier data t y p e - - o n l y the
H A S H and Identif ier equal i ty operat ions i n t e r a c t - - a n d
essentially no interact ion with the Attr ibutel ist data
type.) Thus unde r the assumptions discussed at the be-
g inn ing of Section 3, the design of the implementa t ion is
complete.

Acknowledgments. We would like to thank Dick
Jenks, Ralph London, Nancy Lynch, Mark Moriconi,
Jernej Polajnar, Dave Wile, Marty Yonke, and the ref-
erees for their careful reading of earlier drafts of this
paper.

Received July 1976; revised May 1978

Fig. 10. Implementation of Mapping data type with a hash table.

representation
MAPP(Array[Integer, Mapping 1 [Identifier, Attributelist]]) --,

Mapping[Identifier, Attributelist]

programs

declare arr: Array, id: Identifier, attrlist: Attributelist;

NEWMAP = MAPP(INITIALIZE(NEWARRAY,
Hashrange, NEWMAPI)),

DEFMAP(MAPP(arr), id, attrlist)
=MAPP(ASSIGN(arr, HASH(id),

DEFMAPI(ACCESS(arr, HASH(id)), id, attrlist))),
EVMAP(MAPP(arr), id)

= EVMAPI(ACCESS(arr, HASH(id)), id),
ISDEFINED(MAPP(arr), id)

= ISDEFINEDI(ACCESS(arr, HASH(id)), id).

data type, representing a Mappingl value with a tree
structure of the form

[DEFMAP I]

/ \>..o [DEFMAP II

.../
J dn_l rn_ 1

I DEFiAP 11

where the di are domain values and the ri are range
values.

For the implementation of the Stack data type we
could use the implementation with Array/Integer rec-

1063

References
1. Bayer, R.S., and Moore, J.S. Proving theorems about LISP
functions. J. ACM 22, 1 (January 1975), 129-144.
2. DaM, O.-J. The SIMULA 67 common base language. Norwegian
Comput. Ctr., Oslo, 1968.
3. Goguen, J.A., Thatcher, J.W., Wagner, E.G., and Wright, J.B.
Abstract data-types as initial algebras and correctness of data
representations. Proc. Conf. on Comptr. Graphics, Pattern
Recognition and Data Structure, May 1975.
4. Good, D.I., London, R.L, and Bledsoe, W.W. An interactive
program verification system. IEEE Trans. Software Eng. SE-1, 1
(March 1975), 56-67.
5. Guttag, J.V., Horowitz, E., and Musser, D. The design of data
type specifications. In Current Trends in Programming Methodology,
R.T. Yah, Ed., Prentice-Hall, Englewood Cliffs, N.J., 1978, pp.
60-79.
6. Guttag, J.V., Horowitz, E., and Musser, D.R. Some extensions to
algebraic specifications. Proc. Language Design for Reliable
Software, March 1977.
7. Guttag, J.V. Abstract data types and the development of data
structures. Comm. ACM 20, 6 (June 1977), 396-404.
8. Guttag, J.V., and Homing, J.J. The algebraic specification of
abstract data types. Acta lnformatica 10, 1 (1978), 27-52.
9. Hoare, C.A.R. Proof of correctness of data representations. Acta
Informatica 4 (1972), 271-281.
10. Hoare, C.A.R., and Wirth, N. An axiomatic definition of the
programming language PASCAL. Acta Informatica 2 (1973),
335-355.
11. Hoare, C.A.R. Recursive data structures, lnt. J. Comptr. and
Inform. Sci. 4, 2 (June 1975), 105-132.
12. Horowitz, E., and Salmi, S. Fundamentals of Data Structures.
Computer Science Press, June 1976.
13. Jenks, R.D. The SCRATCHPAD language. Proc. of ACM
SIGPLAN Symp. on Very High Level Languages. S1GPLAN Notices
9, 4 (April 1974), 101-111.
14. Liskov, B.H., Snyder, A., Atkinson, R., and Shaffert, C.
Abstraction mechanisms in CLU. Comm. ACM 20, 8 (Aug. 1977),
564-576.
15. Manna, Z. Mathematical Theory of Computation. McGraw-Hill,
New York, 1974.
16. McCarthy, J. Basis for a mathematical theory of computation. In
Computer Programming and Formal Systems, P. Braffort and D.
Hirchberg, Eds., North-Holland Publ. Co., Amsterdam, 1963, pp.
33-70.
17. Musser, D.R. A data type verification system based on rewrite

Communications December 1978
of Volume 21
the ACM Number 12

rules. Proc. of Sixth Texas Conf. of Comput. Syst., Austin, Tex., Nov.
1977.
18. Palme, J. Protected program modules in SIMULA 67. FOAP
Rep. No. C8372-M3(E5), Research Inst. of National Defense,
Stockholm, 1973.
19. Parnas, D. L. Information distribution aspects of design
methodology. Information Processing 71, 1 (1972), North-Holland
Pub. Co., Amsterdam, 339-344.
20. Spitzen, J., and Wegbreit, B. The verification and synthesis of
data structures. Acta Informatica 4 (1975), 127-144.
21. Standish, T.A. Data structures: an axiomatic approach. BBN
Rep. No. 2639, Bolt Beranek and Newmann, Cambridge, Mass.,
1973.
22. Suzuki, N. Automatic verification of programs with complex data
structures. Ph.D. Th., Comptr. Sci. Dept., Stanford, U., Rep. No.
STAN-CS-76-552, Feb. 1976.
23. Wegbreit, B., and Spitzen, J. Proving properties of complex data
structures. J. ACM 23, 2 (April 1976), 389-396.
24. Wulf, W.A., London, R.L., and Shaw, M. An introduction to the
construction and verification of Alphard programs. IEEE Trans.
Software Eng. SE-2, 4 (December 1976), 253-265.
25. Zilles, S. N. Abstract specifications for data types. IBM Res.
Lab., San Jose, Calif., 1975.

Programming J.J. Horning
Languages Editor

An Example of
Hierarchical Design
and Proof
Jay M. Spitzen, Karl N. Levitt, and
Lawrence Robinson
SRI International

Hierarchical programming is being increasingly
recognized as helpful in the construction of large
programs. Users of hierarchical techniques claim or
predict substantial increases in productivity and in the
reliability of the programs produced. In this paper we
describe a formal method for hierarchical program
specification, implementation, and proof. We apply this
method to a significant list processing problem and also
discuss a number of extensions to current programming
languages that ease hierarchical program design and
proof.

Key Words and Phrases: program verification,
specification, data abstraction, software modules,
hierarchical structures

CR Categories: 4.0, 4.6, 5.21, 5.24

1064

I. Introduction

The use of structuring techniques in programming--
for example, programming by successive refinement [5]
(also called hierarchical programming)--has been rec-
ognized as increasingly helpful in the design and man-
agement of large system efforts. A number of such design
techniques are now promoted for routine use in corn-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Research supported by the Office of Naval Research (Contract
N00014-75-C-0816), the National Science Foundation (Grant DCR74-
18661), and the Air Force Office of Scientific Research (Contract
F44620-73-C-0068).

Authors' present addresses: J.M. Spitzen, Advanced Systems De-
partment, Xerox Corporation, 3333 Coyote Hill Road, Palo Alto, CA
94304; K.W. Levitt and L. Robinson, SR1 International, 333 Ravens-
wood Ave., Menlo Park, CA 94025.
© 1978 ACM 0001-0782/78/1200-1064 $00.75.

Communications December 1978
of Volume 21
the ACM Number 12

