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Corrigendum. Programming Languages 

David Gries, An Exercise in Proving Parallel Programs 
Correct, Comm. ACM 20, 12 (Dec. 1977), 921-930. 

Dr. Leslie Lamport detected what appeared to be a 
methodological mistake in the proof of the on-the-fly 
garbage collector. The assignment atleastgray(m[t].left) 
of the Collector (see the algorithm labeled (3.6) on page 
925) contains references to the two shared variables 
m[z].lefi and m[m[t].leftl.color, and this clearly violates 
the restriction (2.10) found on page 923. 

The problem is not a methodological error but a 
missing footnote. The statement atleastgray(m[t].left) in 
(3.6) does have a footnote number 3 attached to it, and 
an earlier version of the paper [Springer Lecture Notes 
in Computer Science 46, 1976, 57-81] contained the 
footnote 

This should be written as "t:= m[t].left; atleastgray(t)'" where t is a 
local variable. Since the mutator never tests the color of a node and 
only grays a node using also atleastgray, the single statement atleast- 
gray(m[t].left) is equivalent under parallel operation to this sequence 
of two operations. 

Dr. Lamport also noted that the informal discussion 
of noninterference of assertions (4.5. l) and (4.5.2) in the 
first four paragraphs of Section 4.5 could be interpreted 
as using circular reasoning, but that a formal proof of 
noninterference does indeed work. 

My thanks to Dr. Lamport for pointing out these 
problems and my apologies for any inconvenience they 
have caused the reader. 

Programming J.J. Homing 
Languages Editor 

Abstract Data Types 
and Software 
Validation 
John V. Guttag, Ellis Horowitz, and 
David R. Musser 
University of Southern California 

A data abstraction can be naturally specified using 
algebraic axioms. The virtue of these axioms is that 
they permit a representation-independent formal 
specification of a data type. An example is given which 
shows how to employ algebraic axioms at successive 
levels of implementation. The major thrust of the paper 
is twofold. First, it is shown how the use of algebraic 
axiomatizations can simplify the process of proving the 
correctness of an implementation of an abstract data 
type. Second, semi-automatic tools are described which 
can be used both to automate such proofs of 
correctness and to derive an immediate implementation 
from the axioms. This implementation allows for limited 
testing of programs at design time, before a 
conventional implementation is accomplished. 

Key Words and Phrases: abstract data type, 
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1. Introduction 

The key problem in the design and validation of 
large software systems is reducing the amount of corn- 
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plexity or detail that must be considered at any one time; 
two common and effective solution methods are decom- 
position and abstraction. One decomposes a task by 
factoring it into two or more separable subtasks. Unfor- 
tunately, for many problems the separable subtasks are 
still too complex to be mastered in toto. The complexity 
of this sort of problem can be reduced via abstraction. 
By providing a mechanism for separating those attributes 
of an object or event that are relevant in a given context 
from those that are not, abstraction serves to reduce the 
amount of detail that must be comprehended at any one 
time. 

If  one is to make full use of abstraction, it is critical 
to have available a good notation for expressing abstrac- 
tions. It is obvious that a reasonable language is a 
prerequisite to communicating something as intangible 
as an abstraction; it is less obvious, but equally true, that 
a reasonable language is a prerequisite to the creation of 
such abstractions. Even if a language need not be avail- 
able for the initial formulation of an abstraction (an 
argument we leave to psychologists and linguists), it is 
certainly necessary if the abstraction is to be retained 
and developed over any significant period of time. 

A recent trend in programming is the development 
of the abstract data type or data abstraction. In data 
abstraction, a number of functional abstractions are 
grouped together. The clustered operations are related 
by the fact that they, and only they, operate on a 
particular class or type of object. Some typical data 
abstractions are a symbol table, a priority queue, and a 
set. 

In this paper we shall use a notation, which we call 
algebraic axioms, for describing data abstractions. In 
order to show how these specifications can be used 
during the design process, we exhibit, in Sections 2 and 
3, their use in the creation of a symbol table which allows 
for block structure. 

However, the point we wish to stress in this paper is 
not the design of data abstractions, but the use of alge- 
braic axioms for proofs of correctness and for program 
testing. In Section 4 we show how this axiomatic tech- 
nique can be employed to prove the correctness of an 
implementation of a data abstraction. The strength of 
the technique is that it factors the proving process into 
distinct, manageable stages; further, it simplifies the 
proof at each stage. In Section 5 we discuss an automated 
system which processes algebraic axiomatizations of data 
abstractions in such a way that correctness proofs of 
implementations can be carried out semi-automatically; 
in addition, programs may be tested before an imple- 
mentation in a conventional programming language is 
achieved. This coupling of testing and correctness is a 
valuable by-product of the algebraic axiom approach 
and is a strong argument for its worth. 

It is important to note that the techniques developed 
in this paper are essentially programming language in- 
dependent. While languages with the compile time facil- 
ities of  Simula 67 [2] (with the extensions of [ 18]), CLU 

[14], or Alphard [24] will make these techniques easier 
to apply, they are by no means essential. I f  one exercises 
enough self- (or project-wide) discipline to ensure the 
validity of what we have called data type induction (see 
Section 4.3), the techniques described should prove use- 
ful in the development of programs in a wide class of 
languages. 

Related work has been done by a number of other 
people. The relation of our work to that of Zilles and of 
Goguen, Thatcher, Wagner, and Wright will be discussed 
in Sections 2 and 4.5. Spitzen and Wegbreit, [20] and 
[23], have taken a similar approach to proofs about 
abstract data types, but most of their specifications were 
in a form more akin to Hoare's system, than to the 
conditional equations which we employ. Our proof techo 
niques are related to those of Boyer and Moore [1] (see 
also Section 4.1) and Suzuki [22], who have made exten- 
sive use of axioms and lemmas in the form of rewrite 
rules in automated proof systems, but have not stressed 
the organization of rules into specifications of data types. 

2. Def'mitions, Concepts, and Examples 

Rather than present formal definitions of our data 
abstraction mechanism and related concepts, we give 
informal and (hopefully) intuitively appealing defini- 
tions and illustrate the main ideas with a number of 
examples. We shall view a data type T as a class of values 
and a collection of operations on the values. If  the 
properties of the operations are specified only by axioms, 
we call T an abstract data type or a data abstraction. An 
implementation of a data abstraction is an assignment of 
meaning to the values and operations in terms of the 
values and operations of another data type or set of data 
types. A correct implementation is an implementation 
which satisfies the axioms. If  this implementation is to 
be useful, it must also be possible to correctly implement 
the underlying types used. The danger here is that if one 
writes an inconsistent specification of one of these un- 
derlying types, it will not be implementable, yet techni- 
cally speaking we still have a correct implementation at 
the higher level. 

An algebraic axiom specification of a data type T 
consists of a syntactic and a semantic specification. The 
syntactic specification defines the names, domains, and 
ranges of the operations of T. The semantic specification 
contains a set of axioms in the form of equations which 
relate the operations of T to each other. The term 
"algebraic" is appropriate because the values and oper- 
ations can be regarded as an abstract algebra. Goguen 
[3] and Zilles [25] have strongly emphasized the algebraic 
approach, developing the theory of abstract data types 
as an application of many-sorted algebras. Implementa- 
tions are treated under this approach as other algebras, 
and the problem of showing the correctness of an imple- 
mentation is treated as one of showing the existence of 
a homomorphic mapping from one algebra to another. 

1049 Communications December 1978 
of Volume 21 
the ACM Number 12 



We shall in this paper deemphasize the explicit use of 
algebraic terminology, preferring instead the terminol- 
ogy of programming. In spite of this difference in ter- 
minology, there are many similarities between our ap- 
proach and the more purely algebraic approach. A brief 
discussion of a technical difference between the two 
approaches is contained in Section 4.5. 

The choice of a language in which to express the 
specifications is important. We must be able to express 
the relationships among the operations precisely and 
clearly. In addition, the specification language itself must 
be axiomatically defined to facilitate correctness proofs. 
We begin by assuming a base language with five primi- 
tives: functional composition, an equahty relation (=), 
two distinct constants (TRUE and FALSE), and an 
unbounded supply of free variables. From these primi- 
tives, one can construct an arbitrarily complex specifi- 
cation language, for once an operation has been defined 
in terms of the primitives, it may be added to the 
specification language. An IF-THEN-ELSE operation, 
for example, may be det'med by the axioms: 

IF -THEN-ELSE(TRUE,  q, r) = q, 
IF-THEN-ELSE(FALSE,  q, r) = r. 

We shah assume that the expression IF-THEN-ELSE(b, 
q, r), which we shall write as IF b THEN q ELSE r, is 
part of the specification language. We shall also assume 
the availability of infix Boolean operators such as ^, v, 
D, =, and the prefLx operator --1. Finally, we allow for 
the conventional operations on integers: PLUS, MINUS, 
TIMES, DIV, MOD, and use the conventional infix 
operators when convenient. 

2.1 Stack Example 
One of the simplest examples of an abstract data type 

is the unbounded Stack. In the example of Figure 1 we 
have defined a data type Stack with six operations via a 
syntactic specification of these operations, and a seman- 
tic specification which is a set of seven equations relating 
the operations. Certain notational conventions exhibited 
by this example will be used throughout. Operation 
names are written using all capital letters. The name of 
a data type begins with a capital. In the equations the 
lowercase symbols are free variables ranging over the 
domains indicated, e.g. stk ranges over the Stack type. 
The symbol elementtype is a variable ranging over the 
set of types and elm ranges over elementtype. This says 
that we can have a Stack of any type of elements (but all 
must be of the same type); what we have defined is thus 
not a single abstract type but rather a type schema. The 
binding of elementtype to a particular type, e.g. 
Stack[Integer], reduces the schema to a specification of 
a single abstract type. Using the syntactic specification 
of the operations, one can check that each of the expres- 
sions in the axiomatic equations is well-formed in the 
sense that each operator is applied to the correct number 
of arguments and each argument is of the correct type. 

The equations are statements of fact (axioms) relating 
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Fig. 1. Stack data type. 

type Stack[elementtype:Type] 

syntax 
N E W S T A C K  ~ Stack, 
PUSH(Stack, elementtype) ~ Stack, 
POP(Stack) ~ Stack, 
TOP(Stack) ~ elementtype O {UNDEFINED},  
ISNEW(Stack) ~ Boolean, 
REPLACE(Stack,  elementtype) --~ Stack. 

semantics 
declare stk: Stack, elm: elementtype; 

POP(NEWSTACK)  = N E W S T A C K ,  
POP(PUSH(stk,  elm)) = stk, 
T O P ( N E W S T A C K )  = U N D E F I N E D ,  
TOP(PUSH(stk,  elm)) = elm, 
I S N E W ( N E W S T A C K )  = TRUE,  
ISNEW(PUSH(stk,  elm)) = FALSE, 
REPLACE(stk,  elm) = PUSH(POP(stk),  elm). 

the values which are created by the operations, e.g. the 
equation 

P O P ( N E W S T A C K )  = N E W S T A C K  

states that an attempt to POP the empty stack will always 
yield NEWSTACK. (The decision to return NEWS- 
TACK, rather than, say, UNDEFINED, is an arbitrary 
one, and may not coincide with some readers' precon- 
ceptions about the behavior of stacks.) 

TOP(PUSH(stk,  elm)) = elm 

means that for any Stack value stk and any elementtype 
value elm, the result of PUSH(stk, elm) is a Stack value, 
stk 1, such that TOP(stk 1) yields the value elm. In viewing 
the equations in this way, we are not required to give 
any particular interpretation to the values; the "useful" 
properties of the values can be derived solely from the 
relations determined by the axioms. Thus in designing 
computer implementations of the operations, we are free 
to represent the values in many different ways. 

The (unbounded) Stack data type can be imple- 
mented in terms of an (Array, Integer) pair. Each Stack 
value is represented by a structure with two components: 
an (unbounded) array, whose components are of type 
elementtype, and an integer indicating the position in 
the array of the top element of the stack. The specifica- 
tions for an Array data type are given in Figure 2. 

ASSIGN(arr, t, elm) means the array identical to arr 
except possibly in the t-th position where the value is elm 
[16]. ACCESS(arr, t) returns the value in position t of 
the array arr. Note the assumption (in the Boolean 
expression dval = dvall) that there exists an operation, 
=, from domaintype × domaintype ~ Boolean. It is a 
requirement that this operation exist for the actual value 
of domaintype (see Alphard's requires clause [24]). 

The implementation of the Stack data type with 
(Array, Integer) pairs is given in Figure 3. We have 
divided the implementation into a representation part 
and a programs part. In this paper the language used to 
express programs is the same as the language used to 
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Fig. 2. Array data type. 

type Array[domaimype :Type, rangetype:Type] 

syntax 
N E W A R R A Y  -+ Array, 
ASSIGN(Array,  domaintype, rangetype) --~ Array, 
ACCESS(Array, domaintype) -+ rangetype U (UNDEFINED} 

semantics 
declare art :Array,  dval, dvall  :domaimype, rval:rangetype; 
ACCESS(NEWARRAY,  dval) = UNDEFINED,  
ACCESS(ASSIGN(arr ,  dval, rval), dval l)  

= IF dval = dvall  THEN rval ELSE ACCESS(arr, dvall).  

Fig. 3. An implementation of the Stack data type with (Array, Integer) 
pairs. 

representation STAK(Array[Integer, elementtype], Integer) 
Stack[elementtype], 

programs 

declare arr: Array, t: Integer, elm: elementtype; 
NEWSTACK = STAK(NEWARRAY,  0), 
PUSH(STAK(arr ,  t), elm) 

= STAK(ASSIGN(arr ,  t + 1, elm), t + 1), 
POP(STAK(arr,  t)) = IF t = 0 THEN STAK(arr, 0) 

ELSE STAK(arr, t - 1), 
TOP(STAK(arr,  t)) = ACCESS(arr, t), 
ISNEW(STAK(arr ,  t)) = (t = 0), 
REPLACE(STAK(arr ,  t), elm) 

= IF t = 0 THEN STAK(ASSIGN(arr ,  1, elm), 1) 
ELSE STAK(ASSIGN(arr ,  t, elm), t). 

express axioms. Though we recognize that a richer lan- 
guage is usually more desirable, we have chosen to 
restrict ourselves here for several reasons. Most impor- 
tantly, the proof procedure described in Section 4 derives 
much of its simplicity from the use of this restricted set 
of constructs. Since all conventional programming con- 
trol constructs can be automatically translated into our 
basic set, see [15], there is no limitation in principle. We 
are able to avoid issues of  language design and concen- 
trate on how the basic command set can be axiomatized, 
used for correctness proofs, and used to synthesize im- 
plementations. In [5] and [12] the basic language for 
axiomatizing data types has been applied to an extensive 
set of  examples, with explanations, so the formalism can 
be further studied there. 

We intend that all of the operations be purely "func- 
tional" or "applicative," i.e., have no side effects. This 
can imply an unrealistic degree of inefficiency for imple- 
mentations. In the Stack implementation of Figure 3, for 
example, the call of PUSH must involve copying the 
Array component as well as the Integer component of 
the Stack representation. The basic framework can be 
extended to permit specification of operations with side 
effects so that the obvious efficient implementations are 
possible. However, since the exposition of our proof 
techniques is facilitated by this restriction, we will con- 
tinue in this paper to assume no side effects, and refer 
the reader to [6] for a discussion of the extensions re- 
quired to remove this restriction. 
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The correctness of an implementation of a data type 
can be proved by showing that each axiom of the seman- 
tic specification is satisfied by the programs. As a partic- 
ularly simple example of such a proof, consider the 
fourth Stack axiom. Assuming stk = STAK(arr, t), 

TOP(PUSH(stk, elm)) = TOP(PUSH(STAK(arr ,  t), elm)) 
= TOP(STAK(ASSIGN(arr ,  t + 1, elm), 

t + l )) 
= ACCESS(ASSIGN(arr ,  t + 1, elm), 

t +  1) 
= elm. 

The other Stack axioms can be shown to be satisfied in 
a similar manner, although not quite so straightfor- 
wardly. The complications that arise will be dealt with 
in Section 4, which discusses in detail verification of 
implementations. 

2.2 Programs as Ax ioms  and Ax ioms  as Programs 
In the discussion of the implementation for the Stack 

data type, we described STAK(arr, t) as a pair whose 
first component is an Array and second component is an 
Integer. We viewed equations such as 

TOP(STAK(arr,  t)) = ACCESS(arr,  t) 

as definitions of programs for operating on the STAK 
pairs. Suppose, however, that we now view STAK 
as an operation whose syntactic specification is 
STAK(Array[Integer, elementtype], Integer) 
Stack[elementtype]. Then the above equation for TOP 
and the other program equations can be viewed as 
axioms which comprise a semantic specification for 
STAK. Looking at it as an axiom, we would read the 
above equation as "if  stk is the result of applying STAK 
to an Array arr and an Integer t, the value returned by 
TOP(stk) is ACCESS(arr, t)." 

As an axiomatic specification of the Stack data type, 
the implementation of Figure 3 is inferior to the specifi- 
cation of Figure 1 in that it is not self-contained (it 
requires knowledge of properties of Arrays and Integers). 
We have called attention to the view of programs as 
axioms mainly because it suggests a duality between 
programs and axioms whose other half--axioms aspro- 
grams--can be fruitfully exploited. We discuss this dual- 
ity both here and in Section 5.2. 

We can, in fact, view the axioms of Figure 1 as 
programs by regarding NEWSTACK and PUSH(stk, 
elm) as trees rather than operations. All structures built 
with NEWSTACK and PUSH can be pictured as trees. 
For example, 

PUSH(PUSH(NEWSTACK,  3), 7) 

can be diagrammed as 

~ 7 

INEWSTACK] 3 
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The Stack axioms can be viewed as defining operations 
which produce and access such tree structures: 

Fig. 4. The Symboltable data type. 

type Symboltable 

NEWSTACK = I NEWSTACK] 

PUSH (sfk, elm) = 
/ N 

slk elm 

stk elm 

etc. 

The two equations for POP together define POP as an 
operation which first checks which kind of node it is 
given and then proceeds accordingly. This is an example 
of a direct implementation. 

Direct implementations are useful from a number of 
standpoints. In the first place, the concept of a direct 
implementation can serve as an aid to constructing spec- 
ifications, i.e., one can try to write the semantic axioms 
so that they can serve as programs operating on tree 
structures. If  this can be done, and one has a compiler 
which produces running implementations of such pro- 
grams, then one can experiment with the operations, 
testing to a limited extent whether they have the prop- 
erties intended. More importantly, one can also test high- 
level algorithms which are programmed in terms of the 
data type, before fLxing upon a particular implementa- 
tion of the data type. Thus a true top-down implemen- 
tation methodology can be achieved. 

2.3 A Richer Example 
The Stack data type is too simple, in a number of 

respects, to illustrate properly the properties and uses of 
algebraic axiom specifications. A richer example is pro- 
vided by the symbol table data type. In this example we 
deal with a common but nontrivial data structuring 
problem: the design of a symbol table for a compiler for 
a block-structured language. We wish to specify and 
implement a set of operations for maintaining the symbol 
table during compilation of a program. An informal 
specification of the operations might be as follows: 

INIT: allocate and initialize the symbol table for the 
outermost scope. 

ENTERBLOCK: prepare a new local naming scope. 
ADDID: add an identifier and its attributes to the symbol 

table. 
LEAVEBLOCK: discard entries from the most current scope and 

reestablish the next outer scope. If already in the 
outermost scope, do nothing. 

ISINBLOCK: has a specified identifier already been declared in 
this scope? (Used to check for duplicate declara- 
tions.) 

RETRIEVE: return the attributes associated with the most local 
definition of a specified identifier. 

A formal specification is given in Figure 4. As an aid 
to understanding these axioms, it is useful to consider a 

syntax 

INIT ~ Symboltable, 
ENTERBLOCK(Symboltable) ~ Symboltable, 
ADDID(Symboltable, Identifier, Attributelist) 

Symboltable, 
LEAVEBLOCK(Symboltable) ~ Symboltable, 
ISINBLOCK(Symboltable, Ident i f ier)~ Boolean, 
RETRIEVE(Symboltable, Identifier) 

Attributelist U {UNDEFINED}. 

s e m a n t i c s  

declare symtab: Symboltable, id, id I : Identifier, attrlist: Attributelist; 
1) LEAVEBLOCK(INIT) = INIT, 
2) LEAVEBLOCK(ENTERBLOCK(symtab)) 

= symtab, 
3) LEAVEBLOCK(ADDID(symtab, id, attrlist)) 

= LEAVEBLOCK(symtab), 
4) ISINBLOCK(INIT, id) = FALSE, 
5) ISINBLOCK(ENTERBLOCK(symtab), id) 

= FALSE, 
6) ISINBLOCK(ADDID(symtab, id, attrlist), idl) 

= IF id = idl 
THEN TRUE 
ELSE ISINBLOCK(symtab, idl), 

7) RETRIEVE(INIT, id) = UNDEFINED, 
8) RETRIEVE(ENTERBLOCK(symtab), id) 

= RETRIEVE(symtab, id), 
9) RETRIEVE(ADDID(symtab, id, attrlist), idl) 

= IF id = idl 
THEN attrlist 
ELSE RETRIEVE(symtab, idl). 

direct implementation. We let the representation be trees 
of INIT, ENTERBLOCK, and ADDID nodes and use 
the set of semantic axioms as programs. Then, for ex- 
ample, if this direct implementation is used by a compiler 
in processing the following program segment, 

begin 
real X, Y; 

begin 
integer Y; 

end 
end 

the symbol table 

SYM = ADDID(ENTERBLOCK(ADDID(ADDID(INIT, X, Real), 
Y, Real)), Y, Integer) 

will be created within the innermost block. Diagrammed 
as a tree structure, this is shown below 

] ENTERBLOCK I Y Integer 

eol 
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Suppose now that we apply RETRIEVE to SYM and X. 
Simulating the RETRIEVE operation using the direct 
implementation, we have 

RETRIEVE (SYM,X) 

: [by o×iorn 9] ;, R E T R I E V E ( ~  ,X) 

ieol Reol 

= [by oxiom 9] : ' R E T R ~  = [by oxlorn 9] =" Real 

ilNITI x Reol 

= [.y o,iom 8] :, R E T R y )  

~ e o l  Real 

If tree structure operations are implemented with 
reasonable efficiency, then this direct implementation 
could be used in a compiler to test the Symboltable 
specification more extensively and to test other compo- 
nents of the compiler. However, because this implemen- 
tation requires potentially long searches for the RE- 
TRIEVE, ISINBLOCK, and LEAVEBLOCK opera- 
tions, it is not very efficient. In the next section we turn 
to the problem of designing a more efficient implemen- 
tation. 

3. Algebraic Axioms as an Aid to Top-Down 
Development of Implementations 

The key to successful top-down design is the ability 
to construct, at each level of refinement, abstractions 
which suppress all irrelevant detail while clearly exposing 
the relevant concepts and structure. By deferring detail, 
one reduces the number of decisions that must be made 
at any one time. Verifying the correctness of each refine- 
ment as it is developed is crucial. Therefore, the specifi- 
cation of a refinement, though possibly quite abstract, 
must be complete and unambiguous. All symbols that 
appear in it must be well-defined. 

Though systems have occasionally been designed in 
a top-down fashion, they have for the most part been 
tested from the bottom up. This was necessary because 
the upper levels could not be easily tested in the absence 
of an implementation of lower levels. By eliminating (via 
direct implementations) the necessity of supplying such 
implementations, one eliminates the need to delay testing 
while awaiting the implementation of other modules. 
More importantly, if one executes with specifications 
rather than implementations of abstract operations, the 
possible sources of a known error are far more limited. 

The ability to use specifications for testing is closely 
related to the policy of restricted information flow [19]. 
If a programmer is supplied with algebraic definitions of 
the abstract operations available to him and is forced to 
write and test his module with only that information, he 
is denied the opportunity to rely intentionally or acci- 
dentally upon information that should not be relied 
upon. This serves not only to localize the effect of 
implementation errors, but also to increase the ease with 
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which one implementation may be replaced by another. 
This should, in general, limit the danger of choosing a 
poor representation and becoming inextricably locked 
into it. 

In this section we carry out a design of a hierarchi- 
cally structured implementation of the Symboltable data 
type, using algebraic specifications of the data types 
employed at each level of the implementation. In an 
earlier presentation of this design [7] the lowest level of 
the implementation was expressed as a set of PL/l-like 
programs. We differ here in that we continue to use the 
restricted set of language features described in Section 2. 

Let us now consider how we might proceed to design 
a reasonably efficient implementation of the Symbolta- 
ble data type. First, note that if we ignore the complica- 
tion introduced by block structure, a symbol table can 
be viewed abstractly as providing a mapping from iden- 
tifiers to attribute lists. One way to handle block struc- 
ture, especially suitable in a one-pass compiler, is to have 
a stack of mappings, each mapping from identifiers to 
attribute lists, with the top mapping on the stack corre- 
sponding to the current innermost block being processed. 
This is the method we have chosen in the implementation 
given in Figure 5. 

This implementation uses the operations of the Stack 
data type schema of Figure 1 and the Mapping data type 
schema of Figure 6. Note that we have bound the 
parameters of the Stack and Mapping types. The Map- 
ping data type is the same as the Array data type of 
Figure 2, except for the addition of an ISDEFINED 
operation. 

Before continuing to refine these operations, i.e. be- 
fore supplying implementations for types Stack and 
Mapping, we should consider the problem of ascertain- 
ing whether or not the above implementation of the 
Symboltable data type is correct. This can be approached 
formally by using the proof techniques to be described 
in Section 4, or less formally by using testing techniques 
based on direct implementations of types Stack and 
Mapping. Had we, for example, tested portions of the 
compiler by using a direct implementation of type Sym- 
boltable (Figure 4), we might now run the same tests 
using the current implementation of type Symboltable 
and direct implementations of types Stack and Mapping. 
We shall not discuss such testing here, but in Section 4 
we shall carry out parts of the formal proof of correctness. 

Earlier we noted that the development process could 
be halted when one arrived at a program all of whose 
operations were either primitive or efficiently directly 
implementable. We have not yet reached that point. 
While the use of the Stack yields a significant improve- 
ment in the time required for the LEAVEBLOCK op- 
eration (over the time required by the direct implemen- 
tation of the Symboltable type), the time required for the 
RETRIEVE operation has not been improved at all. A 
solution to this problem, in the form of a hash-table 
implementation of the Mapping data type, is given in the 
Appendix. 
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Fig. 5. An implementation of the Symboltable data type with a stack 
of mappings. 

representation 

SYMT(Stack[Mapping[Identifier, Attributelist]]) ~ Symboltable. 

programs 

declare stk: Stack, id: Identifier, attrlist: Attributelist; 
INIT = SYMT(PUSH(NEWSTACK, NEWMAP)), 
ENTERBLOCK(SYMT(stk)) = SYMT(PUSH(stk, NEWMAP)), 
ADDID(SYMT(stk), id, attdist) 

= SYMT(REPLACE(stk, DEFMAP(TOP(stk), id, attrlist))), 
LEAVEBLOCK(SYMT(stk)) 

= IF ISNEW(POP(stk)) 
THEN SYMT(REPLACE(stk, NEWMAP)) 
ELSE SYMT(POP(stk)), 

ISINBLOCK(SYMT(stk), id) = ISDEFINED(TOP(stk), id), 
RETRIEVE(SYMT(stk), id) 

= IF ISNEW(stk) 
THEN UNDEFINED 
ELSE IF ISDEFINED(TOP(stk), id) 

THEN EVMAP(TOP(stk), id) 
ELSE RETRIEVE(SYMT(POP(stk)), id). 

Fig. 6. Mapping data type. 

type Mapping[domaintype: Type, rangetype: Type] 

syntax 

NEWMAP ~ Mapping, 
DEFMAP(Mapping, domaintype, rangetype) ---, Mapping, 
EVMAP(Mapping, domaintype) ---, 

rangetype O {UNDEFINED}, 
ISDEFINED(Mapping, domaintype) ---, Boolean. 

semantics 

declare map: Mapping, dval, dval 1 : domaintype, 
rval: rangetype; 

EVMAP(NEWMAP, dval) = UNDEFINED, 
EVMAP(DEFMAP(map, dval, rval), dvall) 

= IF dval = dvall THEN rval 
ELSE EVMAP(map, dvall), 

ISDEFINED(NEWMAP, dvall) = FALSE, 
ISDEFINED(DEFMAP(map, dval, rval), dvall) 

= IF dval = dvall THEN TRUE 
ELSE ISDEFINED(map, dvall). 

4. Proving Correctness 

In this section we turn to the problem of proving 
correctness of implementations of data types. We shall 
continue to center the discussion upon the example of 
the Symboltable data type, showing parts of the proof of 
correctness of the example implementation given in Sec- 
tion 3. 

One of the most important aspects of the proof 
techniques used to prove correctness of algebraically 
specified data types, is that the proofs are factored into 
levels corresponding to the implementation levels. To 
prove the correctness of a data type implemented in 
terms of other data types, we need to rely only on the 
axiomatic specifications of the other data types, not on 
their implementations. For example, as we will show in 

Section 4.2, to verify the top level of the implementation 
of the Symboltable data type, we use the semantic axioms 
for the Stack and Mapping data types and ignore their 
implementations. In fact, we could (and, in general, 
would) have proceeded with the proof of the top level 
before implementing the Stack or Mapping data types. 

Another highly significant aspect of the use of axioms 
for other data types in the proof of an implementation, 
is the computational nature of the proof steps: the axioms 
are used as rewrite rules and proofs proceed via a series 
of reductions. Therefore, to a large extent, the proof 
process can be automated. In Section 5 we shall discuss 
some of the details of an interactive system we are 
developing to verify implementations of data types. 

4.1 Formal Deduction Using The Boolean Data Type 
Although we will not be completely formal in the 

example proofs in the following sections, it is useful to 
discuss at this point the basis we have chosen for auto- 
mating such proofs, since it fits well with the overall 
approach of using algebraically specified data types. In 
fact, many of the formal deductions will be based on the 
algebraic specification of the Boolean data type given in 
Figure 7. 

In this specification, each of the usual logical opera- 
tors is related by an axiom to the IF-THEN-ELSE 
operator which is axiomatized by relating it to TRUE 
and FALSE in the first two axioms. The use of ^, v, etc. 
in infix rather than prefLx form is purely for convenience. 
Although the above specification defines IF-THEN- 
ELSE only for Boolean operands, we assume that every 
data type T 1 can use IF-THEN-ELSE with the syntactic 
specification 

(IF Boolean THEN T1 ELSE TI) ---, T1 

and the same axioms as the first two in the above 
specification. 

We shall make frequent use of the following rewrite 
rules for IF-THEN-ELSE, which are theorems provable 
from the Boolean axioms: 

1. [Repeated result rule] 
(IF p THEN q ELSE q) = q 

2. [Redundant IF rule] 
(IF p THEN TRUE ELSE FALSE) = p 

3. [IF-distribution rule] 
(IF(IF p THEN q ELSE r) THEN a ELSE b) 

= IF p THEN (IF q THEN a ELSE b) 
ELSE (IF r THEN a ELSE b) 

4. [Logical substitution rules] 
(IF p THEN qIP] ELSE r) 

= IF p THEN q[TRUEfor p] ELSE r) 
(IF p THEN q ELSE rip]) 

= (IF p THEN q ELSE r[FALSEfor p]). 

In the left-hand side of a rule, "q[p]" means q must be 
an expression in which p occurs as a subexpression 
(possibly p = q). In the right-hand side, "q[TRUE for 
p]" is the result of substituting TRUE for all occurrences 
of p in q. We require that p occur as a subexpression of 
q to limit applicability of the rule to those places where 
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Fig. 7. Boolean data type. 

type Boolean 

syntax 

TRUE --* Boolean, 
FALSE --~ Boolean, 
(IF Boolean THEN Boolean ELSE Boolean) -* Boolean, 
(Boolean ^ Boolean) --* Boolean, 
(Boolean v Boolean) --, Boolean, 
~Boolean -* Boolean, 
(Boolean D Boolean) --~ Boolean, 
(Boolean -= Boolean) --, Boolean. 

semantics 

declare p, q, r:Boolean; 
(IF TRUE THEN q ELSE r) = q, 
(IF FALSE THEN q ELSE r) = r, 
(p ^ q) = IF p THEN q ELSE FALSE, 
(p v q) = IF p THEN TRUE ELSE q, 
~p  = IF p THEN FALSE ELSE TRUE, 
(p D q) -- IF p THEN q ELSE TRUE, 
(p --- q) = IF p THEN q ELSE -~q, 

it will effect a change. Rules 1-4 are also theorems for 
IF-THEN-ELSE in other data types. 

As noted in [16] and [1], the Boolean axioms and 
rules 1-4 combine to yield a system for simplifying 
expressions of the propositional calculus. It is easily 
shown that the Boolean axioms and rules 1-4 are com- 
plete with respect to the propositional calculus in that 
any valid expression in propositional calculus (i.e. prov- 
able by truth table) is reducible to TRUE by use of these 
rewrite rules. These rules form the basis for an automatic 
simplifier for logical expressions which is described in 
Section 5. 

It is, of course, necessary to go beyond propositional 
calculus and include deductive rules for equality and 
other operators. We will not go into the details of the 
formal rules here except to mention the following im- 
portant rule: 

5. ]Case analysis rule] 
f(al . . . . .  (IF p THEN x ELSE y) ..... a,) 

= IF p THEN f(al ..... x ..... an) 
ELSE f(al . . . . .  y ..... an) 

when f # IF-THEN-ELSE. 

This is a "second-order" rewrite rule and the rule applies 
to IF-THEN-ELSE expressions in any operand position. 
The case in which f is IF-THEN-ELSE is already cov- 
ered in part by the IF-distribution rule. Note that if f 
were permitted to be IF-THEN-ELSE, then the expres- 
sion IF al THEN (IF p THEN x ELSE y) ELSE a3 could 
be transformed to IF p THEN (IF al THEN x ELSE a3) 
ELSE (IF al THEN y ELSE aa) and the rule would 
apply again, leading to an infinite sequence of  applica- 
tions. An important application of this case analysis rule 
occurs when f is "--," e.g. 

((IF p THEN x ELSE y) = z) = =  [by case analysis rule] 
(IF p THEN (x = z) ELSE (y = z)). 

4.2 Verif ication of  One  of  the Symboltable  A x i o m s  
T h e  b a s i c  p r o o f  t e c h n i q u e  fo r  v e r i f y i n g  a n  i m p l e -  

m e n t a t i o n  o f  a d a t a  t y p e  is to  s h o w  t h a t  e a c h  o f  t h e  

a x i o m a t i c  s p e c i f i c a t i o n s  fo r  t h e  d a t a  t y p e  is s a t i s f i ed  

w h e n  t h e  p r o g r a m s  fo r  t h e  o p e r a t i o n s  o f  t h e  d a t a  t y p e  

a re  s u b s t i t u t e d  i n t o  t h e  a x i o m s .  A s  o u r  f i rs t  e x a m p l e ,  

c o n s i d e r  t h e  n i n t h  a x i o m  fo r  t h e  S y m b o l t a b l e  d a t a  type :  

RETRIEVE(ADDID(symtab, id, attrlist), idl) 
= IF id = idl THEN attrlist 

ELSE RETRIEVE(symtab, idl). (1) 

To start, we assume there exists a stack, stk, such that 
symtab = SYMT(stk). (We will show in Section 4.3 how 
to verify this assumption.) Substituting, we obtain the 
verification condition 

RETRIEVE(ADDID(SYMT(stk), id, attrlist), idl) 
= IF id = idl THEN attrlist 

ELSE RETRIEVE(SYMT(stk), idl). (2) 

The goal now is to show that this equation is true using 
the programs for RETRIEVE and ADDID (Figure 5) 
and the axioms for the Stack and Mapping data types 
(Figures 1 and 6) as rewrite rules. We must also use the 
axioms and some theorems for the Boolean data type, as 
discussed in Section 4.1. 

Working first on the left-hand side of (2), we make 
the following reductions: 

LHS = =  [by ADDID program] 
RETRIEVE(SYMT(stkl), idl) 

where stkl = REPLACE(stk, DEFMAP(TOP(stk), id, attrlist)) 

= =  [by RETRIEVE program] 
IF ISNEW(stkl) 

THEN UNDEFINED 
ELSE IF ISDEFINED(TOP(stkl), idl) 

THEN EVMAP(TOP(stkl), id 1) 
ELSE RETRIEVE(SYMT(POP(stkl)), idl) 

= =  [by REPLACE, ISNEW, POP and TOP axioms (and definition of 
stkl)] 

IF ISDEFINED(DEFMAP(TOP(stk), id, attrlist), idl) 
THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl) 
ELSE RETRIEVE(SYMT(POP(stk)), idl) 

= =  [by ISDEFINED axiom] 
IF (IF id = idl 

THEN TRUE ELSE ISDEFINED(TOP(stk), idl)) 
THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl) 
ELSE RETRIEVE(SYMT(POP(stk)), idl) 

= =  [by IF-distribution Rule] 
IF id = idl 

THEN IF TRUE 
THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl) 
ELSE RETRIEVE(SYMT(POP(stk)), idl) 

ELSE IF ISDEFINED(TOP(stk), idl) 
THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl) 
ELSE RETRIEVE(SYMT(POP(stk)), idl) 

= =  [by IF axiom] 
IF id = idl 

THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl) 
ELSE IF ISDEFINED(TOP(stk), idl) 

THEN EVMAP(DEFMAP(TOP(stk), id, attrlist), idl) 
ELSE RETRIEVE(SYMT(POP(stk)), idl)  
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= =  [by EVMAP axiom] 
IF id = id 1 

THEN (IF id = idl THEN attrlist 
ELSE EVMAP(TOP(stk), idl)) 

ELSE IF ISDEFINED(TOP(stk), idl) 
THEN (IF id = idl THEN attrlist 

ELSE EVMAP(TOP(stk), idl)) 
ELSE RETRIEVE(SYMT(POP(stk)), idl) 

= =  [by Logical substitution rule] 
IF id = id 1 

THEN (IF TRUE THEN attrlist 
ELSE EVMAP(TOP(stk), idl)) 

ELSE IF ISDEFINED(TOP(stk), idl) 
THEN (IF FALSE THEN attrlist 

ELSE EVMAP(TOP(stk), idl)) 
ELSE RETRIEVE(SYMT(POP(stk)), icll) 

= =  [by IF axioms] 
IF id = idl 

THEN attrlist 
ELSE IF ISDEFINED(TOP(stk), idl) 

THEN EVMAP(TOP(stk), idl) 
ELSE RETRIEVE(SYMT(POP(stk)), idl) 

Having already substituted once for RETRIEVE, we do 
not substitute again for the recursive call. We need now 
only show that the right-hand side of (2) reduces to the 
same expression. We begin by substituting in the imple- 
mentation of RETRIEVE. 

= =  [by RETRIEVE program] 
IF id = idl THEN attrlist 

ELSE IF ISNEW(stk) 
THEN UNDEFINED 
ELSE IF ISDEFINED(TOP(stk), idl) 

THEN EVMAP(TOP(stk), idl) 
ELSE RETRIEVE(SYMT(POP(stk), idl). 

At this point we observe that no further reductions are 
possible, yet we do not have the expression to which the 
left-hand side was reduced. To reduce this expression to 
the desired form, we need to prove the lemma: 
ISNEW(stk) --- FALSE. How such a lemma is proved is 
discussed in Section 4.3. At this juncture, let us merely 
assume the lemma and use it immediately to reduce the 
above expression to the expression derived for the left- 
hand side. Equation (2) has thus been shown to be true, 
and axiom (1) verified for the implementation. 

We have shown this proof in detail to illustrate its 
largely straightforward nature. Up to the use of the 
lemma ISNEW(stk) = FALSE, each step was merely the 
application of a rewrite rule. The rules could have been 
applied in a different order, but this would not have 
altered the final result since, if the axioms are complete 
as rewrite rules, all possible reduction sequences will 
terminate with the same result. It should be noted that 
to ensure rewrite rule completeness, we restrict the form 
that the axioms may take [17]. We must also take care in 
the unfolding of recursive implementations. This is not 
done automatically, but only under user control. 

Verification of the axioms in the manner of the above 
proof establishes only partial correctness of the imple- 
mentation, i.e. that if the programs terminate they give 
results satisfying the axioms. Proof of termination must 
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be done separately. However, implementations of data 
types are often simple enough that termination is ob- 
vious, and we shall not deal with the issue of formal 
proofs of termination in this paper. 

4.3 Data Type Induction 
In the proof of axiom (2) in the previous section, we 

made use of the unproved lemma: 

ISNEW(stk) -- FALSE. (3) 

To prove (3), we recall that stk is not just an arbitrarily 
chosen stack, but one assumed to be generated as a 
representation of a symbol table. If we examine the 
syntactic specification of the Symboltable data type, we 
see that the only operations which produce symbol tables 
as their output are INIT, ENTERBLOCK, ADDID, and 
LEAVEBLOCK. Examining the program for each of 
these operations, we see that INIT generates an initial 
stack, stk, for which (3) is true, and that if (3) is true of 
the stack representing the symbol table argument of any 
of the other operations, then it is true of the stack 
produced in the result. Therefore, (3) must be true of all 
stacks produced as representations of symbol tables by 
operations of the Symboltable data type. 

The general principle being used in the above proof 
is that of data type induction (called "generator induc- 
tion" in [20] and [23]). Paraphrasing the discussion in 
[20, p. 141], we suppose that a data type T has, according 
to its syntactic specification, exactly the operations F1, 
..., Ft whose range is the set of values of T. Let P(x) be 
a property of values of type T. Then if the truth of P for 
arguments of type T of each Fi implies the truth of P for 
the results of calls of Fi allowed by the syntactic specifi- 
cation of T, then it follows that P is true of all values of 
the data type. If strong type-checking is assumed, the 
validity of this rule follows by induction on the number 
of computation steps involving values of type T. As 
Spitzen and Wegbreit point out, the data type induction 
principle "is analog to the principle of complete induc- 
tion over the integers. As with complete induction, one 
of the results which must be established is the base step, 
that P is true of the results of those primitives F with no 
arguments of type T." In the case of symbol tables, INIT 
is the only such primitive. 

Let us examine more carefully the proof of (3) by 
data type induction. We can regard any property, P1, 
that we wish to prove about symbol tables by data type 
induction as an operation with the syntactic specification: 

PffSymboltable) --* Boolean, 

and the semantic specifications: 

PffINIT) 
Pl(symtab) D PI(ENTERBLOCK(symtab)) 
Pffsymtab) D P~(ADDID(symtab, id, attrlist)) 
Pffsymtab) D PI(LEAVEBLOCK(symtab)). (4) 

These specifications can be generated automatically from 
the syntactic specification of the Symboltable data type. 
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To prove (3), we let the interpretation of P1 in terms of 
the implementation values be: 

PI(SYMT(stk)) = (ISNEW(stk) = FALSE). (5) 

We then prove each of the conditions in (4) using this 
interpretation of P1 and the implementation programs of 
the Symboltable operations. For example, the fourth 
condition becomes: 

P1(SYMT(stk)) ~ PI(LEAVEBLOCK(SYMT(stk))) 

---= [by (5) and LEAVEBLOCK program] 
(ISNEW(stk) = FALSE) 

D PI(IF ISNEW(POP(stk)) 
THEN SYMT(REPLACE(stk, NEWMAP)) 

ELSE SYMT(POP(stk))) 

= =  [by case analysis rule] 
(ISNEW(stk) = FALSE) 

D (IF ISNEW(POP(stk)) 
THEN P~(SYMT(REPLACE(stk, NEWMAP))) 

ELSE P~(SYMT(POP(stk))) 

= =  [by (5)] 
(ISNEW(stk) = FALSE) 

D (IF ISNEW(POP(stk)) 
THEN ISNEW(REPLACE(stk, NEWMAP)) = FALSE 

ELSE ISNEW(POP(stk)) = FALSE) 

= =  [by ISNEW axiom and logical substitution rule] 
(ISNEW(stk) = FALSE) 

D (IF ISNEW(POP(stk)) 
THEN FALSE = FALSE 

ELSE FALSE = FALSE) 

which reduces to TRUE with the application of the 
reflexive property of Boolean equality, the repeated re- 
sult rule, and the D axiom. 

If  the proof of a property P of a data type requires 
interpretation of P in terms of the implementation, then 
it is called an implementation invariant. Thus [with the 
establishment of the other three conditions in (4)], we 
have aimost completed showing that (3) is an implemen- 
tation invariant of the Symboltable data type. What 
remains to be shown is that 

P(symtab) = (3 stk E Stack such that symtab = SYMT(stk)) (6) 

holds always. Again, this can easily be verified using 
data type induction. The lemma (6) is an example of a 
representation invariant, which we define to be that im- 
plementation invariant which describes how the abstract 
values are represented. The representation invariant can 
be constructed automatically from the representation part 
of the implementation. 

The normal form lemma for a data type is the repre- 
sentation invariant for its direct implementation. Con- 
sider, for example, 

P(symtab) = (symtab = INIT) 
~/(3 symtab I such that symtab = ENTERBLOCK(symtab 1)) 
V (3 symtabl,  id, attrlist such that 

symtab = ADDID(symtabl ,  id, attrlist)). (7) 

This can be shown to satisfy each of the conditions in 
(4) by using the syntactic specification and axioms 
for the Symboltable data type to demonstrate that 
LEAVEBLOCK is an extension, i.e. it does not allow us 
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to generate any values of  type Symboltable that cannot 
be generated using only INIT, ENTERBLOCK, and 
ADDID. For a complete discussion of this see [8]. Nor- 
mal form lemmas are useful in proofs which make use of 
the data type, in that they can be used to reduce the 
number of  cases that must be considered in a proof by 
case analysis. In the proof of (5), for example, (7) tells us 
that we need not consider the fourth formula in (4). 

4.4 Interpretation of the Equality Operator 
Another important consideration in proving that an 

implementation satisfies an axiom is the interpretation 
of the equal sign in the axiom in terms of the implemen- 
tation. To illustrate this, consider the axiom for stacks, 
POP(PUSH(stk, elm)) = stk, and the implementation of 
Figure 2. We assume there exists an array, arr, and an 
integer, t, such that stk = STAK(arr, t). Substituting this 
into the axiom, we obtain 

POP(PUSH(STAK(arr,  t), elm)) = STAK(arr, t) 

= =  [by PUSH program] 
POP(STAK(ASSIGN(arr,  t + 1, elm), t + 1)) = STAK(arr, t) 

= =  [by POP program and integer theorem ((t + 1) - 1 = t)] 
(IF t + I -- 0 THEN STAK(ASSIGN(arr, t + 1, elm), 0) 

ELSE STAK(ASSIGN(arr, t + 1, elm), t)) = STAK(arr, t). 

Assuming t _> 0, which can be proved as an implemen- 
tation invariant by the methods of Section 4.3, we can 
make a further reduction so that the equation becomes 

STAK(ASSIGN(arr, t + 1, elm), t) = STAK(arr, t). (8) 

What we now need to establish the validity of (8), is a 
proof that STAK(ASSIGN(arr, t + 1, elm), t) and 
STAK(arr, t) are indistinguishable by any sequence of 
operations mapping us out of type Stack. To do this we 
introduce an equality interpretation for this representation 
of type Stack. To the implementation of Figure 3 we 
thus add 

equality interpretation 
(STAK(arr, t) = STAK(arrl ,  t l)) 

= (t = t l ) / x  Vk(1 _< k _< t D ACCESS(arr, k) 
= ACCESS(arrl ,  k)) (9) 

Using (9), (8) becomes: 

(t = t) A Vk(1 _ k _< t D ACCESS(ASSIGN(arr, t + 1, elm), k) 
= ACCESS(arr, k)) 

==[by equality axiom for integers and ACCESS axiom for arrays] 
Vk(l _< k ~ t D (IF t + 1 = k THEN elm ELSE ACCESS(arr, k)) 

-- ACCESS(arr, k)) 
= =  [by inequality property of  integers] 

Vk(1 _< k ~ t D (IF FALSE THEN elm ELSE ACCESS(arr, k)) 
= ACCESS(arr, k)) 

which is reduced to TRUE by use of the IF and D 
axioms, the repeated result rule, and the property 
Vk(TRUE) = TRUE. 

As part of the verification of the implementation, it 
is necessary to prove that the chosen interpretation of  
equality of stacks has the properties of an equality op- 
erator. These properties are 
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1. (Reflexivity) x -- x 
2. (Symmetry)  x = y D y = x 
3. (Transitivity) x = y A y = z ~ X = z 
4. (Substitution) x = y D p = p [ y f o r  x] where p is any expression. 

Properties 1-3 are easily proved for the equality inter- 
pretation (9) for stacks, since they reduce to the corre- 
sponding properties for equality in type elementtype. To 
prove the substitution property it suffices to show that 
the implementation satisfies 

4a. stk = stkl  D PUSH(stk,  elm) = PUSH(s tk l ,  elm) 
4b. stk = stkl  D POP(stk) = POP(s tk l )  
4c. stk = stkl  D TOP(stk)  = TOP(s tk l )  
4d. stk = stkl  D ISNEW(s tk)  = ISNEW(s tk l )  
4e. stk = stkl  D REPLACE(stk ,  elm) = REPLACE(s tk l ,  elm) 

since, by the syntactic specification, Stack values can 
appear in expressions only as the arguments of PUSH, 
POP, TOP, ISNEW, or REPLACE operations. The 
proof of 4a is, letting stk = STAK(a, t), stkl = 
STAK(b, u), 

STAK(a,  t) = STAK(b ,  u) D PUSH(STK(a ,  t), elm) = 
P U S H ( S T A K ( b ,  u), elm) 

= =  [by P U S H  program and Stack equality interpretation] 
[(t = u) A Vk(1 <_ k _< t D ACCESS(a ,  k) = ACCESS(b ,  k))] 

D [ ( t +  l = u +  1) A V k ( l _ _ k _ < t +  1 
ACCESS(ASSIGN(a ,  t + 1, elm), k) 
--- A C C E S S ( A S S I G N ( b ,  u + 1, elm), k))] 

= =  [by substi tut ion of  u for t] 
[(t = u) A Vk(1 <- k _< u D ACCESS(a ,  k) = ACCESS(b,  k))] 

D Vk(l <_ k _< u + 1 D ACCESS(ASSIGN(a ,  u + 1, elm), k) 
-= A C C E S S ( A S S I G N ( b ,  u + 1, elm), k)). 

The equation relating ACCESS expressions reduces to 
IF u + 1 = k THEN elm = elm ELSE ACCESS(a, k) 
- ACCESS(b, k), and thus the conclusion is reduced to 
the second hypothesis. We omit the details of the proofs 
of 4b-4e, but note that they have been proved automat- 
ically by the programs described in Section 5. 

In the general case of a data type T with abstract 
operations F1 .. . . .  Fn, the verification conditions for the 
substitution property are 

x = y D F i (  .... x, ...) = Fi( .... y, ...), i = l  . . . . .  n 

where the other arguments are held fLxed. 
Our use of equality interpretations is a generalization 

of an earlier method using abstraction functions [9]. An 
abstraction function is a function A(x) which maps rep- 
resentation values x onto the abstract values which they 
represent. As an example, an abstraction function for the 
implementation of the Stack data type by Array/Integer 
pairs can be defined by 

A(arr, t) ---- IF  t = 0 T H E N  N E W S T A C K  
ELSE PUSH(A(ar r ,  t - 1), ACCESS(arr ,  t)). 

Given an abstraction function, an equality interpretation 
can be defined in terms of it, e.g. 

(STAK(a,  t) = STAK(b ,  u)) = (A(a, t) = A(b, u)); 

but the opposite is not true. 
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4.5 Summary and Comparison to Another Proof Tech- 
nique 

Let us now summarize the main steps of the proof 
procedure for verifying data type implementations using 
algebraic specifications. We suppose that we have an 
algebraic specification of a data type and an implemen- 
tation expressed in terms of other data types for which 
we also have algebraic specifications. Then the main 
steps are as follows: 
1. State the representation invariant of the implementa- 

tion and prove it using data type induction (as ex- 
plained at the end of Section 4.3). 

2. State the equality interpretation of the implementation 
as discussed in Section 4.4. 

3. Using the representation invariant, substitute the rep- 
resentation into the axioms of the data type and into 
the equality axioms (reflexive, symmetric, transitive, 
substitution), obtaining a set of verification conditions 
(see Section 4.2). 

4. Prove each of the verification conditions, using as 
rewrite rules the programs of the implementation, the 
equality interpretation, and the axioms of the data 
types used in the programs (including the Boolean, 
Integer, etc. data types). In some cases, completion of 
a proof will require one or more assumptions to be 
made about the representation of the data types used 
in the implementation (see Section 4.2). 

5. Prove that the assumptions made in step 4, or a 
stronger set of assumptions, are valid, using data type 
induction (Section 4.3). 
In Section 5 we will discuss an interactive program 

which guides the user through steps 1, 3, 4, and 5, 
accomplishing many of the tasks automatically. 

We conclude this section with a brief discussion of a 
technical difference between our proof technique and 
that of Zilles [25] and Goguen [3]. Regarding equality of 
the values of an abstract data type, we recall our basic 
assumption that the properties of the values can be 
derived solely from the relations determined by the 
axioms (Section 2.1). On the basis of this assumption, we 
conclude that two values may be assumed to be the same 
unless provably different. Zilles [251 and Goguen [31 
make the opposite assumption, i.e. that values should be 
considered to be different unless they are demonstrably 
equal. 

This difference in viewpoint is formally expressed in 
terms of the congruence relations defined by the axioms 
of the type. "The congruence relations used are the 
smallest congruence relations which contain all of the 
defining relations [axioms]. This means that two expres- 
sions are equivalent if and only if there is a consequence 
of expressions such that the first and last expressions are 
the expressions in question and every adjacent pair of 
expressions can be shown to be equivalent using some 
defining relation." [25] We, on the other hand, permit 
any congruence relation (including the smallest) consist- 
ent with the axioms. An example may help to clarify this 
distinction. 
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Consider the abstract type Symboltable as defined in 
Figure 4 and examine two possible Symboltable values: 

S = ADDID(ADDID(INIT,  Y, Integer), X, Real) 
T ~ ADDID(ADDID(INIT,  X, Real), Y, Integer). 

Using the axioms, it cannot be shown that S = T; hence, 
under the smallest congruence viewpoint these values 
would be considered unequal. We prefer to regard S and 
T as equal, ignoring the difference in the order in which 
the identifiers are entered. 

The practical ramifications of this difference in view- 
point are important. If one interprets the axioms as 
defining the smallest congruence relations, then the al- 
gebra defined by the axioms is unique up to isomorph- 
ism. All acceptable implementations of the abstract type 
must, therefore, yield algebras that are isomorphic to one 
another and to the original algebra. This observation is 
the basis of the technique used by both [25] and [3] to 
show the correctness of implementations of abstract data 
types. 

This is a somewhat restrictive notion of correctness. 
It requires that abstract values that are not provably 
equal be mapped onto distinct concrete values. That this 
is a significant restriction may be easily shown through 
reference to our example. One efficient implementation 
of the Symboltable data type was achieved by using a 
hashing function (Figure 8). However, this implementa- 
tion does not preserve the information necessary to 
distinguish between the expressions S and T; it is there- 
fore not a correct implementation with respect to the 
smallest congruence definition of correctness. 

It should be pointed out that this restrictive notion of 
correctness does have certain advantages. The require- 
ment that no information be lost increases the likelihood 
of being able to add new operations to the type without 
having to make extensive changes to existing implemen- 
tations. Implementations which conform to our notion 
of correctness do not, in general, exhibit this property. 

It should also be pointed out that by simply adding 
the axiom 

ADDID(ADDID(symtab,  id, attrs), idl,  attrsl) 
= ADDID(ADDID(symtab,  idl, attrsl), id, attrs), 

our hash table implementation becomes acceptable un- 
der the smallest congruence viewpoint. Unfortunately, 
commutative axioms such as the above lead to rewrite 
rules that once applied can always be applied to their 
result. This will not lead to a problem in verifying the 
correctness of an implementation of the type being de- 
freed (Symboltable in this example). Nor will it lead to 
a problem when verifications of programs that use the 
operations of the type are done by hand. In performing 
semi-automated verifications, however, there is a danger 
that the system will go into an infinite loop. To prevent 
this, it is necessary to recognize this possibility in ad- 
vance, and mark this (or similar axioms) for special 
treatment. This special treatment basically involves re- 
stricting application of the rewrite rule derived from the 
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axiom to occasions specifically requested by the user of 
the system. 

5. Automatic Tools 

The previous sections have presented a methodology 
for the specification of data types, and discussed the use 
of such specifications in design, implementation, testing, 
and verification. Much of the work involved in applying 
the methodology can be profitably automated with tools 
whose use will speed up the application of the methods 
and avoid the errors which would inevitably occur amidst 
the tedium of applying such straightforward steps by 
hand. While we would argue that the results of using the 
methodology are valuable enough that it should be used 
even if it must be done by hand, we hope to show in this 
section that useful automatic tools can be achieved with 
a modest investment of software development. 

We first discuss in Section 5.1 the concepts of direct 
implementations, expression data types, and reduction sys- 
tems. Direct implementations are useful for testing and 
in some cases can serve as actual implementations. Re- 
duction systems are useful for carrying out proofs of 
correctness of applications of abstract data types. In 
Section 5.2 we discuss the realization of reduction sys- 
tems and direct implementations with a simple pattern- 
match compiler based mainly on ideas from [13]. 

This pattern-match compiler is one of the main com- 
ponents of a "Data Type Verification System" (DTVS) 
which we have implemented for testing and verifying 
abstract data types. Another important component is a 
simple deductive system called CEVAL ("Conditional 
Evaluator"), which is used to carry out proofs of data 
type verification conditions, mainly as a series of reduc- 
tion steps. The main part of the implementation of 
CEVAL is a Boolean Expression Reduction System ob- 
tained from the Boolean data type specification of Figure 
7 and extended to include the basic Boolean theorems 
1-4 as reduction rules. (This implementation was ob- 
tained by hand coding, but, except for some hand opti- 
mization, it could have been obtained by applying the 
pattern-match compiler of the system to the axioms and 
theorems of Section 4.1.) In addition to this basic knowl- 
edge of propositional calculus, CEVAL also incorporates 
the Case Analysis Rule of Section 4.1, and some basic 
rules for equality substitution, ordering properties, and 
quantifier and lambda-variable reduction. 

5.1 Direct Implementations, Expression Data Types, 
and Reduction Systems 

An important point about direct implementations is 
that they do not require any additions to the simple 
language for specifications used in Section 2. In fact, we 
define a direct implementation of a data type T to be an 
implementation whose representation part is a subset of 
the syntactic specification of T and whose program part 
is a subset of the semantic specification of T. The maxi- 
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mal direct implementation of a data type T is the imple- 
mentation whose representation part is the entire syntac- 
tic specification of T and whose program part is the 
entire semantic specification for T. 

Direct implementations need not deal with terms 
containing free variables. In performing proofs of cor- 
rectness, on the other hand, we must deal with variables 
whose values are not known. We begin by supplementing 
the syntactic specification of the Symboltable data type 
(Figure 4) with 

SYMVAR(Integer) ---* Symboltable 

but add no axioms relating the new operation, SYM- 
VAR, to the other operations. By doing this, we obtain 
a different data type which can be regarded as a Sym- 
boltable Expression data type. This is because SYM- 
VAR(1), SYMVAR(2), etc., can be regarded as variables 
of type Symboltable, and because the lack of axioms 
relating SYMVAR to other operations makes it neces- 
sary to include expressions such as 

LEAVEBLOCK(SYMVAR(1)),  
ENTERBLOCK(LEAVEBLOCK(SYMVAR(I)) )  

among the values of the data type. In terms of the tree 
structures introduced in Section 2 to explain direct im- 
plementations, the values of a direct implementation 
should include trees such as 

I LEAvEBLOCK I I ENTERBLOCK [ 
' 

ond I,E vEB,oc.I 

1 

as well as trees built from INIT, ENTERBLOCK, and 
ADDID nodes. 

In general, for a given data type T and operation 
F(D1 . . . . .  D,) ~ T, we define the T(F)-expression data 
type to be the data type obtained by adding F(D1 . . . . .  
Dn) "--* T to the syntactic specification of T. The T(F)- 
expression reduction system is defined to be the maximal 
direct implementation of the T(F)-expression data type. 

The example discussed above is the Symbol- 
table(SYMVAR) Expression data type. The Symbolta- 
ble(SYMVAR) Expression Reduction System not only 
provides an implementation of the Symboltable data 
type, but also is capable of making reductions such as 

LEAVEBLOCK (ENTERBLOCK (LEAVEBLOCK (SYMVAR (t)))) 

: LEAVEBLOCK ([ ENTERBLOCK 1):: [by Qxiom 2]::> I LEAVEBLOCK I 
, 

I LEAVEBLOCKI 

1 

=LEAVEBLOCK (SYMVAR (l)) 

1060 

Consequently, this reduction system can be used to carry 
out steps in proofs about applications of the Symboltable 
operations in, for example, proofs of properties of other 
parts of a compiler. 

5.2 Compilation of Reduction Systems 
We now turn to a more detailed discussion of how 

reduction systems (and therefore direct implementations) 
are realized by a pattern-match-compilation process 
(which we shall call PMC). The key to this process is the 
full exploitation of the duality between programs and 
axioms discussed in Section 2.2. 

We shall confine ourselves in this paper to an infor- 
mal description in terms of the Symboltable example. 
From the syntactic specification S of the Symboltable 
data type, PMC first produces a set of node constructor 
operations INITNODE, ENTERBLOCKNODE . . . . .  
RETRIEVENODE, and projection (or selector) opera- 
tions ENTERBLOCKA, ADDID__A, ADDID__B, 
ADDID__C, etc. The constructor operations have the 
same syntactic specification as the corresponding oper- 
ations in S, while projection operations are from the 
constructor range type to one of the argument types of 
the constructor, e.g. 

ADDID__NODE(Symboltable,  Identifier, Attributelist) --~ 
Symboltable, 

ADDID__A(Symboltable) --~ Symboltable, 
ADDID__B(Symboltable) ~ Identifier, 
ADDID__C(Symboltable) --~ Attributelist. 

The projection operations satisfy the semantic axioms 
implied by their name, e.g. 

A D D I D ~ ( A D D I D _ _ N O D E ( s y m t a b ,  id, attrlist)) = symtab, 
ADDID__B(ADDID__NODE(symtab,  id, attrlist)) = id, 
ADDID__C(ADDID__NODE(symtab,  id, attrlist)) = attrlist 

PMC also constructs a node discriminator operation, 

NODEKIND(Symboltable)  --~ 
{INITOP, ENTERBLOCKOP, ADDID__OP, LEAVEBLOCK- 
oP) 

such that 

NODEKIND(INITNODE)  = INITOP 
N O D E K I N D ( E N T E R B L O C K N O D E ( s y m t a b ) )  = ENTER- 

BLOCKOP 
NODEKIND(ADDID__NODE(symtab,  id, attrlist)) = ADDID__OP 
N O D E K I N D ( L E A V E B L O C K N O D E ( s y m t a b ) )  = LEAVE- 

BLOCKOP. 

The actual implementation of these constructor, projec- 
tion, and discriminator operations could of course be 
any of a variety of implementations which satisfy these 
axioms, e.g. with Lisp operations: 

ADDID~NODE(symtab ,  id, attrlist) 
= LIST(ADDID__OP, symtab, id, attrlist), 

ADDID__A(symtab) = CADR(symtab), 
ADDID__B(symtab) = CADDR(symtab),  
ADDID__C(symtab) = CADDDR(symtab),  
NODEKIND(symtab)  = CAR(symtab). 

Essentially this implementation is used in our Data Type 
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Verification System. Alternatively, each of these opera- 
tions could be implemented by machine language code 
for allocating memory blocks of one or more words and 
accessing fields within these blocks, as discussed in [11]. 

PMC then proceeds to translate the semantic axioms 
into programs operating on the nodes. The translation is 
done incrementally (axiom by axiom). Each operation is 
first given an initial program definition, in terms of only 
its corresponding node constructor: 

INIT = INITNODE 
ENTERBLOCK(symtab) = ENTERBLOCKNODE(symtab) 
etc. 

Then, as each axiom is processed, it is used to modify 
the existing program of one of the operations. The first 
axiom, for example, LEAVEBLOCK(INIT) = INIT, is 
used to modify the program for LEAVEBLOCK to 
become 

LEAVEB LOCK(symtab) 
= IF NODEKIND(symtab)  = INITOP 

THEN INIT 
ELSE LEAVEBLOCKNODE(symtab). 

From the next axiom, LEAVEBLOCK(ENTER- 
BLOCK(symtab)) -- symtab, PMC produces 

LEAVEB LOCK(symtab) 
= IF NODEKIND(symtab)  = ENTERBLOCKOP 
THEN ENTERBLOCKA(symtab) 

ELSE IF NODEKIND(symtab)  = INITOP 
THEN INIT 
ELSE LEAVEBLOCKNODE(symtab). 

The third axiom, LEAVEBLOCK(ADDID(symtab, id, 
attrlist)) = LEAVEBLOCK(symtab), produces 

LEAVEB LOCK(symtab) 
= IF NODEKIND(symtab)  = ADDID__OP 

THEN LEAVEB LOCK(ADDID__A(symtab)) 
ELSE IF NODEKIND(symtab)  = ENTERBLOCKOP 

THEN LEAVEBLOCKA(symtab~ 
ELSE IF NODEKIND(symtab)  = INITOP 

THEN INIT 
ELSE LEAVEBLOCKNODE(symtab). 

Note the recursive call in this program. The next three 
axioms lead to a similar program for ISINBLOCK, and 
the final three determine the RETRIEVE program. (Al- 
though the axioms are grouped according to the main 
operator of the left-hand side, this is not necessary.) In 
general, given an axiom LHS - RHS, PMC modifies the 
program for F, where F is the main operator of LHS, 
from its existing program body B to a new body of the 
form 

IF P THEN RHS' ELSE B, 

where P is a test for the argument pattern of LHS, and 
RHS' is obtained from RHS by substituting node pro- 
jection operations for composite parameters in LHS. If 
no composite argument occurs in LHS (as in the case of 
the Stack axiom REPLACE(stk, elm) -- PUSH(POP- 
(stk), elm)), the new program body is simply RHS. 

The code output by this straightforward approach is 
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often not very efficient because it may contain redun- 
dancy in the pattern tests. CEVAL can then be used to 
remove these redundant tests. After this has been done, 
the IF-THEN-ELSE expressions that remain can then 
be replaced by c a s e  selection constructs where appropri- 
ate. We are currently experimenting with these optimi- 
zations in our Data Type Verification System. 

5.3 A Data Type Verification System 
The Data Type Verification System under develop- 

ment at the USC Information Sciences Institute accepts 
specifications and implementations of data types and 
performs three classes of operations on them: (1) main- 
taining a "database for data types," i.e. storage and 
retrieval for display or manipulation; (2) compiling direct 
implementations and expression reduction systems from 
the specifications; (3) carrying out proofs about data 
types, particularly proofs that given implementations of 
a data type satisfy its specification. Input to the system 
is first processed by a command interpreter, which per- 
mits interactive, incremental use of the system. (A file 
read command also permits commands to be batched on 
a file.) Specification and implementations are accepted 
in a syntax very close to that used in this paper. All 
expressions in user input are subjected to strong type 
checking using declarations of variables and interface 
specifications of operations. During type checking, op- 
erators are renamed to internal names. This device per- 
mits generic operators and avoids conflict at later stages 
with names of Interlisp functions. For equations in the 
user input (those expressing axioms and programs), the 
resulting internal form is then fed into a simple pattern- 
match compiler based on the ideas of Section 5.2. Thus 
a set of Interlisp functions is obtained which may then 
be compiled by the Interlisp compiler into machine code. 
Execution of this code or of the original functions (via 
the EVAL interpreter) has the effect of application of 
the original equations as rewrite rules. Presently, we are 
building a large database of data type specifications and 
implementations, both in the form of Interlisp files con- 
taining the EVAL and compiled versions of the functions 
output by the pattern-match compiler and runable core 
images containing many different types. 

The facilities for testing using direct implementations 
and proving using expression reduction systems have 
been used for testing and carrying out proofs about a 
number of data types. To verify our implementation of 
Symboltable in terms of a stack of mappings, for exam- 
ple, the user inputs the Symboltable, Stack, and Mapping 
specifications and the Symboltable implementation. He 
then directs the system to generate the verification con- 
ditions for the implementation. These would consist of 
the Symboltable axioms and the equality axioms for the 
Symboltable equality operator (see Section 4.4), all in- 
terpreted in terms of the representation. 

The user then attempts to prove each of the verifi- 
cation conditions using CEVAL. In these proofs the 
rewrite rules from the Symboltable programs and Stack 
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and Mapping axioms are used automatically, without 
further direction from the user. In some cases, as noted 
in Section 4, completion of a proof will require one or 
more assumptions to be made about the representation 
or about the Stack or Mapping data types. If this is the 
case, the system will stop with a reduced form of the 
original verification condition. Examination of this out- 
put will often lead the user to the necessary assumptions 
which are input by the user and used as needed without 
justification. To complete the verification of the imple- 
mentation, it is necessary to prove these assumptions, or 
a stronger set of assumptions, as theorems (of the Sym- 
boltable data type implementation or of the Stack or 
Mapping data types). The proof system keeps track of 
the status of the proof of each of the original verification 
conditions and the assumptions made, plus enough other 
information that the current stage of the proof can be 
recreated automatically by a "recheck" command. By 
making a transcript tracing the operation of the proof 
system during a recheck of a completed proof, one 
obtains detailed documentation of the proof, unobscured 
by proof steps that did not contribute to the fmal result. 

6. Summaff 

Elsewhere it has been argued that abstract data types 
can be effectively employed as a "thought tool" in the 
structured development of programs ([7], [21], [24], 
[14]). In this paper we have attempted to show that the 
use of algebraic axioms as a means for describing data 
abstractions is also valuable, when properly used, for 
both formal and informal program validation. 

In Sections 2 and 3 we discussed the axiom language 
and some techniques for constructing algebraic axioma- 
tizations. A complete implementation of a moderately 
complex symbol table was developed to show how these 
specifications might be used in practice. In Section 4 we 
demonstrated how properly written axioms can be used 
in formal program verification. Abstract data types pro- 
vide a mechanism for factoring proofs into manageable 
sections. At one level of abstraction, the axiomatic spec- 
ification provides us with theorems that may be applied 
in the verification of programs that use abstract data 
types. Writing the axioms in a certain style allows them 
to be used as reduction rules so that the proofs become 
largely symbol manipulation exercises. We have illus- 
trated how such axioms may be used to verify the 
correctness of implementations of higher-level abstract 
data types in terms of lower-level ones. 

In Section 5 we have described and given the formal 
basis for the symbol manipulation processes needed to 
prove correctness and to provide direct implementations. 
This system can carry out large parts of the proofs 
without a theorem prover; therefore, the cost of execution 
and the software sophistication normally required for 
such proofs is substantially reduced. Furthermore, this 
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system is able to exploit the duality between axioms and 
programs as described in Section 3. A direct implemen- 
tation of a data type is achieved by using the axioms. 
This allows for the interpretive execution of programs 
that make use of algebraically axiomatized data types. 
The coupling of early testing with proofs of correctness 
within the same automated framework is a valuable tool 
in the programming process. 

Appendix. Hash-Table Implementation of Mapping 
Data Type 

The Mapping data type has many implementations 
that would be reasonably efficient for the Symboltable 
application, e.g. using balanced tree structures or hash 
tables. Figure 8 depicts an implementation using a hash 
table. The hierarchical relationship of the types used in 
this implementation is reflected in Figure 9. 

Note that the parameters domaintype and rangetype 
have been bound to Identifier and Attributelist. A hash 
table can be viewed abstractly as a composition of map- 
pings, of which one is implementable by "random ac- 
cess" techniques to provide efficiency in searching. The 
actual implementation of the Mapping data type is given 
in Figure 10. In this implementation we have assumed 
that Arrays with integer domains have random access 
characteristics. We have left the other mappings abstract; 
i.e. Mapping 1 is a data type identical to Mapping, except 
for renaming. For convenience we have assumed an 
operation for initializing an Array: 

INITIALIZE(Array[Integer, Attributelist], Integerrange, 
Mapping 1 [Identifier, Attributelist]) --~ 
Array[Integer, Mappingl[Identifier, Attributelist]] 

with the axiom 

declare arr: Array, irange: Integerrange, int: Integer, 
mapl: Mappingl[Identifier, Attributelist]; 

ACCESS(INITIALIZE(arr, irange, mapl), int) 
= IF ISIN(int, irange) 

THEN mapl 
ELSE ACCESS(arr, int) 

Thus INITIALIZE is a generalization of the ASSIGN 
operator. In most programming languages, no INITIAL- 
IZE operator for arrays is provided, but, of course, it is 
easily implemented with a loop over the elements of 
irange. 

Regarding the HASH operation, we assume only that 
its syntactic specification is 

HASH(Identifier) --, Hashrange 

for some particular range Hashrange of Integer values. 
This is sufficient to show the correctness of the imple- 
mentation of Figure 10; the distribution of identifiers 
over the range is of concern only as a matter of efficiency. 

We will use a direct implementation of the Mapping 1 
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Fig. 8. Symboltable implementation via hash tables. 

I I I I  

• M , ~ .  f • Moppiogl 

Stack ~ ~ I I I ~  I I I ~  I I I I  
(of mappings) Hash 

Taile l 
Ma~ing (of identifier- attributlist) 

Fig. 9. Hierarchy of types in Symboltable implementation. 

Symboltable 

Mapping 
~ r r a y ~  %ppingl 

Integer 

ords, as already given in  Figure  2. Ano the r  possibili ty is 
the direct imp lemen ta t ion  using tree structures composed 
of P U S H  and  N E W S T A C K  nodes, as discussed in Sec- 
t ion 2.2. 

In  a complete implementa t ion  the Identif ier  and  
Attr ibutel is t  data types also must  be dealt  with, but  we 
shall ignore them here, as we do not  regard them as 
being part  of  the Symbol tab le  data  type. (The Symbol-  
table implementa t ion  as we have given it requires very 
little in teract ion with the Identif ier  data t y p e - - o n l y  the 
H A S H  and  Identif ier  equal i ty  operat ions i n t e r a c t - - a n d  
essentially no interact ion with the Attr ibutel ist  data  
type.) Thus  unde r  the assumptions  discussed at the be- 
g inn ing  of  Section 3, the design of  the implementa t ion  is 
complete. 
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Fig. 10. Implementation of Mapping data type with a hash table. 

representation 
MAPP(Array[Integer, Mapping 1 [Identifier, Attributelist]]) --, 

Mapping[Identifier, Attributelist] 

programs 

declare arr: Array, id: Identifier, attrlist: Attributelist; 

NEWMAP = MAPP(INITIALIZE(NEWARRAY, 
Hashrange, NEWMAPI)), 

DEFMAP(MAPP(arr), id, attrlist) 
=MAPP(ASSIGN(arr, HASH(id), 

DEFMAPI(ACCESS(arr, HASH(id)), id, attrlist))), 
EVMAP(MAPP(arr), id) 

= EVMAPI(ACCESS(arr, HASH(id)), id), 
ISDEFINED(MAPP(arr), id) 

= ISDEFINEDI(ACCESS(arr, HASH(id)), id). 

data type, representing a Mappingl value with a tree 
structure of the form 

[ DEFMAP I ] 

/ \>..o [ DEFMAP II 

.../ 
J dn_l rn_ 1 

I DEFiAP 11 

where the di are domain values and the ri are range 
values. 

For the implementation of the Stack data type we 
could use the implementation with Array/Integer rec- 
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Hierarchical programming is being increasingly 
recognized as helpful in the construction of large 
programs. Users of hierarchical techniques claim or 
predict substantial increases in productivity and in the 
reliability of the programs produced. In this paper we 
describe a formal method for hierarchical program 
specification, implementation, and proof. We apply this 
method to a significant list processing problem and also 
discuss a number of extensions to current programming 
languages that ease hierarchical program design and 
proof. 
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I. Introduction 

The use of structuring techniques in programming-- 
for example, programming by successive refinement [5] 
(also called hierarchical programming)--has been rec- 
ognized as increasingly helpful in the design and man- 
agement of large system efforts. A number of such design 
techniques are now promoted for routine use in corn- 
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