
CS266 - Formal Specification and Verification
Winter 2009

Homework #2 - Symbolic Execution Homework

Due: Tuesday 20 JAN 09, 11:00am

1. Considerthe following program which divides x by y and returns the quotient in quot and the
remainder in rem.

1 procedure divide(x,y:integer; var quot,rem:integer);
2 begin
3 {: assume ((x>=0) & (y>0)) :}
4 quot := 0;
5 rem := x;
6 {: assert ((x=quot*y + rem) & (rem>=0) & (x=x’) & (y=y’)) :}
7 while rem >= y do begin
8 quot := quot + 1;
9 rem := rem - y
10 end
11 {: prove ((x’=quot*y’ + rem) & (rem>=0) & (rem<y’)) :}
12 end;

Verify that this program is correct with respect to its input and output assertions as I did for the exam-
ples in class. That is, Draw the symbolic execution tree and generate each of the verification conditions
(You may prove them if you want.).

2. Choosea program of your liking that contains at least one loop.Your program should be of the
same complexity as the factorial example that I presented in class.For this program you are to do the fol-
lowing:

a) Give Entry and Exit assertions that properly describe the function of the program.
b) Give a loop assertion for each loop in the program.
c) Verify that your program is correct with respect to its entry and exit assertions by using the

symbolic execution rules that I presented in class.(Draw the symbolic execution tree(s) for the verification
of your algorithm.)

If you need any axioms about the integers, such as were needed for the factorial algorithm, you should state
the necessary axioms.

3. Give a symbolic execution rule for the Pascal repeat statement.
repeat<statement-list>until <Boolean expression>



-2-

4. A verification condition is generated for each path in the program that starts at an assertion (i.e.,
an assume or assert statement) and ends at an assertion (i.e., an assert or prove statement).

Consider the following program which multiplies a by b and returns the product in prod.

1 procedure multiply(a,b:integer; var prod:integer);
2 var
3 tema, temb, s: integer;
4 begin
5 {: assume (true) :}
6 tema := a;
7 prod := 0;
8 {: assert ((prod=(a-tema)*b) & (a=a’) & (b=b’)) :}
9 while tema <> 0 do begin
10 if tema > 0 then
11 s:= 1
12 else
13 s:= -1;
14 temb:= b;
15 {: assert ((prod=(a-tema)*b + s*(b-temb))

& (a=a’) & (b=b’)) :}
16 whiletemb <> 0 do
17 if temb > 0 then begin
18 prod:= prod + s;
19 temb:= temb - 1
20 end
21 elsebegin
22 prod:= prod - s;
23 temb:= temb + 1
24 end;
25 tema:= tema - s
26 end
27 {: prove (prod=a’*b’) :}
28 end.

For this program I would like you to indicate each of the paths for which a verification condition is
generated. Thepaths should be denoted by a sequence of line numbers (eg., 5,6,7,8).

I would also like you to generate the verification condition for all paths that include line 21.


