CS 266 - Formal Specification and Verification Winter 2009 Homework #1 -- Review of Propositional and Predicate Calculus Due: 13 JAN 09, 11:00am This problem set is intended as a "tune-up". You should be able to do all of the problems herein. If you are unfamiliar with the concepts illustrated in a given problem, you should consult the appropriate books in the library. ## PROPOSITIONAL LOGIC The following BNF grammar defines the syntax for fully parenthesized propositions: In order to omit parenthesis we assume the following operator precedence from high to low: $$\tilde{\ }$$, &, $|\ , \rightarrow , \leftrightarrow$ with sequences of the same operator evaluated left to write. 1. In the table below each line contains a proposition and two states s1 and s2. Evaluate the proposition in both states. | proposition | s1 | s2 | |--|---------|---------| | | m n p q | m n p q | | | | | | (a) $$ (m $ q$) | TFTT | FTTT | | (b) ~m q | TFTT | FTTT | | (c) ~(m & q) | TFTT | FTTT | | (d) ~m & q | TFTT | FTTT | | (e) $(m q) \rightarrow p$ | TFTT | TTFT | | (f) $m \mid (n \rightarrow p)$ | TFTT | TTFT | | (g) $m \leftrightarrow (n \& (p \leftrightarrow q))$ | FFTF | TFTF | | (h) $(m \leftrightarrow n) \& (p \leftrightarrow q)$ | FFTF | TFTF | | (i) $m \leftrightarrow (n \& p \leftrightarrow q)$ | FFTF | TFTF | | $(j) (m \leftrightarrow n \& p) \rightarrow q$ | FTFT | TTFF | | (k) $(m \leftrightarrow n) \& (p \rightarrow q)$ | FTFT | TTFF | | $(1) \ (m \to n) \to (p \to q)$ | FFFF | TTTT | | $(m)\ (m \to (n \to p)) \to q$ | FFFF | TTTT | - 2. For each of the English sentences below introduce identifiers to represent each atomic part (eg. "it's raining cats and dogs") and translate the sentence into a proposition. - (a) Whether or not it's raining, I'm going swimming. - (b) If it's raining I'm not going swimming. - (c) It's raining cats and dogs. - (d) If it rains cats and dogs I'll eat my hat, but I wont go swimming. - (e) If it rains cats and dogs while I'm going swimming I'll eat my hat. The following are twelve basic laws of equivalence. The identifiers E1, E2, and E3 each represent a proposition. 1. Commutative Laws $$\begin{array}{c} (E1 \& E2) \leftrightarrow (E2 \& E1) \\ (E1 \mid E2) \leftrightarrow (E2 \mid E1) \\ (E1 \leftrightarrow E2) \leftrightarrow (E2 \leftrightarrow E1) \end{array}$$ 2. Associative Laws E1 & (E2 & E3) $$\leftrightarrow$$ (E1 & E2) & E3 E1 | (E2 | E3) \leftrightarrow (E1 | E2) | E3 3. Distributive Laws E1 | $$(E2 \& E3) \leftrightarrow (E1 | E2) \& (E1 | E3)$$ E1 & $(E2 | E3) \leftrightarrow (E1 \& E2) | (E1 \& E3)$ 4. De Morgan's Laws $$^{\sim}$$ (E1 & E2) \leftrightarrow $^{\sim}$ E1 | $^{\sim}$ E2 $^{\sim}$ (E1 | E2) \leftrightarrow $^{\sim}$ E1 & $^{\sim}$ E2 5. Law of Negation $$\tilde{E}$$ 1) \leftrightarrow E1 6. Law of Excluded Middle $$E1 | ^{\sim}E1 \leftrightarrow T$$ 7. Law of Contradiction E1 & $$^{\sim}$$ E1 \leftrightarrow F 8. Law of Implication $$E1 \rightarrow E2 \leftrightarrow ^{\sim}E1 \mid E2$$ 9. Law of Equality $$(E1 \leftrightarrow E2) \leftrightarrow (E1 \rightarrow E2) \& (E2 \rightarrow E1)$$ 10. Laws of or-Simplification $$E1 \mid E1 \leftrightarrow E1$$ $$E1 \mid T \leftrightarrow T$$ $$E1 \mid F \leftrightarrow E1$$ $$E1 \mid (E1 \& E2) \leftrightarrow E1$$ 11. Laws of and-Simplification E1 & E1 $$\leftrightarrow$$ E1 E1 & T \leftrightarrow E1 E1 & F \leftrightarrow F E1 & (E1 | E2) \leftrightarrow E1 12. Law of Identity $$E1 \leftrightarrow E1$$ There is also the Rule of Substitution: Let $e1 \leftrightarrow e2$ be an equivalence and E(p) be a proposition, written as a function of one of its identifiers p. Then $E(e1) \leftrightarrow E(e2)$ and $E(e2) \leftrightarrow E(e1)$. That is, equals may be substituted for equals. Finally there is the Rule of Transitivity: If $e1 \leftrightarrow e2$ and $e2 \leftrightarrow e3$ are equivalences, then so is $e1 \leftrightarrow e3$. - 3. Verify that rules 1, 3, and 10 are equivalences by building truth tables for them. - 4. Prove that ${}^{\sim}T \leftrightarrow F$ is an equivalence by using the Rules of Substitution and Transitivity and the laws 1-12. - 5. Each of the propositions below can be simplified to one of the six propositions F, T, x, y, x & y, and $x \mid y$. Simplify them using the Rules of Substitution and Transitivity and the laws 1-12. ``` (a) x | (y | x) |^{\sim} y (b) x | y |^{\sim} x (c) (x \& y) | (x \& ^{\sim} y) | (^{\sim} x \& y) | (^{\sim} x \& ^{\sim} y) (d) ^{\sim} x \to (x \& y) (e) x \to (y \to (x \& y)) (f) ^{\sim} y \to y ``` 6. Explain how to translate an ordinary propositional statement into one that uses only *and* (&) and *not* ($\tilde{}$) operators. ## PREDICATE CALCULUS In predicate calculus we use the existential quantifier (read "there exists") denoted by \exists and the universal quantifier (read "for all") denoted by Some rules of inference are given on the last two pages of this homework. - 7. Define bound variable and free variable. - 8. Argue (not necessary to prove formally) why the following Quantifier Negation Rules should hold. | $^{\sim} \forall x F(x)$ | $\exists y \tilde{F}(y)$ | |--------------------------|--------------------------| | | | | $\exists x \tilde{F}(x)$ | $^{\sim}\forall yF(y)$ | | | | | | | $$\forall x \hat{\ } F(x)$$ $\tilde{\ } \exists y F(y)$ $\tilde{\ } \exists x F(x)$ $\forall y \hat{\ } F(y)$