Integrating Formal
Methods into the
Development Process

Integrating formal
specification and
verification with
development is
faster and more
cost-effective than
doing the steps
separately or

in parallel, as this
effort showed.

September 1990

Richard A. Kemmerer, University of California at Santa Barbara

s information-processing systems
Aare used in increasingly sensitive

or life-critical environments, inad-
vertent errors in design or implementa-
tion can have farreaching effects. The
need for these systems to be highly reli-
able is self-evident. Thus, it is important
that developers use those techniques and
methods that can offer a high degree of
assurance that a system will perform as de-
sired. Developers seek assurance that a
system’s design accurately captures the
system’s critical requirements and that an
implementation in software or hardware
is an accurate realization of the system de-
sign. By integrating formal specification
and verification techniques into the soft-
ware-engineering process, you can gain
this added assurance.

Afterthe-fact verification. The use of
formal methods to increase assurance of a
critical system’s reliability is not a new
idea. It has been presented in the litera-

0740-7459/90/0900/0037/$01.00 © 1990 IEEE

ture often, particularly for secure systems.
However, most of these have been after-
the-fact efforts: The system is built using a
standard development approach, and,
after it is completed, a formal specifica-
tion for the system is written and proper-
ties are proved about the specification,
and/or the code that implements the sys-
tem is formally verified to be consistent
with the formal specification.

This approach increases confidence in
the system, but it is costly in both time and
money. It is not uncommon to spend an
additional 30 to 50 percent of the develop-
ment cost for the formal specification and
verification effort when using the after-
the-fact approach. Also, the time for the
formal activity occurs after product devel-
opment is complete, so errors discovered
by the formal verification cost more to fix.

Verification in parallel. By performing

the formal specification and verification
effort in parallel with the development,

37

Requirements Requirements

Code

Formal

e Code
specification

(a) (b)

imi imi Formal
P Preliminary preliminary-design
design design ary-d
= =1 High-level formal Speciflcation
specification
Detailed design Detailed design Formal
/ . - N
-1 Low-level formal d:taélceigcg‘teiso‘g”
specification P

Requirements

Code

(c)

Figure 1. Three formal development processes: the (a) after-the-fact, (b) parallel, and

(¢) integrated approaches.

you can reduce the time to product release
from what it is when using the after-the-
fact approach. With the parallel approach,
there are two teams: the development
team and the formal-verification team.
The development team uses the standard
practices of good development, but at the
same time the formal-verification team
writes formal specifications for the system
and verifies them.

This approach requires constant com-
munication between the two teams so the
formal specification and the actual system
do not proceed in different directions.
Normally, the goal is to formally verify that
the code developed by the development
team is consistent with the formal specifi-
cations developed by the formal-verifica-
tion team. However, if there is not suffi-
cient communication between the two
teams, there is often a large gap between
the system developed and its formal speci-
fication — you in effect again have an
after-the-fact approach.

With the parallel approach, the time
penalty is usually not as high as with the
after-the-fact approach (especially if there
is adequate communication between the
two teams), but the monetary cost is about
the same.

Integrated verification. This article pre-

sents another approach: completely inte-
grating the formal methods into the de-

38

velopment process. The development
team and the formal-verification team
should be one. There should not be two
separate processes, but rather a single in-
tegrated process where the developers use
formal specifications as their design nota-
tion. With the integrated approach, the
time penalty is less than with the after-the-
fact approach and the cost is less than
either of the other approaches.

Many problems that occur in develop-
ment projects are the result of developers
rushing off and generating code without
thinking about the design. By using for-
mal notation for the design documents,
you can reason rigorously about the de-
sign beforewriting any code. The keyisinte-
gration.

Figure 1 shows the three verification
processes.

Secure Release Terminal. The security
community deals with critical systems,
which contain highly sensitive data; there-
fore, members of that community are will-
ing to pay the extra cost in time and
money for added assurance that their sys-

tems will perform as desired. My col-

leagues and I used the integrated ap-
proach in developing the Secure Release
Terminal, an example problem from the
security domain.

The SRT’s purpose is to move appropri-
ately classified machine-readable data

from a processing environment at one se-
curity level to a processing environment at
another level. The SRT design was carried
out using the Formal Development Meth-
odology.! (The box on p. 44 describes
some of the notation used in this article
from the Ina Jo specification language
that we used.) The SRT design team
viewed formal specification and verifica-
tion as an integral part of the design pro-
CEsS.

Although the justification for using a
formal verification methodology for this
project was to generate the certification
needed by the US Defense Dept. to evalu-
ate and approve the SRT for use in a multi-
level operational environment, the design
team also wanted to ensure from the start
that the SRT design could meet the de-
sired security requirements. Thus, the for-
mal specification was tightly integrated
with the design to the extent that the
evolving design specifications were the
formal specifications themselves.

Verification process

Formal verification originally dealt with
formally verifying that programs written
in a high-level language satisfied their
specifications, which were expressed in a
formal mathematical notation. This is
commonly called program verification or
code verification. As people tried to verify
larger and more complex programs, the
detailed specifications for the program
became harder to understand and were
more susceptible to error. It also became
more difficult to associate these complex
program specifications with the system’s
original requirements.

To address this problem, formal meth-
ods were introduced into the early phases
of the life cycle. In this approach, you ex-
press the preliminary design in a formal
notation, analyze the design, and prove
formal statements about the preliminary
design. Furthermore, as you develop a
more detailed design, you formally verify
it to be consistent with the more abstract
preliminary design, which you have al-
ready shown to satisfy the more abstract
desired properties, like safety or security.
This process is called design verification
or specification verification.

The higher level verification of more ab-
stract objects is necessary to derive the ap-

|EEE Software

propriate program-level formal specifica-
tions, but code-level verification must also
be part of the process for the process to be
complete. In fact, some people have ar-
gued that the process is not complete
without also verifying the hardware on
which the code runs.?

Formal specifications. The detailed
specifications for large and complex pro-
grams are hard to understand and are sus-
ceptible to error. Without a hierarchical
approach to develop formal specifica-
tions, it is extremely difficult to associate
the complex program specifications with
the system’s original requirements.

To construct formal specifications for
highly reliable software, you decompose it
into several easier problems:

First, you state the critical requirements,
which are usually an English statement of
what is desired, in precise mathematical
terms. For example, for a banking systemn,
the critical requirements could be that the
total deposits to an individual’s account
over time exceed the total withdrawals
from the same account.

Next, you produce a high-level formal
specification of the system. This specifica-
tion gives a precise mathematical descrip-
tion of the system’s behavior, omitting
many implementation details like re-
source limits.

You may follow this by less-abstract spec-
ifications that implement the next higher
level specification, but with more detail.

Finally, you code the system in a high-
level language. This high-level-language
implementation must be shown to satisfy
the original critical requirements.

It becomes readily evident that it is diffi-
cult to demonstrate that the high-level-
language code is consistent with the criti-
cal requirements. However, it can be done
by verifying the design at every step. By
using formal notation for every level of
the design, you can reason rigorously
about the design (with or without the aid
ofaverification system) before writing any
code. When the code is finally produced,
you can formally verify that the code is
consistent with its specifications.

Formal verification. The first step of the

verification process is to informally verify
that the formal critical requirements prop-

September 1990

erly reflect the customer’s critical require-
ments. This step is necessarily informal
because the customer’s requirements are
not formal. If the customer’s require-
ments were written in a formal notaton,
this step could also be formal.

Because the critical requirements are at
a high level of abstraction and contain no
unnecessary details, it is usually straight-
forward to review the formal statement of
the critical requirements with the cus-
tomer who generated the requirements.

Next, you must prove that the highest-
level specifications are consistent with the
formal critical requirements. This ap-
proach differs based on whether the spec-
ifications are presented using a state-
machine approach * or an algebraic ap-
proalch.4 In the SRT effort, we used the
state-machine approach.

In the state-machine approach, you
specify the effect of performing each op-
eration based on certain conditions being
satisfied when the operation is invoked:
For each operation, there are entry and
exit conditions, and if the system state be-
fore the operation is invoked satisfies the
entry conditions, the state after the opera-
tion completes execution will satisfy the
exit conditions. When using the state-ma-
chine approach, you must verify that the
initial state satisfies the formal critical re-
quirements and that every operation pre-
serves the critical requirements.

After showing that the highestlevel for-
mal specification is consistent with the for-
mal critical requirements, you must show
that the next lower level specification, if
one exists, is consistent with the level
above it. This process continues from level
to level until the lowest-level specification
is shown to be consistent with the level
above it.

Finally, you must show that the high-
level-language implementation is consis-
tent with the lowest-level specification.

Because each level of specification is
shown to be consistent with the level
above, and the high-level-language imple-
mentation is shown to be consistent with
the lowest level, by transitivity the high-
leveHanguage implementation is consis-
tentwith the highest-level specification. In
addition, because the highest-level specifi-
cation was shown to satisfy the formal
model of the critical requirements, the

Informal proof

Formal critical
requirements

1 Design verification

Highest-level
formal specification

! Design verification

Next-level
formal specification
]

i
Lowest-level
formal specification

Design verification

z Code verification

High-order
language code

Figure 2. Formal-verification hierarchy.

implementation satisfies the formal model.
The formal verification that the highest-
level specification is consistent with the
formal critical requirements, as well as the
verification that each formal specification
is consistent with the more abstract speci-
fication that immediately precedes it, is a
form of design verification. The formal veri-
fication that the high-levellanguage code
is consistent with the lowest-level formal
specification is code verification. Figure 2
shows the formal-verification hierarchy.

Secure Release Terminal

The SRT was conceived as a project to
solve a problem frequently faced in classi-
fied applications: how to move appropri-
ately classified data from a high-security-
level processing environment to a lower-
security-level processing environment.’
An example of such data would be a re-
port prepared on the high-security-level
system using data from a sensitive docu-
ment but that includes only information
that is not sensitive — the high-security
data items have been deleted. Thus, you
can view the report as sanitized informa-
tion because it includes only information
appropriately classified for release to the
lower-security-level system.

If nonsensitive information is to be
moved from the high-security system to
the low-security system, some way must
exist to ensure that sensitive data is not
carried with the supposedly sanitized re-

39

Low-level

host

(a)

(b)

Highlevet || Low-level

Low-level

(e) 10))

Low-level

Low-level
host

(0

Figure 3. Example Secure Release Terminal scenarios: (a) sanitized, (b) connected to a high-security-level host, (¢) in review mode,

(d) after review, accept, and level change, and (e) connected to a low-security-level host.

port. The previous approach to this prob-
lem was to print the report, have a security
officer review it, and then manually reen-
ter the report into the low-security system.
Clearly, it is more desirable to move the
information in machine-readable form.
This requires a way to ensure that all the
information moved from a high-security
to a low-security system is reviewed before
releasing the information to the low-secu-
rity system. In addition, reviewed informa-
tion should not be changed after review
and before release. This is the purpose of
the SRT.

The SRT provides the link between the
high-security and low-security systems. It
provides the means for a security officer to
review all data, including normally non-
printing ASCII characters. The SRT
serves as the security reference monitor
(it is always invoked, tamper-proof, and
correctly enforces the desired security
policy) for data flowing between the high-
security and low-security systems.

The SRT, in concert with the security of-
ficer, is the sole security barrier to prevent
high-security data flow into the low-secu-
rity system. Therefore, it must be designed
to provide a high level of confidence that
it correctly performs its security function.

Design decisions. The availability of in-
expensive hardware as well as the desire to
minimize the complexity of the SRT de-
sign resulted in designing the SRT asa sin-
gle-user system in which all the software
was to be subjected to a formal develop-
ment methodology. This decision led to
an implementation where the SRT
trusted code is smaller than many operat-
ing-system kernels.

The second simplifying design decision
was to limit the functionality of the termi-
nal to only those functions required from
a security viewpoint. Thus, although it was
to use a smart terminal, the SRT contains
no text editor. All text editing is per-
formed on the attached host, with the

40

SRT receiving the data only after the nec-
essary editing to prepare a file (or mes-
sage) for release has been performed on
the remote host. The role of the SRT is
thus reduced to that of a textreview and
-release station.

Using the SRT. The SRT has two pri-
mary modes of use: a connected mode
where it acts as a dumb terminal and a dis-
connected mode where it performs a se-
cure-review function. When the SRT is
connected to a remote host, all the stan-
dard operations available to a user con-
nected using a standard terminal are avail-
able to the SRT user. In addition, the SRT
user may send data, receive data, and dis-
connect. The operations available when
disconnected are reviewing data, accept-
ing data, changing level, sanitizing, and
connecting.

The connected mode is initiated by con-
necting to a high- or low-security host. In
thismode, the user interacts with the host,
using the host’s text editor and preparing
text for release. To connect to a host, the
SRT’s security level must be the same as
that of the host to which it is connecting.
Furthermore, the SRT’s security level can-
notchange while itis connected to a host.

(The SRT was originally perceived as
moving data only from a high-security
host to a low-security host. However, early
in the design process the design team real-
ized that a more general system that let
data be moved from a high to low host or
from a low to high host would be better
and would not complicate the design.)

‘When the user has prepared the text for
release to the other system, the user initi-
ates a receive-data function, which is areli-
able file transfer of the data from a trans-
fer file in the attached host to a holding
buffer in the SRT. When the transfer is
complete, the user disconnects the SRT
from the host.

Because the data in the terminal origi-
nated in the host, the SRT’s security level

is still equivalent to that of the host to
which it was just connected. The user can
now use the text-review functions and
command the SRT to display the first or
last screen of the text buffer. The user can
also page through the text buffer to dis-
play the next screen of data or to move the
screen down or up several lines.

The user can also choose between two
display modes. The first mode lets the
user view just the printing ASCII charac-
ters. In the second mode, the user can also
view the normally nonprinting ASCII con-
trol characters.

Once the user has reviewed all the data
in either display mode, he can accept the
text for a level change. The SRT will not
let the data be accepted for a level change
until every line has been displayed on the
screen.

After reviewing and accepting the data,
the user can request the SRT to change
the data’s level. He does this by changing
the terminal’s level.

Ifhe hasreviewed and accepted the data
and changed its level, the user can then
connect the SRT to the destination host.
First, the user connects to the high or low
host as appropriate and then performs a
send-data function, which is a reliable file
transfer from the SRT to the destination
host.

If during the review the user finds that
the data is unacceptable for transfer or if
for other reasons (like it is the end of a
work shift or a higher priority transfer was
requested) the user wants to abort the
transfer, he can purge the terminal’s con-
tents by executing the sanitize operation.
In addition to purging the terminal’s
buffer, this changes the terminal’s level to

‘reflect the sanitization. Because a sani-

tized terminal contains no data, it may be
connected to a host of any security level.
Figure 3 shows some of the steps in mov-
ing data from one host to another.

Security requirements. In this system,

IEEE Software

the critical security properties that had to
be preserved were that

¢ the SRT can be connected only to a
host at the same level;

* for an SRT to change levels, its text
buffer must first be sanitized or else the
data it contains must be reviewed and ac-
cepted for a level change before the change
can take place;

¢ the data in the SRT must previously be
marked as reviewed before it can be
marked asaccepted (these markings must
be performed in sequence);

¢ if the data in the SRT is marked as ac-
cepted, itmust be also marked as reviewed
(data cannot be accepted but not re-
viewed); and

e if the SRT is connected, it cannot be
marked as reviewed or sanitized.

Formal design
specifications

When using the Formal Development
Methodology and the Ina Jo specification
language, you specify the design with in-
creasingly detailed levels of abstraction.
Thus, at the highest level, you specify the
complete system, although at a high ab-
straction level. In the SRT effort, this high-
level view provided the design team with
the opportunity to discuss and document
at a high abstraction level the functions
that the SRT should provide without
being bogged down by implementation
details. This first level corresponds to the
preliminary design.

At the second level, you add additional
detail. In the SRT effort, the lower level
states were a refinement of the higher
level states, and we used a mapping func-
tion to specify how each Ina Jo type, con-
stant, variable, and transform is imple-
mented in the lower level.

Also, the second level let us clarify the
notion of what constitutes proper review:
What had been viewed as a single review
function that would be applied many
times to complete the review of the datain
the buffer was refined into seven review
functions in the detailed design. This was
possible because more structure was
added to the state variables as the appro-
priate design decisions were made. At this
stage, the design team also recognized
that text files contain both printing and

September 1990

N"Terminal_Level# Terminal_Level —
~Connected

& (Terminal_Level=Sanitized&N"Connected
I'Terminal_Level=High&N"Terminal_Level=Low&Accepted&NC" (Connected)
ITerminal_Level=I ow&N"Terminal_Level=High&Accepted&NC" (Connected)
IN"Terminal_Level=Sanitized&NC" (Connected))

Figure 4. Constraint to express the requirement that the SRT can change level only
when it is disconnected from a host and its text buffer is sanitized or when the data in its

text buffer is accepted for level change.

nonprinting (control) ASCII characters,
so the team included two display modes
(normal and control) toggled by a change-
mode function.

The SRT code was written directly from
the lowest-level formal specification.
There were not two separate development
and formal-specification processes. In-
stead, there was a single integrated pro-
cess where the formal specifications were
the design.

Critical requirements. As outlined ear-
lier, the first step of the formal-specifica-
tion process is to formally express the
system’s critical requirements. When
using the Formal Development Method-
ology, you express the formal critical re-
quirements with state invariants (called
criteria in Ina Jo) and constraints. State
invariants are relationships between the
state variables that must hold at all times
(in all reachable states), and constraints
are relationships that must hold between
two successive states (they express the re-
lationship between the old state and the
new state).

The invariants for the example system
defined what constitutes a secure state for
the SRT. For example, the SRT can be
connected only to a host at the same secu-
rity level as the SRT. But invariants alone
are not sufficient to define all critical re-
quirements because the relationships be-
tween consecutive states also have security
ramifications that must be controlled. For
example, when there is a change in the
SRT’s security level during a state transi-
tion, certain relationships must hold for
the system to maintain its security. One ex-
ample is that the SRT must be prevented
from going from the “connected to high-
level host” state to the “connected to low-
level host” state without going through
either sanitization or review and accep-
tance. Because this requirement deals
with successive states, in Ina Jo it is ex-
pressed as a constraint.

The SRT’s five critical security require-
ments (described earlier) were specified

by the following invariants and constraints.
The security requirement that the SRT
can be connected only to a host at the
same security level as the SRT was ex-
pressed in the invariant

Connected — Terminal_level=Active_Host

where Active_Host is the security level of
the connected (active) host; it represents
the hardware switch that connects a com-
munication line to the host.

The requirement that the SRT can
change level only when it is disconnected
from a host and its text buffer is sanitized
or when the data in its text buffer is ac-
cepted for level change was expressed in
the constraint shown in Figure 4. This
constraint specifies that if the SRT’s level
is different in the new state than it was in
the old state, the terminal was not con-
nected and one of four things occurred:

* The SRT was already sanitized and is
now connected at the host’s level.

¢ The SRT had already accepted the
data and the SRT’s level was changed
from high to low.

® The SRT had already accepted the
data and the SRT’s level was changed
from low to high.

* The SRT became sanitized.

For the last three possibilities, the termi-
nal remains disconnected.

The requirement that the text buffer be
reviewed before itis accepted was expressed
by the constraint:

N"Accepted — Reviewed
and the requirement that it must be

marked as reviewed when it is marked as
accepted was expressed by the invariant

Accepted — Reviewed

Finally, the fifth security requirement
(that the SRT cannot be marked as re-
viewed or sanitized if it is connected) was
expressed by the invariants

Reviewed — ~Connected
and

Terminal_Level=Sanitized — ~Connected

41

After the invariants and constraints
were written, both the design team and
the customer reviewed them to ensure
that they contained all known critical re-
quirements (in this case, security ones).

This review process was aided by the fact
that the invariants and constraints were
unambiguous, thanks to the formal nota-
tion used. A potential danger of using En-
glish specifications to express the critical
requirements is that the customer and the
developers may interpret the same specifi-
cation differently because of the lan-
guage’s ambiguity, so they may think that
they agree on some point when in reality
they do not. Of course, there is still some
potential for misinterpretation when
using formal notation, because how the
values of some of the variables, like Re-
viewed, are set have not yet been fully de-
fined.

It is these critical requirements against
which the formal specifications constitut-
ing the preliminary design must be veri-
fied. The Ina Jo processor will automati-
cally generate proof obligations that
guarantee that the formal specification’s
transitions preserve the criteria and that
the values of the variables in their old and
new states satisfy the constraints.

Preliminary design

The SRT’s preliminary design consisted
of a state description expressed in Ina Jo.
The description contains state variables
and state transitions. Changes to the
SRT'’s state are produced as a result of
user-initiated actions, which are per-
formed at the SRT’s user interface (at the
terminal keyboard). These actions are:

¢ Connect To(Lev: Connect_Level),
which connects the SRT to the level Lev
host.

® Disconnect, which disconnects the ter-
minal from the host.

® Receive Data, which initiates a file
transfer from the connected host to the
SRT.

* Send Data, which initiates a file trans-
fer from the SRT to the connected host.

® Sanitize, which sanitizes the data-stor-
age buffer in the SRT.

o Review Data, which reviews the data-
storage buffer and may mark the buffer as
reviewed.

 Accept Data, which accepts the data in

42

the buffer for a level change. The data
must have already been reviewed.

* Change Level, which toggles the SRT’s
security level from high to low or from low
to high. The data must already have been
accepted.

® Process Normal, which models nor-
mal data processing at the remote host.
The SRT must be connected, and itacts as
adumb terminal.

Specification. In the preliminary-design
specifications, the design team expressed
these operations as Ina Jo transforms. The
Ina Jo transform for connecting to a hostis

Transform
Connect_To(Lev:Connect_Level)

This review process was
aided by the fact that
the invariants and
constraints were
unambiguous,
thanks to the formal
notation used.

Refcond

~Connected

& (Terminal_Level=Lev!

Terminal_Level=Sanitized)

Effect

N"Connected

& N"Terminal_Level=Lev

& N"Active_Host=Lev

& ~N"Reviewed

& ~N"Accepted

The Refcond part of the transform ex-
presses the conditions that must hold for
the transition to take place. For the Con-
nect_To transform, these conditions are
that the terminal must be disconnected
(~Connected) and the terminal must
either be at the level of the host it is con-
necting to or be sanitized.

The Effect part of the transform ex-
presses the resulting state after the state
transition occurs (after the transform
fires). After the Connect_To transform
fires, the terminal’s level is equal to the
level of the host it connected to; the value
of the active host is also equal to this level;

and the terminal is marked as connected,
as not reviewed, and as not accepted. The
terminal is marked as not reviewed and as
not accepted because as soon as it con-
nects to a remote host it is assumed that
the terminal’s contents can be contami-
nated by the data at that host.

Any state variables that do not appear in
the Effect section are assumed to not
change. That is, the Ina Jo processor will
automatically conjoin the expression

N'x=x

to the Effect expression for any variable x
not explicitly mentioned as changing in
the Effect section of the transform. There-
fore, for the Connect_To transform, the
Ina Jo processor conjoins

N'"Terminal_Buffer=Terminal_Buffer

to the Effect expression whenever it uses
the Effect section to generate a proof obli-
gation. The same is true for the variable
Host_Buffer.

In this highestlevel specification, the
buffer has no structure. It could be a list of
lines, a list of characters, a list of bits, or
some other structure. At this stage, the
team was not ready to commit to a specific
structure. What was important was that a
buffer could be reviewed and be ac-
cepted. Thus, there are two Boolean state
variables in the specification: Reviewed
and Accepted.

The Review_Data transform provides
an example of the use of the Review state
variable, as well as an example of one form
of nondeterminism in Ina Jo.

Transform Review_Data
Refcond
~Connected
Effect
N"Reviewed | NC" (Reviewed)

For this transform to fire, the terminal
must be disconnected. The Effect expres-
sion indicates that the new value of the
state variable Reviewed is either true
(N'"Reviewed) or unchanged (NC"(Re-

- viewed)) — the result of this transform is

nondeterministic.

At this stage, the design team had not
decided what the criteria should be for
marking the terminal buffer as being re-
viewed. It also did not know exactly what
the review functions provided would be.

IEEE Software

Specification Secure_Release_Terminal
LEVEL Preliminary_Design
TYPE
Level = (High,Low,Sanitized),

Buffer

CONSTANT
Sanitized_Buffer:Buffer

VARIABLE
Terminal_Level:Level,
Connected:Boolean,
Reviewed:Boolean,
Accepted:Boolean,
Host_Buffer(Connect_Level):Buffer,
Terminal_Buffer:Buffer,
Active_Host:Connect_Level

INITIAL
Terminal_Level=Sanitized

Partial preliminary-desigh specification

& ~Connected
& ~Reviewed
& ~Accepted

& Terminal_Buffer=Sanitized _Buffer
Connect_Level =T"L:Level (L=High | L=Low),
The criterion, constraints, and transforms are given in the main article

CRITERION
CONSTRAINT

Transform Connect_To(Lev:Connect_Level)
Transform Disconnect

Transform Receive Data

Transform Send_Data

Transform Review_Data

Transform Accept_Data

Transform Change_Level

Transform Process_Normal

END Preliminary Design
END Secure_Terminal

This was partially the result of not know-
ing what the buffer’s structure would be.
For example, the customer might want
the entire buffer to be displayed or might
want the entire buffer to be displayed with
nonprinting characters both expanded
and suppressed.

At one point in the design, the team
considered checking for particular en-
codings that would let information be co-
vertly signaled in a file being downgraded.
However, because the number of possible
encoding schemes that should be
checked was large and, more important,
because this type of check was not being
performed by the security officer using
the manual system, the team soon aban-
doned thisidea. The team decided that at
a minimum every part of the buffer should
be displayed at some time during the re-
view process.

It was also evident that the system
should determine when this condition
has been satisfied rather than having the
user decide. (The user has the option to
accept the data or not, but not until the
system determines that the buffer has
been properly reviewed.)

Rather than force a decision about what
was meant by Reviewed and what review
functions were to be provided, the design
team chose to have a single review trans-
form that would eventually be refined into
the desired functions later in the design
process. At first, it may seem that it makes
no sense to have a formal requirement in
terms of variables (like Reviewed) thatare
not fully defined. However, Reviewed,

September 1990

which is declared to be a Boolean variable,
is initially false. It can become true only as
a result of firing the Review_Data trans-
form; it becomes false whenever the Sani-
tize or Connect_To transforms are fired;
and it is unchanged by all other trans-
forms. Thus, although Reviewed is not
fully defined, it is constrained at the ap-
propriate level of detail for a preliminary-
design specification.

Furthermore, at this stage, there had
been no agreement on what it meant for a
buffer to be reviewed; therefore, the for-
mal specification is an accurate documen-
tation of the design at this stage. Because
the setting of the variable Reviewed was
not fully defined, the design team had to
carefully analyze the mapping function to
see how Reviewed later got implemented
in the detailed-design specification, when
that specification was written.

The design team also commented the
preliminary-design specification to indi-
cate what the competing ideas were for
the definition of Reviewed, so this infor-
mation was not lost.

What we knew at this stage was that by
executing the appropriate review transi-
tions, we would eventually have reviewed
the buffer (N"Reviewed) and that no re-
view function would make an already-
reviewed buffer not reviewed. Thus, the
result is nondeterministic. The Ina Jo ex-
pression that captures this is

(~Reviewed & N"Reviewed)
| (~Reviewed & ~N"Reviewed)
| (Reviewed & N"Reviewed)

Thisislogically equivalent to the Effectex-
pression for the Review_Data transform
presented earlier.

The other transforms of the prelimi-
nary-design specification can be interpre-
ted similarly.

The final part of the preliminary-design
specification presented here is the Initial
clause, which defines the system’s initial
state. For the SRT, the initial clause speci-
fies that the terminal level will be sani-
tized, the terminal will be disconnected
and marked both as not reviewed and as
not accepted, and its buffer contents will
be a sanitized buffer.

The box above shows part of the prelim-
inary-design specification. The details of
the criteria, constraints, and transforms
are not shown.

The design team viewed formal specifi-
cations as a convenient design notation
that provided a rigorous statement of the
evolving design. The use of formal specifi-
cations forced detailed technical discus-
sions early in the design process, with
attendant analysis of the security ramifica-
tions of design decisions. The results of
such discussions were captured in the for-
mal specifications and their effects ana-
lyzed by the entire design team.

" Verification. After the preliminary-de-
sign specifications were completed, they
were input to the Ina Jo processor to pro-
duce the necessary proof obligations to
guarantee that the transforms specified
would satisfy the formal critical require-
ments.

43

Formal specification language

The formal method we used in developing the SRT is the Formal Development Method-
ology, which is an example of the state-machine approach to formal specification. When
using the state-machine approach, you view a system as being in various states. One state
is differentiated from another by the values of the state variables, and the values of these
variables can be changed only via well-defined state transitions.

The Formal Development Methodology's formal specification language is Ina Jo, a non-
procedural assertion language developed by Unisys that is an extension of first-order predi-
cate calculus. The key elements of Ina Jo are types, constants, variables, definitions, initial
conditions, criteria, and transforms.

A criterion is a conjunction of assertions that specify the critical requirements for a good
state (like a secure state). A criterion is often called a state invariant, because it must hold for
all reachable states, including the initial state.

An Ina Jo transform is a state-transition function. It specifies what the values of the state
variables will be after the state transition relative to their values before the transition. It also
specifies any conditions that must hold for the transition to occur. The system being specified

» & for logical And,

« | for logical Or,

« ~ for logical Not, and

- — for logical implication.

well-formed terms.

« Y for for all” and
3 for “there exists.”

» T" to define a subtype of a given type T.

can change state only as described by one of the state transforms.
In Ina Jo, the following symbols are used for logical operations:

There is also a conditional form (if Athen Belse C) where Ais a predicate and Band Care
The language also has the following quantifier notation:
Three other special Ina Jo symbols used in the main article are

«N" to indicate the new value of a variable (N"v7)is the new value of variable v7),
« NC" to indicate no change to a variable’s value (NC"(x) is equivalent to N"x=x), and

The Formal Development Methodol-
ogy uses an inductive approach to gener-
ate the necessary proof obligations to as-
sure that the critical requirements are
preserved. In this approach, you must first
show that the criteria hold in the initial
state. Next, for every transform, you must
show that if the transform fires in a state
where the criteria hold, the resulting state
also satisfies the criteria and the previous
and new states satisfy the relationships ex-
pressed by the constraints. (The initial
state is the basis case and the induction is
on the transforms.) Thus, the transforms
can be fired in any order and, by induc-
tion, any reachable state will satisfy the cri-
teria and any two consecutive states will
satisfy the constraints.

The first proof obligation generated by
the Ina Jo processor is the Initial Condi-
tions Theorem:

INIT - CR
where INIT is the Initial clause and CRis the
criterion in the specification’s Criterion

clause.
In addition, for each transform the Ina Jo

44

processor generates a transform theorem:

CR&R&E—->N'CR & CO

where Rand E are the Refcond and Effect,
respectively, for the transform and co is
the Constraint clause.

We used the Ina Jo processor to gener-
ate the necessary proof obligations for the
preliminary-design specification. These
were all proved using the Formal Develop-
ment Methodology’s Interactive Theo-
rem Prover.

In addition — or as an alternative — to
verifying the formal specifications at each
design stage, you can test the formal spec-
ifications to see if they specify the desired
functionality. Several approaches have
been proposed;® one deals specifically
with Ina Jo specifications.® Some of these
approaches serve as rapid prototypes for
resolving design decisions early in the life
cycle. They are all useful for detecting er-
rors early in the development process.

Detailed design
As more design decisions were made,
the next level of specification was devel-

oped to document these decisions. The
box on p. 45 shows part of the resulting
formal specification, which corresponds
to a detailed-design specification for the
SRT.

Specification. A review of this docu-
ment shows that at this stage buffers have
taken on some structure. A buffer is
shown as a list of lines, but lines are still
not explicitly defined. This specification
also introduces the idea of the SRT having
a screen on which lines can be displayed:

Screen: Screen_Buffer

where

Screen_Buffer: Loline

and

Loline = List of Line

The idea of being able to display a line
with nonprinting characters expanded or
suppressed is also introduced at this stage.

To rigorously associate the entities of
the lower level specification with the re-
fined entities of the parent specification,
the Formal Development Methodology
requires a Map section in each lower level
specification. All types, constants, state
variables, and transforms that appear in
the parent specification must be mapped
to their corresponding representations in
the lower level specification.

By introducing a display screen into the
design, the team could then refine the
Review_Data transform into seven trans-
forms that corresponded closely to the re-
view functions to be provided to the user.
These transforms are

* First Page, which displays the SRT data
buffer’s first screen,

* Last Page, which displays the last
screen,

¢ Plus Page, which displays the next
screen,

¢ Minus Page, which displays the previ-
ousscreen,

® Plus Lines, which displays the next N
lines,

* Minus Lines, which displays the previ-
ous Nlines, and

* Change Mode, which toggles the SRT
between normal and control-character
display modes.

The mapping expression for the

IEEE Software

Specification Secure_Release_Terminal
LEVEL Detailed_Design UNDER Preliminary Design
TYPE
Level = (High,Low,Sanitized),
Connect_Level =T'L:Level (L=High | L=Low),
Line,
Loline = List of Line,
Buffer = Loline,
Screen_Buffer = Loline,
Pos_Integer = T"i:Integer (i>0),
Mode = (Normal,Show_Control)

CONSTANT
Max_Buffer: Pos_Integer,
Screen_Size:Pos_Integer,
Sanitized_Line:Line,
Scroll_Size:Pos_Integer,
Expanded(Line):Line

TYPE
Screen_Number = T"i:Pos_Integer (i<Screen_Size),
File_Number = T"i:Integer (i>0 & i<Max_Buffer),
Buffer_Number = T"i:Pos_integer (ixMax_Buffer)

CONSTANT
Sanitized_Buffer:Buffer

VARIABLE
Terminal_Level:Level,
Terminal_Mode:Mode,
Connected:Boolean,
Reviewed(Buffer_Number):Boolean,
Accepted:Boolean,
Host_Buffer(Connect_Level):Buffer,
Terminal_Buffer:Buffer,
Active_Host:Connect_L evel,
Screen:Screen_Buffer,
File_Size:File_Number,
Buffer_Size(Connect_Level):File_Number,
Top_Line:File_Number

DEFINE
Definitions given in the main article

INITIAL
Terminal_Level=Sanitized
& ~Connected
& Vi:Buffer_Number(~Reviewed(i))
& ~Accepted

& File_Size=0
& Terminal_Mode=Normal
& Vs:Screen_Number (Screen.s=Sanitized_Line)

Partial detailed-design specification

& Vi:Buffer_Number (Terminal_Buffer.i=Sanitized_Line) END Detailed_Design

END Secure_Terminal

Transform Connect_To_High
Transform Connect_To_Low
Transform Disconnect
Transform Receive_Data
Transform Send_Data
Transform Sanitize
Transform Accept_Data
Transform Change_Mode
Transform First_Page
Transtorm Last_Page
Transform Plus_Page
Transform Minus_Page
Transform Pius_Lines
Transform Minus_Lines
Transform Change_Level
Transform Process_Normal

MAP
Buffer == Buffer,
Sanitized_Buffer == Sanitized_Buffer,

Terminal_Level == Terminal_Level,
Connected == Connected,
Reviewed == Vi:Buffer_Number (
i<File_Size — Reviewed(i))
& File_Size 20,
Accepted == Accepted,
Host_Butffer(Lev) == Host_Buffer(Lev),
Terminal_Buffer == Terminal_Buffer,
Active_Host == Active_Host,

Connect_To(Lev) == (Lev=High & Connect_To_High

| Lev=Low & Connect_To_Low),
Disconnect == Disconnect,
Receive_Data == Receive_Data,
Send_Data == Send_Data,
Sanitize == Sanitize,
Accept_Data == Accept_Data,
Review_Data ==

Change_Mode

| First_Page

| Last_Page

| Plus_Page

| Minus_Page

| Plus_Lines

| Minus_Lines,
Change_Level == Change_Level,
Process_Normal == Process_Normal

Review_Data transform is

Review_Data ==
Change_Mode
| First_Page
I Last_Page
| Plus_Page
I Minus_Page
| Plus_Lines
| Minus_Lines.

September 1990

What precedes the == sign in a mapping
expression is an entity from the upper
level (the preliminary-design specifica-
tion), and what follows the ==is an expres-
sion using entities from the lower level
(detailed-design specification). This map-
ping indicates that the Review_Data trans-
form is nondeterministically implement-
ed by the seven lower level transforms.

(An execution of any of the seven lower
level transforms corresponds to an execu-
tion of the Review_Data transform.)

The Change Mode transform intro-
duces the idea of being able to display
control characters. To accomplish this,
the specification used the constant func-
tion Expanded:

Expanded(Line): Line

45

Because a line’s structure is undefined at
this stage, the Expanded function is also
undefined, but it represents the line that
results when control and other nonprint-
ing characters are expanded to a print-
able form. For example the sequence <a,
Ctrl-H, b>would normally be displayed as
“b” because the Ctrl-H backspaces over
the “a.” In expanded mode, this might be
displayed as “a"Hb”. (In the SRTs initial
implementation, control characters were
displayed in reverse video.) The Change_
Mode transform is

Transform Change_Mode
Refcond
~Connected
Effect
(Terminal_Mode=Normal
& N"Terminal_Mode=Show_Control
& Vs:Screen_Number(N"Screen.s=
Expanded(Terminal_Buffer.
(s+Top_Line-1)))
| Terminal_Mode=Show_Control
& N'"Terminal_Mode=Normal
& Vs:Screen_Number(N"Screen.s=
Terminal_Buffer.(s+Top_Line-1)))

The Change_Mode transform’s only re-
quirement to be invoked is that the SRT
be disconnected. This reflects the deci-
sion that the display mode was to be used
only during the review process and not
when the SRT is connected to a remote
host and used as a dumb terminal.

The Effect section is a disjunction corre-
sponding to two cases: The SRT is in nor-
mal mode or it is in show-control mode. If
the SRT is in normal mode when the
transform is fired, it is put in show-control
mode. Similarly, if it is in show-control
mode, it is put in normal mode. The lines
displayed on the screen must also be up-
dated accordingly.

The remaining six transforms that are a
refinement of Review_Data determine
what lines will be displayed on the screen.
All have a Refcond that requires the termi-
nal to be disconnected for the transform
to fire. Consider the Minus_Page trans-
form. The Effect section for this trans-
form is

N"Top_Line =

(if Top_Line — Screen_Size >0
then Top_Line - Screen_Size
else 1)
& Vi:Buffer_Number(
N'"Reviewed (i) =
(ifi >N"Top_Line & i < N"Bottom_Line
then TRUE

else Reviewed(i)))
& Vs:Screen_Number(N"Screen.s=
Display (Terminal_Buffer.
(s+N"Top_lLine-1)))

The Top_Line state variable keeps track
of which line in the buffer is displayed at
the top of the screen. The constant Screen_
Size indicates how many lines the screen
can display. Bottom_Line is an example of
the use of an Ina Jo definition; it makes
the specification more readable. The defi-
nition is

Bottom_Line = Top_Line + Screen_Size ~1

The other definition used in this trans-
form expression is Display. It is defined as

When developing
the detailed design,
the design team decided
that it wanted all of the
SRT’s operations to be
single keystrokes
(to correspond to
function keys on the
terminal).

Display (li:Line) ==
(if Terminal_Mode=Normal
then li
else Expanded (li))

Without the Display definition, whenever
the effect of a transform changes what is
displayed on the screen, it would be neces-
sary to use a conditional statement in the
specification like the one used in the defi-
nition of Display. It is more elegant to de-
fine the concept once and then use the
Display definition whenever it is needed
in the specification.

The effect of the Minus_Page transform
is to display from the buffer the Screen_
Size number of lines that immediately
precede the lines being displayed. The
only complexity in this Effect section is de-
termining whether there are enough lines
preceding to fill up the screen. This is the
condition

Top_Line ~ Screen_Size >0

If there are, Top_Line is set to Top_Line -
Screen_Size. Otherwise, Top_Line is set
to the first line in the buffer, and the first
page of the buffer will be displayed. Using
the new value of Top_Line to determine
what lines are to be displayed, the second
conjunct specifies that these lines of the
buffer are to be marked as reviewed
(N"Reviewed (i) = True). The final con-
junct specifies exactly which line will be
displayed at each position on the screen.
The Display definition specifies whether
the lines are displayed with nonprinting
characters expanded.

The other five review transforms are de-
fined similarly.

When developing the detailed design,
the design team decided that it wanted all
of the SRT’s operations to be single key-
strokes (to correspond to function keys
on the terminal). As a result, none of the
transforms should be parameterized. Be-
cause the Connect_To transform in the
preliminary-design specification was pa-
rameterized by connection level, this
raised the question of whether the prelim-
inary-design specification should be mod-
ified to change the Connect_To trans-
form to two separate transforms.

When using the Formal Development
Methodology approach, you write code
directly from the lowest-level specifica-
tion. In addition, the Formal Develop-
ment Methodology lets an upper level
transform be implemented by one or
more lower level transforms, and this cor-
respondence can be based on the value of
a parameter of the upper level transform.
That is, upper level transforms are ab-
stract representations of one or more
lower level transforms, and they them-
selves may not directly correspond to a
user interface operation. (This differs
from a pure abstract-data-type approach
where the highestlevel specification de-
fines the user interface.) Therefore, the
team decided that there was no need to
redo the preliminary-design specifica-
tion.

Thus, in the detailed-design specifica-
tion, there are two connection trans-
forms. The mapping for the Connect_To
transform reflects this:

Connect_To(Lev) ==

(Lev=High & Connect_To_High
| Lev=Low & Connect_To_Low)

|EEE Software

Preliminary-
design
specitication

Lev=Low, ° Lev=High

Connect_
To_High

Connect_
To_Low

Detailed-
design
specification

(b)

(a)

()

Figure 5. (a) Conditional, (b) one-to-one,

detailed-design specifications (bottom).

The mapping for the Connect_To trans-
form of the preliminary design states that
this transform with its parameter equal to
High is refined to the Connect_High
transform in the detailed-design specifica-
tion and, when its parameter is equal to
Low, it refines to the Connect_Low trans-
form.

Figure 5 shows three forms of transform
mapping used in the detailed-design spec-
ification.

The idea of what it means for the buffer
to be reviewed was also clarified at this
stage and was reflected in the detailed-de-
sign specification. The team considered
different strategies, but eventually we de-
termined “display all lines on the screen
before an accept decision can be permit-
ted” to be the most acceptable criterion
for a buffer to be considered as reviewed.
This decision was documented in the
mapping of the state variable Reviewed:

Reviewed ==

Vi:Buffer_Number (
i < File_Size — Reviewed(i))
& File_Size 0

which specifies that the buffer must be
nonempty and thatall of the buffer’s lines
must be marked as reviewed. This is also
reflected in the Refcond section of the Ac-
cept transform:

~Connected

& V i:Buffer_Number (

i < File_Size — Reviewed (1))
& File_Size >0

Because Reviewed is a key concept in the
formal critical requirements, this map-
ping had to be carefully analyzed to assure
that it was defined accurately.

An example of another form of non-
determinism in Ina Jo is the result of want-
ing to include a nonsecurity requirement
in the detailed-design specification. The
requirement was for the data to be view-

September 1990

and (c) disjunctive-transform mappings of preliminary-design specifications (top) to

able during a receive operation. This was
not a security requirement but a func-
tional requirement. What was desired was
to let an implementation display the file
being transferred. Because the design
team had not decided whether the screen
would be changed and, if it were to be
changed, how it would change (and be-
cause this is not relevant to security), the
team thought that the value of the screen
should not appear in the transform speci-
fication.

However, in Ina Jo, if a state variable is
not mentioned in a transform specifica-
tion’s Effect section, it is assumed to be
unchanged. Because there was to be the
possibility of change, this did not suffice.
The result was to formally specify the ef-
fect on the screen:

N"Screen = N"Screen.

This expression specifies that the new
value of the screen is equal to its new
value. That is, the new value of the screen
could be equal to any value, thus letting
the implementation change the value of
the screen or to leave it unchanged during
the receive operation.

At first, it may appear that the need to
express N"Screen=N"Screen this way
indicates that itwas a bad Formal Develop-
ment Methodology design decision to as-
sume that variables that are not men-
tioned in a transform are unchanged.
However, the alternative approach of hav-
ing to explicitly express in every transform
all variables that don’t change quickly
convinced us that the decision was a wise
one. For example, for the complete de-
tailed-design specification, there are 12
state variables and 16 transforms, and the
average number of variables changed in
each transform is less than four.

Verification. The appropriate proof ob-

ligations for the SRT detailed-design spec-
ification were also generated by the InaJo
processor. These proof obligations guar-
anteed that the detailed-design specifica-
tion was a correct refinement of the pre-
liminary-design specification.

In the Formal Development Methodol-
ogy, the proof obligations between any
two levels of specification always have the
same form. First, a proof obligation is gen-
erated that guarantees that the initial con-
dition specified in the lower level specifi-
cation implies the initial condition of the
parent specification. In addition, for each
transform in the upper level specification,
a proof obligation is generated to guaran-
tee that it is correctly refined in the child
specification.

Because the lower level specification
contains more details (since it is less ab-
stract) than the higher level specification,
you must use the lower level specifica-
tion’s mapping specification to rigorously
transform the upper level types, con-
stants, and variables to the entities of the
lower level specification.

The interlevel proof obligations gener-
ated by the Ina Jo processor are an initial-
condition mapping theorem and trans-
form-mapping theorems.

The initial-condition mapping theorem is

INIT, — map(INlThigh)

low

where INIT,_, is the Initial clause of the
lower level specification and INIT,,,, is the
Initial clause of the higher level specifica-
tion. The Map function in this formula de-
notes the application of the mappings de-
fined in the lower level specification to the
types, constants, and variables that appear
in the expression to which it is applied.
The transform-mapping theorem is

Ry, & Ey,, = map(R

high) & map(E

high)

where R, and E_, are the Refcond and

47

Effect of the low-level transform and R, ,
and B,), arc the Refcond and Effectof the
parent transform.

If the mapping for the parent transform
is mapped to several transforms, this map-
ping is reflected in the mapping theorem
generated. For example, in the SRT’s de-
tailed-design specification, the disjunctive
mapping for the Connect_To transform
generates the proof obligation

(Lev=High & R(‘.onnerr?High & E(Ionnecl)ligh
| Lev=Low & R(‘,mmeclﬁlnw & E(Z(mnec(ilnw)
— map (Regnnec_To) & Map(Econnec o)

This is equivalent to the proof obligations

Lev=High & Reonnec_nigh & Econnect_High
— map (Reonnec_To) & Map (Econnea_1o)

and

Lev=Low & R(Ionnccl_bow & E(lonneclilnw
— map(Reonnect o) & Map(Econnect 10)

By showing that the lower level initial
conditions correctly implement the higher
level initial conditions and that the lower
level transforms correctly implement the
higher level transforms, it follows that the
lower level specification preserves the cri-
teria and constraints. Because the lower
level specification is consistent with the
level above it and the level above is consis-
tentwith the formal critical requirements,
you can conclude that the lower level
specification is consistent with the formal
critical requirements.

For the SRT, the higher level specifica-
tion is the preliminary-design specifica-
tion and the lower level specification is the
detailed-design specification. These speci-
fications were input to the Ina Jo proces-
sor to generate the necessary proof obli-
gations to assure that the detailed-design
specification was consistent with the pre-
liminary-design specification. The result-
ing theorems were proved with the Inter-
active Theorem Prover.

The theorems generated by the Ina Jo
processor have been simplified here for
clearer presentation.

Code-level verification

After formally verifying the detailed-de-
sign specification, the design team de-
cided to implement the SRT directly from
the detailed-design specification. The al-
ternative would have been to develop an

48

even more detailed design specification.
This specification would probably have
added the concept of characters, possibly
with a line being a list of characters and a
buffer being alist of lists of characters.

At one point, the team considered al-
lowing files with lines longer than the
width of the screen. If this had been done,
it would have been desirable to have SRT
commands to move the screen right and
left. This would be best handled by work-
ing at the character level of detail, and a
third level of design specification would
be reasonable. However, when the team
decided not to include the horizontal-
movement commands, it concluded that
a third level of formal specification was

After formally verifying
the detailed-design
specification, the design
team decided to
implement the SRT
directly from it.

The alternative would
have been to develop an
even more detailed
design specification.

notnecessary.

The prospect of code-level verification
posed additional problems for the team.
Among these was the choice of an appro-
priate implementation language.

At the time the SRT was being devel-
oped, a verification-condition generator
for the Modula-1 language had been
started and was being completed. Modula
was initially chosen for another project be-
cause it was well structured, permitted
high-levelHlanguage access to specific reg-
isters and memory locations for Modula-
level 1/0, and had a scoping approach
that facilitated the formal verification.

Another advantage inherent in Modula
but not in the more widely available Pascal
was the small runtime package. The de-
sign team felt that the verification of the
estimated 1,000 lines of high-level-lan-
guage SRT code made little sense if thou-
sands of bytes of runtime package were to

be accepted as part of the language pack-
age but not subjected to any formal devel-
opment. With Modula, the runtime pack-
age is a few hundred bytes of code. This
was sufficiently small for manual genera-
tion and proof of the verification condi-
tions. However, the choice of Modula or
even Modula-2 for any microprocessor
other than a select few was limited by the
lack of available compilers.

For the SRT, the target microprocessor
was the Intel 8086, for which we could get
no Modula compiler. A further concern
was the desire to avoid writing new com-
pilers for future projects that also re-
quired code-level verification. While this
project targeted an 8086, the next might
target a Z8000, and the next some other
processor. The design team wanted to es-
tablish tools that could be used by future
projects and not be discarded at the com-
pletion of the SRT project.

The solution chosen was the construc-
tion of a Modula-to-C translator. C is
widely available on various processorsand
is a good system-programming language,
although not particularly well oriented to
formalverification. The Modula language
provided the necessary structuring and
modularization to C. Because the team
contemplated only higherlevel-language
verification, it felt that there was little se-
curity disadvantage in going from Modula
to C to 8086 assembly code compared to
going directly from Modula to 8086 as-
sembly.

In neither case was compiler correct-
ness to be assured in any way other than
through test and observation. Thus, the
team viewed this approach as logically
equivalent to a Modula-to-8086 compiler
with the added advantage that it provided
a transportable approach to carry higher-
level-language verification to a wide vari-
ety of processors.

For the formal verification process to be
complete, you should formally verify the
code against its formal specification. Un-
fortunately, the project funding the Mod-
ula verification-condition generator was
cancelled, so an appropriate generator
was no longer available. Therefore, we had
to find an alternative assurance method.

What we finally used was a manual com-
parison of the specification to the code.
The correspondence method used was a

IEEE Software

rigorous technique developed at System
Development Corp. for other security
projects.’ The SRT was particularly ame-
nable to this approach because the code
was written directly from the lowest-level
formal specification, rather than being
developed as a parallel but separate effort.
The formal specifications provided a
more coherent design, which was reflect-
ed in the production of less error-prone
code. The only major problem experi-
enced in code debugging was in completely
understanding the hardware interfaces.

Effects of verification

The formal specification process placed
additional constraints on the design be-
cause verification was the objective.

During the SRT’s preliminary design,
the design team made some calculations
to determine the worst-case time delay to
read in a file from a host. The time was
about five minutes, which the team
agreed was too long to require a security
officer to wait if it was determined that the
wrong file was being read in or that higher
priority work should take precedence
over the ongoing activity. As a result, the
team decided that the security officer
should be able to view the data as it is
being received and that he should be able
to interrupt the receive operation in the
middle of a transfer.

Formally specifying this meant formally
stating that the result of the receive opera-
tion was to have the new value of the SRT’s
buffer equal to the old value of the host’s
buffer up to some point. (This could be
any one of many values, depending on
when the security officer chose to inter-
rupt and how frequently interrupts were
polled.) It also meant having the rest of
the SRT contain its previous value. For-
mally stating the possible combinations
was difficult and formally verifying would
have been even worse.

For some time, the design team argued
that having to specify what the resulting
value of a receive operation would be was
unnecessary because the buffer was to be
reviewed before release. This was a ques-
tion of what the system’s security perime-
ter was—what parts of the system are rele-
vant to security. However, although this
requirement was not absolutely necessary

September 1990

for specifying the SRT, the team decided it
would be useful and even necessary for fu-
ture secure-release terminals or if the total
system using trusted hosts was to be for-
mally specified and verified.

For example, a system using trusted
hosts might have some preliminary secu-
rity checks performed in the trusted host,
marking the text to be transferred appro-
priately. The security officer would then
use these markings to determine whether
to release the text. Thus, it is relevant to
security that the integrity of the markings
be preserved. By guaranteeing that what
was received by the SRT terminal is identi-
cal to what was in the host buffer, the in-

Although this is
a small system, the
design team felt that the
results would scale up if
the formal design
process were tightly
integrated with the
overall system design
and implementation
process, as was true in
the SRT project.

tegrity of the security markings is guaran-
teed.

The solution that the team chose was to
have the SRT sanitize its entire buffer if
the security officer interrupted file trans-
fer. Thus, the preliminary-design specifi-
cation stated that either the new value of
the SRT’s buffer was equal to the old value
of the host’s buffer or it was sanitized.
Therefore, there were only two possible
results rather than an infinite number of
possibilities. This solution was both simple
to implement and to specify and verify.

It also provided a convenient and con-
sistent approach to handling persistent
transmission failures when a reliable pro-
tocol was later designed: After several un-
successful retransmission attempts, the re-
ceive fails and the buffer is sanitized.

Furthermore, the implementation is ef-
ficient and causes no long delays because

the sanitization isa local operation requir-
ingnol/0.

he SRT is a real system. The SRT was
Toriginally implemented in Modula

targeting a Digital Equipment Corp.
PDT/11-110 intelligent terminal and in
Pascal targeting a Burroughs B20 worksta-
tion to demonstrate the user interface.
Full functionality was provided. The work-
station version was first implemented in
Pascal to avoid waiting for completion of
the Modula-to-C translator; it ran under
CTOS (although the code made no oper-
ating-system calls). This code was hand-
translated to C and a downline loader was
implemented to let the output of the C
cross-compiler overwrite the operating
system and to run as a stand-alone pro-
cess.!’

The SRT was successfully demonstrated
transferring files between various archi-
tectures and operating systems, including
a DEC PDP-10 running Tenex and several
versions of Unix running on DEC and
Burroughs architectures. A later version
of the SRT was implemented in PL/M on
a Burroughs B25.

Three questions often asked about a
project like this are:

* How does the approach scale up?

® What kind of experience is necessary
to use the approach?

* How useful was the tool support?

The SRT is an admittedly small coding
effort (about 1,000 lines of code). The
preliminary-design specification is 130
lines of Ina Jo specification, and the Inter-
active Theorem Prover produced 33 pages
of prooflog output. The detailed design is
270 lines of specification, and the theo-
rem prover produced 88 pages of output.

Although this is a small system, the de-
sign team felt that the results would scale
up if the formal design process were
tightly integrated with the overall system
design and implementation process, as
was true in the SRT project. Since the SRT
project, others have used the Formal De-
velopment Methodology on several larger
projects, including a multilevel secure dis-
tributed network with end-to-end encryp-
tion, a secure operating system, and a
multilevel secure LAN.

The three members of the design team
had varying levels of experience with for-

49

mal methods before the SRT project. I
had the primary responsibility for writing
the Ina Jo formal-design specifications,
since I had extensive experience writing
formal specifications before the SRT proj-
ect and had taught classes on the use of
the Formal Development Methodology.
Another team member had taken a class
on formal methods that included the For-
mal Development Methodology and had
alsoworked with Ina Jo specifications. The
third member had had only limited expo-
sure to Ina Jo specifications.

Clearly, the SRT design team had more
experience with formal specification and
verification technology than is normally
true for developers. This does not mean
that the integrated approach we propose
is inappropriate for the average develop-
ment team. But it does suggest that devel-
opers should be trained in the use of for-
mal methods.

Because the formal specifications were
carefully analyzed by the design team be-
fore any proofs were tried, very few logical
errors were discovered during the proof

Acknowledgments

Itis a pleasure to acknowledge the contribu-
tions of Tom Hinke and Jose Althouse, who
were the other members of the SRT design
team. Thanks also to Clark Weissman of Unisys,
who originally suggested this project as a rea-
sonable first application of the Formal Devel-
opment Methodology to the entire develop-
ment process.

References

1. J. Scheid and S. Holtsberg, “Ina Jo Specifi-
cation Language Reference Manual,” tech.
report, Formal Methods Group, Unisys,
Culver City, Calif., May 1989.

2. W.R. Bevier, W.A. Hunt, Jr., and W.D.
Young, “Toward Verified Execution En-
vironments,” Proc. 1987 IEEE Symp. Security
and Privacy, CS Press, Los Alamitos, Calif.,
1987, pp. 106-115.

3. C.AR. Hoare, “Proof of Correctness of
Data Representations,” Acta Informatica,
No.4, 1972, pp. 271-281.

4.]. Guttag, E. Horowitz, and D. Musser, “Ab-
stract Data Types and Software Validation,”

50

process. In fact, most of the proof obliga-
tions were proved the first time. By con-
trast, the Ina Jo processor was very useful
for detecting syntax errors in the specifi-
cations. These were usually missing type
declarations or simple typos, and Ina Jo’s
strong typing revealed them.

As is true with most existing formal-veri-
fication tools, the Formal Development
Methodology tool suite was developed asa
research tool and is not production-qual-
ity. However, even without production-
quality tool support, the integration of
formal methods into the development
process is beneficial because, by using a
formal notation for the design docu-
ments, developers can reason rigorously
about their designs.

The primary benefit of formally specify-
ing and verifying software comes in the
form of more reliable systems. The pro-
grams developed using this approach per-
form the desired functions with fewer
errors and may be trusted to operate cor-
rectly in critical environments. In addi-
tion, because errors that go undetected

Comm. ACM, Dec. 1978, pp. 1,048-1,064.

5. TA. Berson, R/]. Feiertag, and R K. Bauer,
“Processor-per-Domain Guard Architec-
ture,” Proc. 1983 IEEE Symp. Security and
Privacy, CS Press, Los Alamitos, Calif., 1983,
p. 120.

6. D.V. Schorre et al., “The Interactive
Theorem Prover (ITP) Reference Man-
ual,” tech. report, Formal Methods Group,
Unisys, Culver City, Calif., Nov. 1988.

7. J.Guttag and J.J. Horning, “Formal Specifi-
cations as a Design Tool,” Proc. Seventh Ann.
ACM Symp. Princ. Programming Languages,

ACM, New York, 1980, pp. 251-261.

until the software is operational are usu-
ally vastly more expensive to fix compared
to those revealed during the design phase,
the cost of development is reduced by lo-
cating and eliminating errors early in the
development process.

Formal methods should be integrated
into the development process to increase
assurance that critical systems will per-
form as desired. With this approach, the
formal specification and verification ef-
fort does not occur after the system has
been built. Neither does it take place as a
parallel effort performed by a separate
team. There is only one team — the devel-
opment team — and it uses formal specifi-
cations as its design notation.

By using formal specifications for the
design notation, the team can reason rig-
orously about its designs. In addition, be-
cause critical system requirements are
captured in a mathematical notation, the
system specification can serve as an unam-
biguous arbitrator of the system’s desired
properties. Furthermore, properties can
be proved about the design, which gives
assurance early in the development pro-
cess that the system being developed will

satisfy its critical requirements. -

Richard A. Kemmerer is a professor in the
Computer Science Dept. at the University of
California at Santa Barbara. He has been a visi-
tor at the Massachusetts Institute of Tech-
nology, Wang Institute, and the Politecnico di
Milano.His research interests include formal
specification and verification, reliable soft-
ware, and secure systems.

Kemmerer received a BS in mathematics
from Pennsylvania State University and an MS

‘and PhD in computer science from the Univer-

sity of California at Los Angeles. He is a senior
member of the IEEE Computer Society and a
member of the ACM and the International As-
sociation for Cryptologic Research.

Address questions about this article to the

author at Computer Science Dept., University
of California, Santa Barbara, CA 93106.

IEEE Software

