
The ASLAN Formal Specification Language

Brent Auernheimer
Richard A. Kemmerer †

Department of Computer Science
University of California

Santa Barbara, California 93106

January 12, 1998

� ���������������������������
† This research has been supported in part by the National Science Foundation under Grant No. ECS81-06688.

The ASLAN Formal Specification Language

Brent Auernheimer
Richard A. Kemmerer †

Department of Computer Science
University of California

Santa Barbara, California 93106

1. Introduction

This paper discusses the ASLAN verification system and is divided into two main parts: an overview of the

ASLAN system and a discussion of "procedural" and "nonprocedural" semantics and the approach adopted

for the ASLAN verification system.

2. An Overview of ASLAN

The ASLAN specification language is built on first order predicate calculus with equality and

employs the state machine approach to specification. The system being specified is thought of as being in

various states, depending on the values of the state variables. Changes in state variables take place only

via well defined transitions.

Predicate calculus is used to make assertions about desired properties that must hold at every state

and between two consecutive states. Critical requirements that must be met in every state are state invari-

ants . To prove that a specification satisfies some invariant assertion, ASLAN generates candidate lemmas

needed to construct an inductive proof of the correctness of the specification with respect to the invariant

assertion. These lemmas are known as correctness conjectures. ASLAN leaves the proof of these conjec-

tures to the user or other theorem prover.

An ASLAN specification is a sequence of levels . Each level is an abstract data type view of the sys-

tem being specified. The first ("top level") view is a very abstract model of what constitutes the system

(types, constants, variables), what the system does (i.e., state transitions), and the critical requirements the

system must meet. Lower levels are increasingly more detailed. The lowest level corresponds fairly

closely to high level code. ASLAN generates correctness conjectures whose proof ensure that lower levels

correctly refine upper levels.

The ASLAN language processor has been implemented to parse statements of levels and critical

requirements, and produces both the conjectures needed to prove a specification is correct with respect to

the critical requirements, and those necessary to show correct refinement of levels. The ASLAN language

and use of the language processor are detailed in the ASLAN User’s Manual [AK 85].
�����������������������������������
† This research has been supported in part by the National Science Foundation under Grant No. ECS81-06688.

1

- D R A F T -

2.1. The Finite State Machine Model

As previously noted, changes in state variables take place only by the application of transitions. In

particular, given a state variable X, and an applicable transition T, ASLAN uses X´ to denote the value of

X before the application of transition T, and X to denote the resulting value of X.

Consider a system consisting solely of a clock. The system may be characterized by the single state

variable "Current� Time" and a transition "tick" that asserts "Current� Time" increases by one unit:

Current� Time = Current� Time´ + 1

This specifies a transition to a new state in which the value of the variable Current� Time is one unit greater

than its value in the immediately preceding state.

2.2. An Overview of Correctness Conjectures

A reasonable goal is to show that the system defined by the state variables and transitions always

satisfies some critical requirements. These critical requirements must be met in every state that the system

may reach. In ASLAN terminology these requirements are state invariants.

As noted above, to prove that a specification satisfies some invariant assertion, ASLAN generates

lemmas needed to construct an inductive proof of the correctness of the specification with respect to the

invariant assertion. It is left to the user, possibly with the aid of a theorem prover, to actually establish the

validity of these correctness conjectures.

As the basis of the induction it must be shown that the system starts only in states that satisfy the

state invariant. Assuming that some initial assertion defines possible beginning states, it must be proved

that:

initial	 assertion → invariant
 assertion

where "→" stands for logical implication.

The inductive step involves showing for every transition T if the system was in a state satisfying the

invariant assertion before the application of T, the resulting state also satisfies the invariant assertion:

invariant� assertion´ & T → invariant� assertion

Where invariant assertion´ means applying the "old value" operator ´ to every variable in the expression,

"&" is logical conjunction, and T represents the effect of applying transition T.

As an example, suppose a critical requirement of some system is that "the number of items in the

warehouse is never less than zero". Specifically, it must be shown that given that the system starts with a

nonnegative inventory, it is not possible that the application of a transition results in a state in which the

2

- D R A F T -

inventory is less than zero. In ASLAN the initial conditions may be expressed as:

INITIAL

Inventory ≥ 0

and the invariant assertion as:

INVARIANT

Inventory ≥ 0

The correctness conjecture corresponding to the basis of the induction is then:

Inventory ≥ 0 → Inventory ≥ 0

which is trivially true.

Suppose that one of the system transitions is a "consumer" transition that merely removes one item

from the inventory:

Inventory = Inventory´ - 1

This expression is called an EXIT assertion. EXIT assertions express what changes the application of a

transition makes on system variables. For this example, the correctness conjecture corresponding to the

inductive step is:

Inventory´ ≥ 0 & (Inventory = Inventory´ - 1) → Inventory ≥ 0

Notice that this conjecture is not always true, which means some part of the specification is incorrect with

respect to the critical requirements. The problem arises because nothing prevents the application of the

consumer transition when Inventory = 0. ENTRY assertions can be used to express the conditions neces-

sary for a transition to be applied. An ENTRY assertion for the consumer transition is:

Inventory > 0

The use of ENTRY assertions makes the inductive step:

invariant� assertion´ & entry� assertion´ & exit� assertion

→
invariant� assertion

which for this example becomes:

Inventory´ ≥ 0 & Inventory´ > 0 & Inventory = Inventory´ - 1

3

- D R A F T -

→

Inventory ≥ 0

Thus, an ASLAN transition consists of an entry assertion and an exit assertion.

2.3. A Simple Sample Specification

The following specification models a portion of a security system. Each user has a password

represented by the User� Password constant; for simplicity, users cannot change passwords. The

Password� Ok constant is the abstraction of the actual system component that compares a user’s real pass-

word with an attempted password. Since the Password type is unspecified, it could be that the underlying

implementation stores only encrypted passwords (represented by User� Password), and that Password� Ok

is implemented by encrypting the attempted password and comparing the result to the (encrypted) user’s

password.

A common security measure is to keep a log of all attempted logins. This is represented by the state

variable Log of type Log� Set. An element of Log� Set is a set of Log� Entries, where each Log� Entry is a a

4-tuple, having Who, When, Tried, and Result fields. The idea is that every time a user attempts to login,

their name, the current time, the password they attempted, and whether the system allowed them to log in,

is recorded.

An attempt to login also causes the state variables Login� Allowed and Sound� Alarm to be set. The

simple BOOLEAN variable Login� Allowed may represent setting up a process for the user in the actual

implementation; at this abstract level, however, the mechanics of giving the user a process is immaterial.

Similarly, Sound� Alarm could be implemented as anything from doing nothing, to sending a "beep" char-

acter to the terminal, to barring the windows and bolting the doors. All these options are left open at the

top level.

The critical requirement the system must meet is that it is never the case that someone has logged on

using a password that isn’t theirs. This requirement is expressed as an INVARIANT stating that if a

Log� Entry le is an element of the Log, then le[Result] is what it should be: true if and only if le[Tried] is

compatible with le[Who]’s password.

4

- D R A F T -

SPECIFICATION Authentication LEVEL Top� Level
TYPE

Time IS INTEGER,
User,
Password,
Log Entry IS STRUCTURE OF

(Who: User, When: Time, Tried: Password, Result: BOOLEAN),
Log! Set IS SET OF Log" Entry

CONSTANT
User# Password(User): Password,
Password$ Ok(Password, Password): BOOLEAN

VARIABLE
Log: Log% Set,
Current& Time: Time,
Login' Allowed, Sound(Alarm: BOOLEAN

INVARIANT
FORALL le: Log) Entry
(le ISIN Log → Password* Ok(User+ Password(le[Who]), le[Tried]) = le[Result])

TRANSITION Login (u : User, p: Password) EXIT
/* record the attempt... */
Log = Log´ UNION {le: Log, Entry (le[Who] = u & le[When] = Current- Time

& le[Tried] = p &le[Result] = Password. Ok(User/ Password(u), p))}
/* this took some time... */

& Current0 Time > Current1 Time´
/* the rest of login’s duties... */

& IF Password2 Ok(User3 Password(u), p)
THEN Login4 Allowed & ¬Sound5 Alarm
ELSE Sound6 Alarm & ¬Login7 Allowed

FI

TRANSITION Tick EXIT
Current8 Time = Current9 Time´ + 1

END Top: Level END Authentication

Note that at this level of specification the method of comparing passwords is not defined, but it is assumed

that some method, which will be specified at a lower level, exists.

3. Procedural and Nonprocedural Semantics

In nontrivial systems, a particular transition rarely affects every state variable. That is, not all state

variables are mentioned unprimed in the EXIT assertions of every transition. Consider the transition "tick",

which affects only the variable "Current; Time". Since the ENTRY assertion is not present it is assumed

TRUE. It is reasonable that ASLAN generates the following correctness conjecture for the transition tick:

5

- D R A F T -

FORALL le: Log< Entry

(le ISIN Log´ → Password= Ok(User> Password(le[Who]), le[Tried]) = le[Result])

& (Current? Time = Current@ Time´ + 1)

→

FORALL le: LogA Entry

(le ISIN Log → PasswordB Ok(UserC Password(le[Who]), le[Tried]) = le[Result])

This conjecture is not provable since no information about the "new value" of Log is available.

From the theorem prover’s point of view, conjectures are first order predicate calculus statements

built with relational operators such as > and =, logical operators, predicates (PasswordD Ok), constants,

such as 1 and TRUE, and (new value) variables. The ASLAN language processor is the interface between

the logical world and the more procedural world of the specifier. ASLAN bridges the gap by adding logi-

cal constructs to the specifier’s assertions.

Since logical operators are used to explicitly state relationships about state variables, the specifier

must be careful to use the nonprocedural semantics of first order logic when interpreting and writing

ASLAN specifications. Imposing procedural , programming language semantics on logical statements is

disastrous. In short, it is important to remember that nothing is known about variables which are not expli-

citly stated, or whose new value is stated for some cases, but not for other cases.

The most straightforward technique for adding constructs, and easiest to implement, is for the

language processor to conjoin to each EXIT assertion "NOCHANGE(v)" statements stating that for each

state variable v not mentioned in the EXIT assertion, the value of v does not change. That is, since it is

tedious for the specifier to conjoin to every EXIT assertion an expression stating that each variable not oth-

erwise mentioned does not change, ASLAN does this automatically during correctness conjecture genera-

tion. Simply stated, if a (unprimed) variable is not mentioned in an EXIT assertion of a transition, its value

has not changed. The EXIT assertion for the tick transition would appear in conjectures as

(CurrentE Time = CurrentF Time´ + 1) & Log = Log´
& LoginG Allowed = LoginH Allowed´ & SoundI Alarm = SoundJ Alarm´

The correctness conjecture may now be proved.

Now consider a slightly simplier system closely related to the above sample system. This system is

even more abstract than the sample system; Passwords and Logs do not appear, only a BOOLEAN constant

UserK Ok(User). UserL Ok determines which persons may or may not log in; it may be implemented at a

lower level by the Passwords described above. The following Login transition says nothing about the value

of the loginM allowed variable if UserN Ok(p) is false. That is, an implementation of the transition that

always sets LoginO Allowed to true would satisfy the specification for Login.

6

- D R A F T -

TRANSITION Login(p: User)

EXIT

/* if the user is ok, let him log in */

UserP Ok(p) → LoginQ Allowed

Although LoginR Allowed was mentioned in the EXIT assertion, its value is not explicitly defined in all

cases. This undesirable loophole could be closed by adding to the EXIT assertion a statement about the

value of loginS allowed when UserT Ok is FALSE:

TRANSITION Login(p: User)

EXIT

/* if the user is ok, let him log in */

UserU Ok(p) → LoginV Allowed

/* if the user ISN’T ok, make sure LoginW Allowed is FALSE. */

& ¬UserX Ok(p) → ¬LoginY Allowed

Since system designers are not accustomed to stating what happens when nothing is to happen,

ASLAN provides procedural operators which work the way computer scientists often think logical opera-

tors should work. The operators are procedural in the sense that any state variables not explicitly men-

tioned are assumed not to have changed. This parallels programming language semantics in that (assuming

no side effects) only variables explicitly mentioned (on the left side of an assignment statement) may

change; unmentioned variables or those on the right side of an assignment do not. For example, the PAS-

CAL assignment statement

i := j + 1;

where i and j are INTEGER variables, states that only the value of i changes. The programmer can be sure

that no other variable has changed.

A design goal of ASLAN was to provide both 1) logical operators to allow purists to write

specifications untainted by procedural semantics, and 2) procedural constructs for those wishing to use an

approach closer to that used with programming languages. The purpose of procedural constructs is to ease

the burden of explicitly specifying "nochanges".

There are three instances when ASLAN "automatically" generates nochange statements. First, vari-

ables whose new values were not referred to in an EXIT assertion are assumed to have not changed (as dis-

cussed above).

Second, if the new value of a variable x is mentioned in the THEN (ELSE) portion of a conditional

statement, but not in the ELSE (THEN) portion of the same statement, it is assumed that the variable does

not change in the ELSE (THEN) portion. For example,

7

- D R A F T -

IF UserZ Ok(p)

THEN Login[Allowed

ELSE Sound\ Alarm & ¬Login] Allowed FI

will appear in ASLAN conjectures as

IF User̂ Ok(p)

THEN Login_ Allowed & Sound̀ Alarm = Sounda Alarm´
ELSE Soundb Alarm & ¬Loginc Allowed FI

The "implied nochanges" the ASLAN processor adds are in boldface.

Third, if the new value of a variable x is referenced in one half of an ALTernative (procedural dis-

junction) and not in the other half, ASLAN essentially conjoins NOCHANGE(x) to the half in which x is

not mentioned.1 For example,

Userd Ok(p) & Logine Allowed

ALT

¬Userf Ok(p) & Soundg Alarm

appears in correctness conjectures as

Userh Ok(p) & Logini Allowed & Soundj Alarm = Soundk Alarm´
ALT

¬Userl Ok(p) & Soundm Alarm &Loginn Allowed = Logino Allowed´

The implementation of implied nochange statement generation for the ASLAN verification system is

outlined in the next section and is described in detail in [Aue 85].

3.1. When Does A State Variable Change?

When trying to decide what NOCHANGE constructs to add problems arise with variables that take

arguments. Specifically, how do you know when an instance of the parameterized variable x, such as x(4)

does not change? There are two basic ways to look at this problem. The first is to view state variables as

functions from a domain D to a range R . To change the value of an instance of the state variable requires

the binding of a new function to the state variable; this means any instance whose value is not explicitly
p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p�p

1 The only difference between the ASLAN ALT operator and logical disjunction (|) is that state variables mentioned on
one side of an ALT and not on the other are assumed to have remained unchanged.

8

- D R A F T -

stated may take any value in R . This is a nonprocedural view, and is relatively easy to implement: since

"one reference to an instance of a state variable is as good as another", it is easy to keep track of what state

variable’s function bindings have changed.

This method has serious drawbacks. For instance, suppose the specifier has decided that

Userq Password really should be a variable2 and that a Changer Password transition is needed. A first

attempt at writing the transition results in

TRANSITION Changes Password

(u: User, oldt password, newu password: Password)

EXIT

IF Passwordv Ok(Userw Password´(u), oldx password)

THEN Usery Password(u) = newz password

FI

which would appear in conjectures as

TRANSITION Change{ Password

(u: User, old| password, new} password: Password)

EXIT

IF Password~ Ok(User� Password´(u), old� password)

THEN User� Password(u) = new� password

ELSE FORALL u1: User (User� Password(u1) = User� Password´(u1))

FI

Unfortunately, if the condition is satisfied, nothing is known about other user’s passwords. That is, the

value of User� Password(u1) where u1≠u is unknown. The correct way to write the EXIT assertion is

�����������������������������������
2 This means that the INVARIANT given in the sample specification is probably not what the specifier now wants.

9

- D R A F T -

TRANSITION Change� Password

(u: User, old� password, new� password: Password)

EXIT

IF Password� Ok(User� Password´(u), old� password)

THEN FORALL u1: User

(IF u1 = u THEN User� Password(u) = new� password

ELSE User� Password(u1) = User� Password´(u1)

FI)

FI

This explicitly states that the passwords for all other users remain the same.3

The second point of view is to consider each instance of a state variable individually. This conven-

tion considers each instance of the domain to be bound to an element of the range. Changing the binding of

an instance associated with an element in D has no effect on the other bindings. This is clearly a pro-

cedural approach, and corresponds to the way arrays are viewed in a high level programming language.

Unfortunately, it is much harder for the specification processor to determine what changes and what

doesn’t in this scheme. Under the second assumption, the EXIT assertion for the Change� Password transi-

tion becomes

TRANSITION Change� Password(u: User, old� password, new� password: Password)

EXIT

IF Password� Ok(User� Password´(u), old� password)

THEN User� Password(u) = new� password

FI

3.2. ASLAN Implementation of Nochanges

At this time ASLAN implements the first convention. In order to keep track of what "new value"

variables are referenced the ASLAN processor needs to make two passes over each well-formed formula

(wff). The first pass builds reference tables; the second pass uses the reference tables to compute the

implied nochanges. For example, given the ALTernative statement

a ALT b
�����������������������������������

3 ASLAN provides the BECOMES operator to change the value of an instance of a state variable. BECOMES is essen-
tially a macro whose expansion results in a quantification that looks like the one above. Using BECOMES, the assertion
would be:

IF Password� Ok(User� Password´(u, old� password)
THEN User� Password(u) BECOMES new� password FI

10

- D R A F T -

where a and b are boolean variables, the ASLAN processor’s first pass produces reference tables contain-

ing the number of times each new value variable appears on each side of the ALT.

ASLAN’s second pass traverses the parse tree. Upon encountering the ALT node, the processor

compares the tables associated with the right and left sides and augments each side with statements stating

that unreferenced variables do not change.

Earlier versions of the ASLAN processor had problems with context. They failed because they built

up variable reference tables and computed nochanges as the parse tree was being traversed during pass

two; pass one had nothing to do with the building of reference tables or insertion of implied nochanges.

For example, upon encountering an ALT node during the second pass, the processor would first traverse

the left side and build a reference table, then similarly traverse and build the table for the right side. The

tables were then compared, and nochanges were inserted based on this information. This approach did not

take the context in which the ALT appeared into account.

Currently the ASLAN processor does more work during the first pass. In particular, reference tables

are now formed during that pass. A reference table is built for both sides of an ALT statement, and for the

IF, THEN, and ELSE parts of a conditional, as well as for the entire well-formed formula. This latter table

supplies the context missing in the earlier versions of the processor.

This approach still has two major drawbacks:

1) Since "one reference to an instance of a state variable is as good as another", the implied nochanges

generated by the language processor are "universal". This can cause consistency problems; for

example

FORALL u1: User (IF u = u1 THEN User Password(u1) = new¡ password FI)

appears in conjectures as

FORALL u1: User

(IF u = u1

THEN User¢ Password(u1) = new£ password

ELSE FORALL u2: User (User¤ Password(u2) = User¥ Password´(u2))

FI)

This is inconsistent since it states that User¦ Password(u1) changes when u1=u and that it does not

change when u1≠u. Thus, the specification can not be satisfied and is equivalent to FALSE (Use of

the BECOMES operator could avoid this problem.).

2) The use of a universal quantification to change an instance of a state variable is awkward.

11

- D R A F T -

For these reasons, a strategy for implementing the second approach has been developed. In the same

way the first method keeps a reference count of how many times a state variable is referenced, the new

strategy involves keeping track of arguments to state variables. For example, the following is a fairly

inscrutable pathological example:

VARIABLE a(BOOLEAN, INTEGER): BOOLEAN

TRANSITION t

EXIT

a(a(TRUE, 3), 42)

The new strategy builds the following table of arguments:

§¨§�§
variable arguments©¨©�©©¨©�©

a a(TRUE, 3), 42 TRUE, 3ª¨ª�ª
««
«
«
«

««
«
«
«

««
«

««
«
«
«

The entries of the table are the arguments of "a" that are specified as possibly changing.

From the table a FORALL statement representing the implied nochanges would be constructed:

FORALL b: BOOLEAN, i: INTEGER

(¬(b = a(TRUE, 3) & i = 42) | (b & i = 3)) → a(b, i) = a´(b, i))

Thus the implied nochanges in this case are any instances of "a" that have not been explicitly referenced.

The EXIT assertion would appear in conjectures as:

a(a(TRUE, 3), 42)

& FORALL b: BOOLEAN, i: INTEGER

(¬(b = a(TRUE, 3) & i = 42) | (b & i = 3)) → a(b, i) = a´(b, i))

One of the hardest problems solved in the present implementation of the first convention is taking

context into account. Fortunately the new argument tables can use the same basic strategy ASLAN

presently uses. For example,

x(x(y)) = 4 & (x(y) = 2 ALT x(3) = 9)

12

- D R A F T -

would cause the language processor to produce the argument tables:

¬ ¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬ ¬¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬ ¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬ ¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬�¬
®
®

var ¯¯ args °
°

°
°

var ±± args ²
²

²
²

var ³³ args ´
´

´
´

var µµ args ¶
¶

· ·�·�·�·�·�·�·�·�·�·�·�·�·�·�·�·�·�·�·· ·�·�·�·�·�·�·�·�·�·�·�·�·�·�·�·�·�·�· ··�·�·�·�·�·�·�·�·�·�·�·�···�·�·�·�·�·�·�·�·�·�·�·�· ·�·�·�·�·�·�·�·�·�·�·�··�·�·�·�·�·�·�·�·�·�·�· ·�·�·�·�·�·�·�·�·�·�·�··�·�·�·�·�·�·�·�·�·�·�·
¶¶ x ¸¸ x(y) ¹¹ y ºº 3 »

»
»
»

x ¼¼ y ½½ 3 ¾
¾

¾
¾

x ¿¿ y À
À

À
À

x ÁÁ 3 Â
Â

Ã Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã ÃÃ�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã�Ã
ÂÂ wff ÄÄ ÄÄ (wff) ÅÅ ÅÅ l.h.s. ÆÆ ÆÆ r.h.s ÇÇÈ È�È�È�È�È�È�È�È�È�È�È�È�È�È�È�È�È�È�È ÈÈ�È�È�È�È�È�È�È�È�È�È�È�È È�È�È�È�È�È�È�È�È�È�È�È È�È�È�È�È�È�È�È�È�È�È�È

Using the same techniques for computing augmented tables and comparing them with reference tables

from the corresponding other side results in:

x(x(y)) = 4 &

((x(y) = 2 & FORALL i:INTEGER (¬(i = x(y) | i = y) → x(i) = x´(i))

| (x(3) = 9 & FORALL i:INTEGER (¬(i = x(y) | i = 3) → x(i) = x´(i)))

The following is an example of a fairly complicated assertion using conditional statements:

IF predicate1

THEN x(1) = 1

ELSE x(2) = 2

FI

&

IF predicate2

THEN x(3) = 3

ELSE x(4) = 4

FI

The new method results in:

IF predicate1

THEN x(1) = 1 & FORALL i: INTEGER (¬(i = 1 | i = 3 | i = 4) → x(i) = x´(i))

ELSE x(2) = 2 & FORALL i: INTEGER (¬(i = 2 | i = 3 | i = 4) → x(i) = x´(i))

FI

&

IF predicate2

THEN x(3) = 3 & FORALL i: INTEGER (¬(i = 1 | i = 2 | i = 3) → x(i) = x´(i))

ELSE x(4) = 4 & FORALL i: INTEGER (¬(i = 1 | i = 2 | i = 4) → x(i) = x´(i))

FI

13

- D R A F T -

Notice that the implied nochange statments take the context of the other conditional statements into

account.

Quantification is the stickiest part of implementing the new convention. To understand the problems

with quantification and implied nochanges it is useful to review the problems and "solutions" encountered

with the first convention and its implementation. In present ASLAN a universal quantification is com-

monly used for changing the value of a single instance of a state variable. The following statement is typi-

cal:

FORALL u: User (IF u = Bob THEN UserÉ Password(u) = newÊ password FI)

which appears in conjectures as:

FORALL u: User

(IF u = Bob THEN UserË Password(u) = newÌ password

ELSE FORALL u1: User (UserÍ Password(u1) = UserÎ Password´(u1))

FI)

As already noted, the implied nochange is blatantly wrong.

To relieve the temptation of using the conditional-within-the-forall construct for changing a single

instance of a variable, the BECOMES statement was introduced -- but it too can easily be misused. The

conclusion is (not surprisingly) that universal implied nochanges are bad practice, and at the very least

present ASLAN should not allow the specifier to use a (procedural) conditional statement within a

quantification.

Things are somewhat better for the proposed implementation. Since changes in instances are merely

stated in a straightforward way, specifications should contain fewer quantifications. Changing the pass-

words of both Bob and Elvira consists of only

UserÏ Password(Bob) = newÐ passwordÑ 1

& UserÒ Password(Elvira) = newÓ passwordÔ 2

A specifier could, however, legitimately need to use a conditional statement within a quantification. Con-

sider the problem of purging user accounts which have not been used. The following definition determines

whether an account has been used:

DEFINE used(u: User): BOOLEAN ==

EXISTS le: LogÕ Entry (le ISIN Log & le[Result] & le[Who] = u)

For example, a statement to set the password to a special "no access" constant for those users who have not

14

- D R A F T -

successfully logged on is:

CONSTANT

NoÖ Access: Password

. . .

TRANSITION Purge

EXIT

FORALL u: User

(IF ¬used(u) THEN User× Password(u) = NoØ Access FI)

If the implied no changes were added directly to the conditional, as in the example above, the resulting

assertion would be inconsistent:

TRANSITION Purge

EXIT

FORALL u: User

(IF ¬used(u)

THEN UserÙ Password(u) = NoÚ Access FI

& FORALL u1: User (¬(u1 = u) → UserÛ Password(u1) = UserÜ Password´(u1)))

Clearly, conditional statements within the scope of a quantification must be treated differently than

"unbound" conditionals. There are two approaches to this problems. The first results from considering

FORALL i: INTEGER (IF predicate(i) THEN x(i) FI)

as a conjunction of an infinite number of individual conditional statements. That is,

FORALL i: INTEGER (IF predicate(i) THEN x(i) FI)

≡

IF predicate(1) THEN x(1) FI

& IF predicate(2) THEN x(2) FI

. . .

& IF predicate(n) THEN x(3) FI

. . .

Applying the implied nochange strategy on the individual conditional statements results in:

15

- D R A F T -

IF predicate(1) THEN x(1) & FORALL i: INTEGER (¬(i = 1|i = 2|...) → x(i) = x´(i))

ELSE FORALL i: INTEGER (¬(i = 2| i = 3 | ...) → x(i) = x´(i))

FI

& IF predicate(2) THEN x(2) & FORALL i: INTEGER (¬(i = 1|i = 2|...) → x(i) = x´(i))

ELSE FORALL i: INTEGER (¬(i = 1| i = 3 | ...) → x(i) = x´(i))

FI

. . .

& IF predicate(n) THEN x(3)& FORALL i: INTEGER (¬(i = 1|i = 2|...) → x(i) = x´(i))

ELSE FORALL i: INTEGER (¬(i = 1| ... |i = n - 1|i = n + 1| ...) → x(i) = x´(i))

FI

. . .

The antecedent of the implied no change expression conjoined to the THEN side of each conditional says

that i is not equal to 1, 2, ..., which is false; the entire quantification is true, and may be dropped. Intui-

tively, the implied no change expression conjoined to the ELSE side of each conditional says that only x(n)

does not change. Thus each conditional is equivalent to

IF predicate(n) THEN x(n) ELSE x(n) = x´(n) FI

and the original quantification is equivalent to

FORALL i: INTEGER (IF predicate(n) THEN x(i) ELSE x(i) = x´(i))

This leads to the implied nochange rule: "For each state variable instance, x(i), appearing in the THEN

(ELSE) portion of a conditional statement occurring inside a quantification, conjoin to the ELSE (THEN)

statement x(i) = x´(i)."

This method fails when two quantified expressions that mention the same state variables are con-

joined. For example, suppose associated with each user is a security class:

TYPE

SecurityÝ Class IS (Confidential, Secret, TopÞ Secret)

CONSTANT

Userß Security(User): Securityà Class

A transition to purge all Confidential and Secret users may be needed. This transition is to set the pass-

words of all users not having Topá Secret clearance to Noâ Access. A specifier could write a transform

which appears in conjectures as:

16

- D R A F T -

TRANSITION Topã Secretä Userså Only

EXIT

FORALL u: Users (IF Useræ Security(u) = Confidential

THEN Userç Password(u) = Noè Access

ELSE Useré Password(u) = Userê Password´(u)

FI)

& FORALL u: Users (IF Userë Security(u) = Secret

THEN Userì Password(u) = Noí Access

ELSE Userî Password(u) = Userï Password´(u)

FI)

The implied nochanges are wrong. There are several possible answers to this problem:

1) Force specifiers to write specifications in a "normal form" with all quantification pushed to the front.

The language processor would then have flagged the above transition as being syntactically

incorrect.

2) Write a smart language processor that converts all EXIT assertions to normal form before computing

implied no changes. This has the disadvantages that 1) it’s hard, and 2) any errors the language pro-

cessor flags in the normalized EXIT assertion may be hard to track down to the corresponding origi-

nal expression.

3) In addition to producing correctness conjectures, produce consistency conjectures as well. This has

the disadvantage of at least doubling the number of conjectures to prove. An argument in favor of

consistency conjecture generation is that it should be done anyway -- there is nothing stopping a

specifier from writing FALSE as an EXIT assertion, and from the FALSE EXIT assertion being able

to prove any INVARIANT. A possible consistency conjecture is

¬(exitð assertion → FALSE)

4) Whoever wrote the above transition obviously didn’t know what they were doing. Training better

specifiers leads to better specifications. Caveat emptor.

The second technique for computing implied nochanges for quantifications adds statements outside

the scope of the original quantification. For example,

17

- D R A F T -

DEFINE Secretñ User(u: User): BOOLEAN == Userò Security(u) = Secret

DEFINE Confidentialó User(u: User): BOOLEAN

== Userô Security(u) = Confidential

. . .

EXIT

FORALL u: User (IF Secretõ User(u) THEN Userö Password(u) = No÷ Access FI)

& FORALL u: User (IF Confidentialø User(u) THEN Userù Password(u) = Noú Access FI)

results in the table:

û�û
variable argumentsü�üü�ü

a Secretý User(*) Confidentialþ User(*)ÿ�ÿ
�
�
�
�
�

�
�
�
�
�

��
�

�
�
�
�
�

Where the asterisk (*) stands for a universally quantified variable. The expression to be conjoined to the

original is then:

FORALL u: User

(¬(Secret� User(u) | Confidential� User(u)) → User� Password(u) = User� Password(u)´)

Also note that since

EXISTS ... (wff)

is equivalent to

¬ FORALL ... (¬wff))

nochange processing for existential and universal quantification is similar. For example, an expression

stating that at least one user’s password becomes No� Access could be written as:

EXISTS u: User (User� Password(u) = No� Access)

Since the User� Password(u)’s that becomes No	 Access could be any (or every) instance, the resulting

argument table is:

18

- D R A F T -

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

variable arguments

��
User� Password *

���
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

It is possible that all instances of variable User� Password now have the value No� Access; the * as one of

the argument table entries means that no implied nochanges should be generated.

4. Summary

An overview of the ASLAN specification language and the behavior of the language processor is

described. The distinction between procedural semantics of programming languages and nonprocedural

semantics of logic-based specification languages is discussed. Two solutions to the problem of "implied

nochanges", the first of which ASLAN implements, are outlined and evaluated.

5. References

[AK 85] Auernheimer, Brent, and Richard A. Kemmerer, ASLAN User’s Manual, TRCS84-10, Depart-

ment of Computer Science, University of California, Santa Barbara, March 1985.

[Aue 85] Auernheimer, Brent, Implementation of Implied NoChanges in ASLAN, TRCS85-07, Depart-

ment of Computer Science, University of California, Santa Barbara, March 1985

19

