An Axiomatic Basis for Computer Programming

C.A.R. Hoare

Hoare's Aviiomatic Semantic

.....

Hoare's Axiomatic Semantics

"An Axiomatic Basis for Computer Programming", *CACM*, 1969

"Procedures and Parameters: An Axiomatic Approach," *Proceedings of the Symposium on Semantics of Algorithmic Languages*, 1971

"Proof of Correctness of Data Representations," *Acta Informatica*, 1972

Hoare's Axiomatic Semantic

0011000000 - -

An Axiomatic Basis for Computer Programming

- Provided the basis for proving programs correct with respect to their specifications
- Introduced the $P{Q}R$ notation
- Based on earlier work by Floyd (1967), which was applied to flowcharts
- Presented a set of axioms for computer arithmetic

Hoare's Axilomatic Semantic

GCMPSC 266 P

An axiomatic definition serves as a:

- Contract between a language designer and an implementer
- Reference manual for a programmer
- Axiomatic basis for formal proofs of properties of programs

Hoare's Axilomatic Seman

GCMPSC 266 Pg

Axiomatic definition comprises a deductive system

- Axioms defining the primitive constructs of the language
- · Rules of inference
- Underlying logical system (e.g., first order predicate calculus with equality)

Hoare's Axilomatic Semantics

GCMPSC 266 Pg. 5

Axioms for Integer Arithmetic

- · Standard arithmetic axioms
- Axioms for the finite arithmetic of computers
 - Strict interpretation
 - Firm boundary
 - Modulo arithmetic

loare's Axilomatic Semantics

GCMPSC 266 Pg. 6

Some Axioms for Integers

- A1 x+y=y+x
- A2 x*y = y*x
- A3 (x+y)+z = x+(y+z)
- A4 (x*y)*z = x*(y*z)
- A5 x*(y+z) = x*y + x*z
- A6 $y \le x \rightarrow (x-y) + y = x$
- $A7 \quad x+0=x$
- A8 x*0 = 0
- A9 x*1 = x

Hoare's Axilomatic Semantics

- 000 COO

- Finite Arithmetic $\forall x \ (x \le max)$
- Overflow
 - strict interpretation

$$\sim \exists x \ (x = max + 1)$$

- firm boundary

max +1 = max

- modulo arithmetic

max + 1 = 0

armentics

Strict Interpretation

+	0	1	2	3	
0	0	1	2	3	
1	1	2	3		
2	2	3			
3	3				

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2		
3	0	3		

Hoare's Axilomatic Semantics

GCMPSC 266 P

Firm Interpretation

+	0	1	2	3
0	0	1	2	3
1	1	2	3	
2	2	3		
3	3			

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2		
3	0	3		

Hoare's Axilomatic Semantic

GCMPSC 266 Pg. 10

Modulo Interpretation

+	0	1	2	3
0	0	1	2	3
1	1	2	3	
2	2	3		
3	3			

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2		
3	0	3		

Hoare's Axilomatic Semantics

GCMPSC 266 Pg. 11

Partial Correctness Notation

$P{Q}R$

P,R are predicates

Q is a program or piece of code

If the assertion P is true before initiation of program Q, then assertion R will be true on its completion $\label{eq:program} P = P = P = P$

Hoare's Axilomatic Semantic

GCMPSC 266 Pg. 12

More Notation

|- Theoremhood

 $R_e^{\,x}$

 $R_{e \rightarrow x}$

 $\frac{\text{H1, H2,, Hn}}{\text{Hn+1}}$ whenever H1 through Hn are true Hn+1 is true

Hoare's Axilomatic Semanti

OMBOO 000 -

D0: Axiom of Assignment

$$P_e^x\{x:=e\}P$$

Example:

$$y>8 \{x := y + 4\} x>12$$

Hoare's Axilomatic Semantics

GCMPSC 266 Pa. 14

Hoare's Proof Technique

- Uses sentences of the form P{S}Q
- A proof of a sentence P{S}Q is a sequence of sentences the last of which is P{S}Q
- Where each sentence is:
 - an instantiation of an axiom
 - a theorem in the underlying logical system
 - follows from previous lines by applying a rule of inference

Hoare's Axilomatic Semanti

CMPSC 266 Pr

D1: Rules of Consequence

$$\frac{P\{Q\}R, R \rightarrow S}{P\{Q\}S} \qquad \frac{P\{Q\}R}{P\{Q\}S}$$

 $\frac{P\{Q\}R, S \rightarrow P}{S\{Q\}R}$

Hoare's Axilomatic Semantic

GCMPSC 266 Pn 16

D2: Rule of Composition

$$\frac{P\{Q1\}R1,\ R1\{Q2\}R}{P\{Q1;\,Q2\}R}$$

Hoare's Axilomatic Semant

GCMPSC 266 Pg. 17

PROCEDURE TEST (A, B: INTEGER; VAR X, Y, Z: INTEGER);

BEGIN

X := A + B;

Y := A - B;

Z := X + Y

END;

ENTRY: true

EXIT: X = A + B & Y = A - B & Z = 2A

bare's Axilomatic Semantics

GCMPSC 266 Pg. 18

D3: Rule of Iteration

 $\frac{P \& B\{S\}P}{P \text{ {while B do S} } \sim B \& P}$

Hoare's Avilomatic Semant

CMPSC 266 Pa. 19

```
1 PROCEDURE FACT (N:INTEGER; VAR Y:INTEGER);
2 VAR X: INTEGER;
3 BEGIN
4 X:=0;
5 Y:=1;
6 ASSERT (Y = X! & X ≤ N)
7 WHILE X < N DO BEGIN
8 X:= X + 1;
9 Y:= Y* X
10 END
11 END;
ENTRY: N ≥ 0
EXIT: Y = N!
```

Procedures and Parameters: An Axiomatic Approach

- Extended the axiomatic approach to procedures
- Dealt explicitly with recursion

"This assumption of what we want to prove before embarking on the proof explains well the aura of magic which attends a programmer's first introduction to recursive programming"

Hoare's Axilomatic Semanti

CMPSC 266 Pg. 21

Rule of Recursive Invocation

 $\frac{p(x):(v) \text{ proc } Q, \ P\{\text{call } p(x):(v)\}R \ |\text{-} P\{Q\}R}{P\{\text{call } p(x):(v)\}R}$

Hoare's Axilomatic Semantics

GCMPSC 266 Pg. 22

An Axiomatic Definition of the Programming Language PASCAL

C.A.R. Hoare and N. Wirth Acta Informatica 1973

Hoare's Axilomatic Semantic

GCMPSC 266 Pa. 23