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Temporal Logics for Reactive Systems
[Pnueli FOCS 77, TCS 81]

Transformational systems
get input; 

compute something; 

return result;

Reactive systems
while (true) { 

receive some input,

send some output

}

• Transformational view follows 
from the initial use of computers 
as advanced calculators: A 
component receives some input, 
does some calculation and then 
returns a result.

• Nowadays, the reactive system 
view seems more natural: 
components which continuously 
interact with each other and their 
environment without terminating

Transformational vs. Reactive Systems

Transformational systems
get input;

{pre-condition} 

compute something;

{post-condition} 

return result;

Reactive systems
while (true) { 

receive some input,

send some output

}

• Earlier work in verification uses 
the transformational view: 
– halting problem

– Hoare logic

– pre and post-conditions 
– partial vs. total correctness

• For reactive systems:

– termination is not the main 
issue

– pre and post-conditions are 
not enough  

Reactive Systems: A Very Simple Model

• We will use a very simple model for reactive systems

• A reactive system generates a set of execution paths

• An execution path is a concatenation of the states 
(configurations) of the system, starting from some initial 
state

• There is a transition relation which specifies the next-state
relation, i.e., given a state what are the states that can 
follow that state

• We need an example

A Mutual Exclusion Protocol

Process 1:
while (true) {

out:  a := true; turn := true;
wait: await (b = false or turn = false);
cs:   a := false;

}
||
Process 2:
while (true) {

out:  b := true; turn := false;
wait: await (a = false or turn);
cs:   b := false;

}

Two concurrently executing processes are trying to enter a 
critical section without violating mutual exclusion
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State Space

• The state space of a program can be captured by the 
valuations of the variables and the program counters 
– you have to wait until the next lecture for a discussion 

about the control stack (and recursion) and the heap 
(and dynamic memory allocation)

• For our example, we have
– two program counters: pc1, pc2

domains of the program counters: {out, wait, cs}

– three boolean variables: turn, a, b

boolean domain: {True, False}

• Each state of the program is a valuation of all the variables

State Space

• Each state can be written as a tuple 
(pc1,pc2,turn,a,b)

• Initial states:  {(o,o,F,F,F), (o,o,F,F,T), 
(o,o,F,T,F), (o,o,F,T,T), (o,o,T,F,F), 
(o,o,T,F,T), (o,o,T,T,F), (o,o,T,T,T)}

– initially: pc1=o and pc2=o

• How many states total?
3 * 3 * 2 * 2 * 2 = 72
exponential in the number of variables and the number of 

concurrent components

Transition Relation

• Transition Relation specifies the next-state relation, i.e., 
given a state what are the states that can come after that 
state

• For example, given the initial state (o,o,F,F,F) 

Process 1 can execute:
out:  a := true; turn := true;

or Process 2 can execute:
out:  b := true; turn := false;

• If process 1 executes, the next state is (w,o,T,T,F)

• If process 2 executes, the next state is (o,w,F,F,T)

• So the state pairs ((o,o,F,F,F),(w,o,T,T,F)) and 
((o,o,F,F,F),(o,w,F,F,T)) are included in the 
transition relation

Transition Relation

The transition relation is like a graph, edges represent the 
next-state relation

(o,o,F,F,F)

(o,w,F,F,T) (w,o,T,T,F)

(o,c,F,F,T) (w,w,T,T,T)

Transition System

• A transition system T = (S, I, R) consists of
– a set of states S

– a set of initial states I ⊆ S
– and a transition relation R ⊆ S × S

• A common assumption in model checking

– R is total, i.e., for all s ∈ S, there exists s’ such 
that (s,s’) ∈ R

Execution Paths

• An execution path is an infinite sequence of states
x = s0, s1, s2, ...
such that 

s0 ∈ I  and for all i ≥ 0, (si,si+1) ∈ R 

Notation: For any path x
xi denotes the i’th state on the path (i.e., si)
xi denotes the i’th suffix of the path (i.e., si, si+1, si+2, ... )
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Execution Paths

A possible execution path:
((o,o,F,F,F), (o,w,F,F,T), (o,c,F,F,T)) ω

(ω means repeat the above three states infinitely many times)

(o,o,F,F,F)

(o,w,F,F,T) (w,o,T,T,F)

(o,c,F,F,T) (w,w,T,T,T)

Temporal Logics

• Pnueli proposed using temporal logics for reasoning about 
the properties of reactive systems

• Temporal logics are a type of modal logics
– Modal logics were developed to express modalities such 

as “necessity” or “possibility”
– Temporal logics focus on the modality of temporal 

progression  

• Temporal logics can be used to express, for example, that:
– an assertion is an invariant (i.e., it is true all the time)
– an assertion eventually becomes true (i.e., it will become 

true sometime in the future) 

Temporal Logics

• We will assume that there is a set of basic (atomic) 
properties called AP
– These are used to write the basic (non-temporal) 

assertions about the program
– Examples: a=true, pc0=c, x=y+1 

• We will use the usual boolean connectives: ¬ , ∧ , ∨

• We will also use four temporal operators:
Invariant p : G p  (aka      p)    (Globally)
Eventually p : F p (aka      p) (Future)
Next p : X p (aka      p) (neXt)
p Until q : p U q

Atomic Properties

• In order to define the semantics we will need a function L 
which evaluates the truth of atomic properties on states:

L : S × AP → {True, False}         

L((o,o,F,F,F), pc1=o) = True 
L((o,o,F,F,F), pc1=w) = False
L((o,o,F,F,F), turn) = False
L((o,o,F,F,F), turn=false) = True

L((o,o,F,F,F), ¬turn) = True
L((o,o,F,F,F), pc1=o ∧ pc2=o ∧¬turn ∧ ¬a ∧ ¬b ) = True

Linear Time Temporal Logic (LTL) Semantics

Given an execution path x and LTL properties p and q

x |= p iff L(x0, p) =True, where p ∈ AP
x |= ¬p iff not x |= p
x |= p ∧ q iff x |= p and x |= q
x |= p ∨ q iff x |= p or x |= q

x |= X p iff x1 |= p
x |= G p iff for all i, xi |= p
x |= F p iff there exists an i such that xi |= p
x |= p U q iff there exists an i such that xi |= q and

for all j < i, xj |= p

LTL Properties

p
. . .

pp p p p p
. . .

p
. . .

pp p p q
. . .

X p

G p

F p

p U q
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Example Properties

mutual exclusion: G ( ¬ (pc1=c ∧ pc2=c))
starvation freedom: 

G(pc1=w ⇒ F(pc1=c)) ∧ G(pc2=w ⇒ F(pc2=c)) 

Given the execution path:
x =((o,o,F,F,F), (o,w,F,F,T), (o,c,F,F,T)) ω

x |= pc1=o
x |= X (pc2=w)
x |= F (pc2=c)
x |= (¬turn) U (pc2=c ∧ b)
x |= G ( ¬ (pc1=c ∧ pc2=c))
x |= G(pc1=w ⇒ F(pc1=c)) ∧ G(pc2=w ⇒ F(pc2=c)) 

LTL Equivalences

• We do not really need all four temporal operators
– X and U are enough (i.e., X, U, AP and boolean 

connectives form a basis for LTL)

F p = true U p

G p = ¬ (F¬p) = ¬ (true U ¬p) 

LTL Model Checking

• Given a transition system T and an LTL property p 
T |= p iff for all execution paths x in T, x |= p

For example:
T  |=?  G ( ¬ (pc1=c ∧ pc2=c))
T  |=?  G(pc1=w ⇒ F(pc1=c)) ∧ G(pc2=w ⇒ F(pc2=c)) 

Model checking problem: Given a transition system T and 
an LTL property p, determine if T is a model for p (i.e., if    
T |=p)

Linear Time vs. Branching Time

• In linear time logics given we look at execution paths 
individually

• In branching time logics we view the computation as a tree
– computation tree: unroll the transition relation

s2s1 s4s3

Transition System Execution Paths Computation Tree

s3

s4
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s3
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s2
.
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s3

s3
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.
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.
.
.
.

s3s4 s1
.
.
.
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.
.
.
.

s4 s1
.
.
.

Computation Tree Logic (CTL)

• In CTL we quantify over the paths in the computation tree

• We use the same four temporal operators: X, G, F, U

• However we attach path quantifiers to these temporal 
operators:
– A : for all paths
– E : there exists a path

• We end up with eight temporal operators:
– AX, EX, AG, EG, AF, EF, AU, EU

CTL Semantics

Given a state s and CTL properties p and q

s |= p iff L(s, p) =True, where p ∈ AP
s |= ¬p iff not x |= p
s |= p ∧ q iff s |= p and s |= q
s |= p ∨ q iff s |= p or s |= q

s0 |= EX p iff there exists a path s0, s1, s2, ... such that 
s1 |= p

s0 |= AX p iff for all paths s0, s1, s2, ..., s1 |= p
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CTL Semantics

s0 |= EG p iff there exists a path s0, s1, s2, ... such that
for all i, si |= p

s0 |= AG p iff for all paths s0, s1, s2, ..., for all i, si |= p

s0 |= EF p iff there exists a path s0, s1, s2, ... such 
that there exists an i such that si |= p

s0 |= AF p iff for all paths s0, s1, s2, ..., there exists an i, 
such that, si |= p

s0 |= p EU q iff there exists a path s0, s1, s2, ..., such 
that, there exists an i such that si |= q 
and for all j < i, sj |= p

s0 |= p AU q iff for all paths s0, s1, s2, ..., there exists an i 
such that si |= q and for all j < i, sj |= p

CTL Equivalences

• CTL basis: EX, EU, EG

AX p = ¬ EX ¬p
AG p = ¬ EF ¬p
AF p = ¬ EG ¬p
p AU q = ¬( (¬q EU (¬p ∧¬q)) ∨ EG ¬ q)
EF p = True EU p

• Another CTL basis: EX, EU, AU

CTL Properties

s2s1 s4s3

Transition System Computation Tree
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p p
p

p

p

p

s3 |= p
s4 |= p
s1 |= ¬ p
s2 |= ¬ p

s3 |= EX p
s3 |= EX ¬ p
s3 |= ¬ AX p
s3 |= ¬ AX ¬ p
s3 |= EG p
s3 |= ¬ EG ¬ p
s3 |= AF p
s3 |= EF ¬ p
s3 |= ¬ AF ¬ p

p

p

CTL Model Checking

• Given a transition system T= (S, I, R) and a CTL property p 

T |= p iff for all initial state s ∈ I, s |= p

Model checking problem: Given a transition system T and a 
CTL property p, determine if T is a model for p (i.e., if T |=p)

For example:

T  |=?  AG ( ¬ (pc1=c ∧ pc2=c))
T  |=?  AG(pc1=w ⇒ AF(pc1=c)) ∧ AG(pc2=w ⇒ AF(pc2=c))

• Question: Are CTL and LTL equivalent?

CTL vs. LTL

• CTL and LTL are not equivalent
– There are properties that can be expressed in LTL but 

cannot be expressed in CTL 
• For example: FG p

– There are properties that can be expressed in CTL but 
cannot be expressed in LTL

• For example: AG(EF p)

• Hence, expressive power of CTL and LTL are not 
comparable

CTL*

• CTL* is a temporal logic which is strictly more powerful than 
CTL and LTL

• CTL* also uses the temporal operators X, F, G, U and the 
path quantifiers A and E, but temporal operators can also 
be used without path quantifiers

• The following CTL* property cannot be expressed in CTL or 
LTL

– A(FG p) ∨ AG(EF p)
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Automated Verification of Finite State Systems
[Clarke and Emerson 81], [Queille and Sifakis 82]

CTL Model checking problem: Given a transition system T = 
(S, I, R), and a CTL formula f, does the transition system 
satisfy the property?

CTL model checking problem can be solved in 

O(|f| × (|S|+|R|))

Note that the complexity is linear in the size of the transition
system
– Recall that the size of the transition system is 

exponential in the number of variables and concurrent 
components (this is called the state space explosion
problem)

CTL Model Checking Algorithm

• Translate the formula to a formula which uses the basis 
– EX p, EG p, p EU q 

• Start from the innermost (non-atomic) subformulas and 
label the states in the transition system with the 
subformulas that hold in that state 
– Initially states are labeled with atomic properties

• Each (temporal or boolean) operator has to be processed 
once

• Computation of each subformula takes O(|S|+|R|) 

CTL Model Checking Algorithm

• EX p is easy to do in O(|S|+|R|)
– All the nodes which have a next state labeled with p 

should be labeled with EX p

• p EU q: Find the states which are the source of a path 
where p U q holds
– Equivalently, find the nodes which reach a node that is 

labeled with q by a path where each node is labeled with 
p

– Label such nodes with p EU q
– It is a reachability problem which can be solved in 

O(|S|+|R|)

CTL Model Checking Algorithm

• EG p: Find infinite paths where each node is labeled with p 
and label nodes in such paths with EG p
– First remove all the states which do not satisfy p from 

the transition graph
– Compute the strongly connected components of the 

remaining graph and then find the nodes which can 
reach the strongly connected components (both of which 
can be done in O(|S|+|R|)

– Label the nodes in the strongly connected components 
and that can reach the strongly connected components 
with EG p

Verification vs. Falsification

• Verification: 

– Show: initial states ⊆ truth set of p

• Falsification:
– Find: a state ∈ initial states ∩ truth set of ¬p
– Generate a counter-example starting from that state

• CTL model checking algorithm can also generate a 
counter-example path if the property is not satisfied
– without increasing the complexity

• The ability to find counter-examples is one of the biggest 
strengths of the model checkers

What About LTL and CTL* Model Checking?

• The complexity of the model checking problem for LTL and 
CTL*  are: 

– (|S|+|R|) × 2O(|f|)

• Typically the size of the formula is much smaller than the 
size of the transition system 
– So the exponential complexity in the size of the formula 

is not very significant in practice
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Temporal Properties ≡ Fixpoints 
[Emerson and Clarke 80]

Here are some interesting CTL equivalences:

AG p = p ∧ AX AG p
EG p = p ∧ EX EG p

AF p = p ∨ AX AF p
EF p = p ∨ EX EF p

p AU q = q ∨ (p ∧ AX (p AU q))
p EU q = q ∨ (p ∧ EX (p EU q))

Note that we wrote the CTL temporal operators in terms of 
themselves and EX and AX operators

Functionals

• Given a transition system T=(S, I, R), we will define 
functions from sets of states to sets of states 

– F : 2S → 2S

• For example, one such function is the EX operator (which 
computes the precondition of a set of states)

– EX : 2S → 2S

which can be defined as:

EX(p) = { s | (s,s’) ∈ R and s’ ∈ p }

Abuse of notation: I am using p to denote the set of states 
which satisfy the property p 

Functionals

• Now, we can think of all temporal operators also as 
functions from sets of states to sets of states

• For example:
AX p = ¬EX(¬p)

or if we use the set notation
AX p = (S - EX(S - p)) 

Abuse of notation: I will use the set 
and logic notations interchangeably. 

Logic Set
p ∧ q       p ∩ q
p ∨ q p ∪ q 
¬p S – p
False ∅
True S

Lattice

The set of states of the transition system forms a lattice:

• lattice 2S

• partial order ⊆
• bottom element ∅
• top element S

• Least upper bound ∪
(aka join) operator

• Greatest lower bound ∩
(aka meet) operator

Temporal Properties ≡ Fixpoints

Based on the equivalence EF p = p ∨ EX EF p
we observe that EF p is a fixpoint of the following function:

F y = p ∨ EX y
F (EF p) = EF p

In fact, EF p is the least fixpoint of F, which is written as:
EF p = µ y . p ∨ EX y

Based on the equivalence EG p = p ∧ AX EG p
we observe that EG p is a fixpoint of the following function:

F y = p ∧ EX y
F (EG p) = EG p

In fact, EG p is the greatest fixpoint of F, which is written as:
EG p = ν y . p ∧ EX y

Fixpoint Characterizations

Fixpoint Characterization Equivalences

AG p = ν y . p ∧ AX y AG p = p ∧ AX AG p
EG p = ν y . p ∧ EX y EG p = p ∧ EX EG p

AF p = µ y . p ∨ AX y AF p = p ∨ AX AF p
EF p = µ y . p ∨ EX y EF p = p ∨ EX EF p

p AU q = µ y . q ∨ (p ∧ AX (y))     p AU q=q ∨ (p ∧ AX (p AU q))
p EU q = µ y . q ∨ (p ∧ EX (y))     p EU q = q ∨ (p ∧ EX (p EU q))
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Least and Greatest Fixpoints

The least and greatest fixpoint operators are defined as:

µ y . F y = ∩ { y | F y ⊆ y } (glb of all the reductive elements)
ν y. F y = ∪ { y | F y ⊇ y }  (lub of all the extensive elements)

The least fixpoint µ y . F y is the limit of the following 
sequence (assuming F is ∪-continuous):
∅, F ∅, F2 ∅, F3 ∅, ...

The greatest fixpoint ν y . F y is the limit of the following 
sequence (assuming F is ∩-continuous):
S, F S, F2 S, F3 S, ...

If S is finite, then we can compute the least and greatest 
fixpoints using these sequences

EF and EG computations

Then, EF p = µ y . p ∨ EX y is the limit of the sequence:
∅, p∨EX ∅, p∨EX(p∨EX ∅) , p∨EX(p∨EX(p∨ EX ∅)) , ...
which is equivalent to

∅, p, p ∨ EX p , p ∨ EX (p ∨ EX (p) ) , ...

Similarly, EG p = ν y . p ∧ EX y is the limit of the sequence:
S, p∧EX S, p∧EX(p ∧ EX S) , p∧EX(p ∧ EX (p ∧ EX S)) , ...
which is equivalent to

S, p, p ∧ EX p , p ∧ EX (p ∧ EX (p) ) , ...

EF Fixpoint Computation

•• •• ••pp

EF(EF(pp)) ≡ states that can reach states that can reach p  p  ≡ p  p  ∪ EX(EX(pp)) ∪ EX(EX(EX(EX(pp)) )) ∪ ......

EF(EF(pp))

EG Fixpoint Computation

•• •• •• EG(EG(p)p)

EG(EG(pp)) ≡ states that can avoid reaching states that can avoid reaching ¬¬pp ≡ p p ∩ EX(EX(pp)) ∩ EX(EX(EX(EX(pp)))) ∩ ......

µ-Calculus

µ-Calculus is a temporal logic which consist of the following:
• Atomic properties AP

• Boolean connectives: ¬ , ∧ , ∨
• Precondition operator: EX

• Least and greatest fixpoint operators: µ y . F y and ν y. F y 

Any CTL* property can be expressed in µ-calculus 

Symbolic Model Checking
[McMillan et al. LICS 90]

• Represent sets of states and the transition relation as 
Boolean logic formulas

• Fixpoint computation becomes formula manipulation
– pre-condition (EX) computation: Existential variable 

elimination
– conjunction (intersection), disjunction (union) and 

negation (set difference), and equivalence check

• Use an efficient data structure for boolean logic formulas 
– Binary Decision Diagrams (BDDs)
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Example Mutual Exclusion Protocol

Process 1:
while (true) {

out:  a := true; turn := true;
wait: await (b = false or turn = false);
cs:   a := false;

}
||
Process 2:
while (true) {

out:  b := true; turn := false;
wait: await (a = false or turn);
cs:   b := false;

}

Two concurrently executing processes are trying to enter a 
critical section without violating mutual exclusion

State Space

• Encode the state space using only boolean variables

• Two program counters: pc1, pc2

with domains {out, wait, cs}

– Use two boolean variable per program counter:
pc10, pc11, pc20, pc21

– Encoding: 
¬pc10 ∧ ¬ pc11 ≡ pc1 = out

¬pc10 ∧ pc11 ≡ pc1 = wait

pc10 ∧ pc11 ≡ pc1 = cs

• The other three variables are booleans: turn, a , b

State Space

• Each state can be written as a tuple:
(pc10,pc11,pc20,pc21,turn,a,b)
– For example:  
(o,o,F,F,F) becomes (F,F,F,F,F,F,F) 
(o,c,F,T,F) becomes (F,F,T,T,F,T,F) 

• We can use boolean logic formulas on the variables 
pc10,pc11,pc20,pc21,turn,a,b to represent sets of states:

{(F,F,F,F,F,F,F)} ≡ ¬pc10 ∧ ¬ pc11 ∧ ¬pc20 ∧ ¬ pc21 ∧ ¬ turn ∧ ¬a ∧ ¬b

{(F,F,T,T,F,F,T)} ≡ ¬pc10 ∧ ¬ pc11 ∧ pc20 ∧ pc21 ∧ ¬ turn ∧ ¬a ∧ b

{(F,F,F,F,F,F,F), (F,F,T,T,F,F,T)} ≡ ¬pc10 ∧ ¬ pc11 ∧ ¬pc20 ∧ ¬ pc21 ∧ ¬
turn ∧ ¬a ∧ ¬b ∨¬pc10 ∧ ¬ pc11 ∧ pc20 ∧ pc21 ∧ ¬ turn ∧ ¬a ∧ b

≡ ¬pc10 ∧ ¬ pc11 ∧ ¬ turn ∧ ¬b ∧ (pc20 ∧ pc21 ↔ b)

Initial States

• We can write the initial states as a boolean logic formula
– recall that, initially: pc1=o and pc2=o

I ≡ {(o,o,F,F,F), (o,o,F,F,T), (o,o,F,T,F), 
(o,o,F,T,T), (o,o,T,F,F), (o,o,T,F,T), 
(o,o,T,T,F), (o,o,T,T,T)} 

≡ ¬pc10 ∧ ¬ pc11 ∧ ¬pc20 ∧ ¬ pc21 

Transition Relation

• We can use boolean logic formulas to encode the transition 
relation

• We will use two sets of variables:
– Current state variables: pc10,pc11,pc20,pc21,turn,a,b
– Next state variables: pc10’,pc11’,pc20’,pc21’,turn’,a’,b’

• For example, we can write a boolean logic formula for the 
statement:
cs:   a := false;

as follows

pc10 ∧ pc11 ∧ ¬pc10’ ∧ ¬pc11’ ∧ ¬a’ ∧
(pc20’↔pc20) ∧(pc21’↔pc21)∧(turn’↔turn)∧(b’↔b)
– Call this formula R1c

Transition Relation

• We can write a formula for each statement in the program

• Then the overall transition relation is

R ≡ R1o ∨ R1w ∨ R1c ∨ R2o ∨ R2w ∨ R2c
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Symbolic Pre-condition Computation

• Remember the function

EX : 2S → 2S

which is defined as:

EX(p) = { s | (s,s’) ∈ R and s’ ∈ p }
• We can symbolically compute pre as follows

EX(p) ≡  ∃V’ R ∧ p[V’ / V]
– V : current-state boolean variables 
– V’ : next-state boolean variables
– p[V’ / V] : rename variables in p by replacing current-

state variables with the corresponding next-state 
variables

–  ∃V’ f  : existentially quantify out all the variables in V’
from f 

Renaming

• Assume that we have two variables x, y. 
• Then, V = {x, y} and V’={x’, y’}

• Renaming example:
Given p ≡ x ∧ y :
p[V’ / V]  ≡ x ∧ y [V’ / V]  ≡ x’ ∧ y’

Existential Quantifier Elimination

• Given a boolean formula f and a single variable v
∃v  f ≡ f[True/v] ∨ f[False/v]
i.e., to existentially quantify out a variable, first set it to true 

then set it to false and then take the disjunction of the 
two results

• Example:  f  ≡ ¬x ∧ y ∧ x’ ∧ y’
∃V’ f   ≡ ∃x’ ( ∃y’ (¬x ∧ y ∧ x’ ∧ y’) )

≡ ∃x’ ((¬x ∧ y ∧ x’ ∧ y’ )[T/y’] ∨ (¬x ∧ y ∧ x’ ∧ y’ )[F/y’])
≡ ∃x’ (¬x ∧ y ∧ x’ ∧T ∨ ¬x ∧ y ∧ x’ ∧ F )
≡ ∃x’ ¬x ∧ y ∧ x’
≡ (¬x ∧ y ∧ x’)[T/x’] ∨ (¬x ∧ y ∧ x’)[F/x’]) 
≡ ¬x ∧ y ∧ T ∨ ¬x ∧ y ∧ F
≡ ¬x ∧ y 

An Extremely Simple Example

Variables: x, y: boolean

Set of states:
S = {(F,F), (F,T), (T,F), (T,T)}
S ≡ True

Initial condition:
I ≡ ¬ x ∧ ¬ y

Transition relation (negates one variable at a time):
R ≡ x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y  (= means ↔)

F,T

F,F

T,T

T,F

An Extremely Simple Example

Given p ≡ x ∧ y, compute EX(p)

EX(p) ≡  ∃V’ R ∧ p[V’ / V]
≡  ∃V’ R ∧ x’ ∧ y’
≡  ∃V’ (x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y ) ∧ x’ ∧ y’
≡  ∃V’ (x’=¬x ∧ y’=y) ∧ x’ ∧ y’ ∨ (x’=x ∧ y’=¬y) ∧ x’ ∧ y’
≡ ∃V’ ¬x ∧ y ∧ x’ ∧ y’ ∨ x ∧ ¬y ∧ x’ ∧ y’
≡ ¬x ∧ y ∨ x ∧ ¬y

EX(x ∧ y) ≡ ¬x ∧ y ∨ x ∧ ¬y
In other words EX({(T,T)}) ≡ {(F,T), (T,F)}

F,T

F,F

T,T

T,F

An Extremely Simple Example

Let’s compute compute EF(x ∧ y)

The fixpoint sequence is

False,   x∧y ,   x∧y ∨ EX(x∧y) ,   x∧y ∨ EX (x∧y ∨ EX(x∧y) ) , ...
If we do the EX computations, we get:

False,     x ∧ y ,     x ∧ y ∨ ¬x ∧ y ∨ x ∧ ¬y,       True

EF(x ∧ y) ≡ True
In other words EF({(T,T)}) ≡ {(F,F),(F,T), (T,F),(T,T)}

F,T

F,F

T,T

T,F

0 1 2 3

1

2

3
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An Extremely Simple Example

• Based on our results, for our extremely simple transition 
system T=(S,I,R) we have

I ⊆ EF(x ∧ y)  (⊆ corresponds to implication) hence:
T |= EF(x ∧ y) 
(i.e., there exists a path from each initial state where 

eventually x and y both become true at the same time)

I ⊆ EX(x ∧ y) hence:
T |= EX(x ∧ y) 
(i.e., there does not exist a path from each initial state where

in the next state x and y both become true)

An Extremely Simple Example

• Let’s try one more property AF(x ∧ y)

• To check this property we first convert it to a formula which 
uses only the temporal operators in our basis:

AF(x ∧ y) ≡ ¬ EG(¬(x ∧ y))

If we can find an initial state which satisfies EG(¬(x ∧ y)), then 
we know that the transition system T, does not satisfy the 
property AF(x ∧ y)

An Extremely Simple Example

Let’s compute compute EG(¬(x ∧ y))

The fixpoint sequence is
True,     ¬x ∨ ¬y,     (¬x ∨ ¬y) ∧ EX(¬x ∨ ¬y) , …

If we do the EX computations, we get:

True,     ¬x ∨ ¬y,      ¬x ∨ ¬y, 

EG(¬(x ∧ y)) ≡ ¬x ∨ ¬y
Since I ∩ EG(¬(x ∧ y)) ≠ ∅ we conclude that T |= AF(x ∧ y) 

F,T

F,F

T,T

T,F

0 1 2

0

1

Symbolic CTL Model Checking Algorithm

• Translate the formula to a formula which uses the basis 
– EX p, EG p, p EU q

• Atomic formulas can be interpreted directly on the state 
representation

• For EX p compute the precondition using existential 
variable elimination as we discussed

• For EG and EU compute the fixpoints iteratively

Symbolic Model Checking Algorithm

Check(f : CTL formula) : boolean logic formula

case: f ∈ AP return f;
case: f ≡ ¬p return ¬Check(p);
case: f ≡ p ∧q return Check(p) ∧ Check(q);
case: f ≡ p ∨ q return Check(p) ∨ Check(q);

case: f ≡ EX p return  ∃V’ R ∧ Check(p) [V’ / V];

Symbolic Model Checking Algorithm

Check(f) 
…
case: f ≡ EG p

Y := True; 
P := Check(p);
Y’ := P ∧ Check(EX(Y));
while (Y ≠ Y’) { 

Y := Y’; 
Y’ := P ∧ Check(EX(Y)); 

}
return Y;
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Symbolic Model Checking Algorithm

Check(f) 
…
case: f ≡ p EU q

Y := False; 
P := Check(p); 
Q := Check(q);
Y’ := Q ∨ P ∧ Check(EX(Y));
while (Y ≠ Y’) { 

Y := Y’; 
Y’ := Q ∨ P ∧ Check(EX(Y));

}
return Y;

Binary Decision Diagrams (BDDs)

• Ordered Binary Decision Diagrams (BDDs)
– An efficient data structure for boolean formula 

manipulation
– There are BDD packages available: (for example CUDD 

from Colorado University)

• BDD data structure can be used to implement the symbolic 
model checking algorithm discussed above

• BDDs are a canonical representation for boolean logic 
formulas
– given two boolean logic formulas F and G, if F and G are 

equivalent their BDD representations will be identical

Binary Decision Trees

Fix a variable order, in each level of the tree branch on the 
value of the variable in that level

• Examples for boolean formulas on two variables
Variable order: x, y 

F

F

F

T

T

T

x

y y

T

F T

T

x ∨ y

F

F

F

T

T

F

x

y y

F

F T

T

x ∧ y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

BDDs

• Repeatedly apply the following transformations to a binary 
decision tree:
– Remove duplicate terminals
– Remove duplicate non-terminals
– Remove redundant tests

• These transformations transform the tree to a directed 
acyclic graph

Binary Decision Trees vs. BDDs

F

F

F

T

T

T

x

y y

T

F T

T

x ∨ y

F

F

F

T

T

F

x

y y

F

F T

T

x ∧ y

F

F

F

T

T

F

x

y y

T

F T

T

x

F

F

F

T

T

F

x

y y

F

F T

F

False

F

F

F

T

T

T

x

y

F

F

F

T

T

T

x

y
F

F T

T

x F

Good News About BDDs

• Given BDDs for two boolean logic formulas F and G

– The BDDs for F ∧ G  and F ∨ G are of size |F| × |G| (and 
can be computed in that time)

– The BDD for ¬F can be computed in and is of size |F| 
(and can be computed in that time)

– F ≡? G can be checked in constant time

– Satisfiability of F can be checked in constant time
• No, this does not mean that you cane solve SAT in 

constant time
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Bad News About BDDs

• The size of a BDD can be exponential in the number of 
boolean variables

• The sizes of the BDDs are very sensitive to the variable 
ordering. Bad variable ordering can cause exponential 
increase in the size of the BDD

• There are functions which have BDDs that are exponential 
for any variable ordering (for example binary multiplication)

• Pre condition computation requires existential variable 
elimination
– Existential variable elimination can cause an exponential 

blow-up in the size of the BDD

BDDs are Sensitive to Variable Ordering

Identity relation for two variables: (x’ ↔ x) ∧ (y' ↔ y)

T

F

F

F
T

F

y

y’

F

F

T

T

x

x’ x’

y’

T

TT
F

Variable order: x, x’, y, y'

For n variables, 3n+2 nodes

T

F

F

F T

F

x’

y’

F

F

T

T

x

y y

y’

T

T

T

F

Variable order: x, y, x’, y'

For n variables, 3× 2n – 1 nodes

x’ x’x’

T

F

F T
F

T

SMV [McMillan 93]

• BDD-based symbolic model checker  
• Finite state
• Temporal logic: CTL
• Focus: hardware verification

– Later applied to software specifications, protocols, etc.
• SMV has its own input specification language 

– concurrency: synchronous, asynchronous 
– shared variables
– boolean and enumerated variables
– bounded integer variables (binary encoding) 

• SMV is not efficient for integers, but it can be fixed
– fixed size arrays

Example Mutual Exclusion Protocol

Process 1:
while (true) {

out:  a := true; turn := true;
wait: await (b = false or turn = false);
cs:   a := false;

}
||
Process 2:
while (true) {

out:  b := true; turn := false;
wait: await (a = false or turn);
cs:   b := false;

}

Two concurrently executing processes are trying to enter a 
critical section without violating mutual exclusion

Example Mutual Exclusion Protocol in SMV

MODULE process1(a,b,turn)
VAR

pc: {out, wait, cs};
ASSIGN

init(pc) := out;
next(pc) :=

case
pc=out : wait;
pc=wait & (!b | !turn) : cs;
pc=cs : out;
1 : pc;

esac;
next(turn) :=

case
pc=out : 1;
1 : turn;

esac;
next(a) :=

case
pc=out : 1;
pc=cs : 0;
1 : a;

esac;
next(b) := b;

FAIRNESS
running

MODULE process2(a,b,turn)
VAR

pc: {out, wait, cs};
ASSIGN

init(pc) := out;
next(pc) :=

case
pc=out : wait;
pc=wait & (!a | turn) : cs;
pc=cs : out;
1 : pc;

esac;
next(turn) :=

case
pc=out : 0;
1 : turn;

esac;
next(b) :=

case
pc=out : 1;
pc=cs : 0;
1 : b;

esac;
next(a) := a;

FAIRNESS
running

Example Mutual Exclusion Protocol in SMV

MODULE main
VAR

a : boolean;
b : boolean;
turn : boolean;
p1 : process process1(a,b,turn);
p2 : process process2(a,b,turn);

SPEC
AG(!(p1.pc=cs & p2.pc=cs))
-- AG(p1.pc=wait -> AF(p1.pc=cs)) & AG(p2.pc=wait ->  AF(p2.pc=cs))

Here is the output when I run SMV on this example to 
check the mutual exclusion property

% smv mutex.smv
-- specification AG (!(p1.pc = cs & p2.pc = cs)) is true

resources used:
user time: 0.01 s, system time: 0 s
BDD nodes allocated: 692
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6
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Example Mutual Exclusion Protocol in SMV

The output for the starvation freedom property:

% smv mutex.smv
-- specification AG (p1.pc = wait -> AF p1.pc = cs) & AG ... is true

resources used:
user time: 0 s, system time: 0 s
BDD nodes allocated: 1251
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6

Example Mutual Exclusion Protocol in SMV

Let’s insert an error

change pc=wait & (!b | !turn) : cs;

to pc=wait & (!b | turn) : cs;

% smv mutex.smv
-- specification AG (!(p1.pc = cs & p2.pc = cs)) is false
-- as demonstrated by the following execution sequen ce
state 1.1:
a = 0
b = 0
turn = 0
p1.pc = out
p2.pc = out
[stuttering]

state 1.2:
[executing process p2]

state 1.3:
b = 1
p2.pc = wait
[executing process p2]

state 1.4:
p2.pc = cs
[executing process p1]

state 1.5:
a = 1
turn = 1
p1.pc = wait
[executing process p1]

state 1.6:
p1.pc = cs
[stuttering]

resources used:
user time: 0.01 s, system time: 0 s
BDD nodes allocated: 1878
Bytes allocated: 1245184
BDD nodes representing transition relation: 143 + 6

LTL Properties ≡ Büchi automata 
[Vardi and Wolper LICS 86]

• Büchi automata: Finite state automata that accept infinite 
strings

• A Büchi automaton accepts a string when the 
corresponding run visits an accepting state infinitely often

• LTL properties can be translated to Büchi automata 
– The automaton accepts a path if and only if the path 

satisfies the corresponding LTL property

LTL Properties ≡ Büchi automata

G p p ¬p
true

F p p¬p
true

G (F p) p

The size of the property automaton can be exponential  in the 
size of the LTL formula (recall the complexity of LTL model 
checking)

¬p

¬p

p

Büchi Automata

• Given a Buchi automaton, one interesting question is: 
– Is the language accepted by the automaton empty?

• i.e., does it accept any string?
• A Büchi automaton accepts a string when the 

corresponding run visits an accepting state infinitely often
• To check emptiness: 

– Find a cycle which contains an accepting state and is 
reachable from the initial state

• Find a strongly connected component that contains 
an accepting state, and is reachable from the initial 
state 

– If no such cycle can be found the language accepted by 
the automaton is empty
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LTL Model Checking

• Generate the property automaton from the negated LTL 
property

• Generate the product of the property automaton and the 
transition system 

• Show that there is no accepting cycle in the product 
automaton (check language emptiness)
– i.e., show that the intersection of the paths generated by 

the transition system and the paths accepted by the 
(negated) property automaton is empty

• If there is a cycle, it corresponds to a counterexample 
behavior that demonstrates the bug

LTL Model Checking Example

¬p,q

p,q

p,¬q

G q

Each state is labeled with 
the propositions that hold 
in that state

Example transition system Property to be verified

Negation of the property

¬ G q ≡ F ¬q

Property automaton for 
the negated property

q ¬q
true

Buchi automaton for
the transition system
(every state is accepting) 

p,q

p,¬q

¬p,q

p,q

¬p,q

q ¬q
true

Property Automaton

1

2

3 4

1 2

Product automaton

p,q

p,¬q

¬p,q

p,q

1,1

2,1

3,1

4,2

¬p,q
3,2

p,¬q

Accepting cycle:

(1,1), (2,1), (3,1), ((4,2), (3,2))ω

SPIN [Holzmann  91, TSE 97]

• Explicit state model checker
• Finite state
• Temporal logic: LTL
• Input language: PROMELA

– Asynchronous processes 
– Shared variables 
– Message passing through (bounded) communication 

channels
– Variables: boolean, char, integer (bounded), arrays 

(fixed size)
– Structured data types

SPIN

Verification in SPIN
• Uses the LTL model checking approach
• Constructs the product automaton on-the-fly

– It is possible to find an accepting cycle (i.e. a counter-
example) without constructing the whole state space

• Uses a nested depth-first search algorithm to look for an 
accepting cycle

• Uses various heuristics to improve the efficiency of the 
nested depth first search:
– partial order reduction
– state compression

Example Mutual Exclusion Protocol

Process 1:
while (true) {

out:  a := true; turn := true;
wait: await (b = false or turn = false);
cs:   a := false;

}
||
Process 2:
while (true) {

out:  b := true; turn := false;
wait: await (a = false or turn);
cs:   b := false;

}

Two concurrently executing processes are trying to enter a 
critical section without violating mutual exclusion
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Example Mutual Exclusion Protocol in Promela

#define cs1 process1[0]@cs
#define cs2 process2[0]@cs
#define wait1 process1[0]@wait
#define wait2 process2[0]@wait
#define true        1
#define false       0
bool a;
bool b;
bool turn;
init {

run process1(); run process2()
}
proctype process1()
{
out:    a = true; turn = true;
wait:   (b == false || turn == false);
cs:     a = false;
}
proctype process2()
{
out:    b = true; turn = false;
wait:   (a == false || turn == true);
cs:     b = false;
}

Property automaton generation

% spin -f "! [] (! (cs1 && cs2))"
never {    /* ! [] (! (cs1 && cs2)) */
T0_init:

if
:: ((cs1) && (cs2)) -> goto accept_all
:: (1) -> goto T0_init
fi;

accept_all:
skip

}

% spin -f "!([](wait1 -> <>(cs1)))"
never {    /* !([](wait1 -> <>(cs1))) */
T0_init:

if
:: (! ((cs1)) && (wait1)) -> goto accept_S4
:: (1) -> goto T0_init
fi;

accept_S4:
if
:: (! ((cs1))) -> goto accept_S4
fi;

}

Concatanate the generated never claims to the end of the specification file

SPIN

• “spin –a mutex.spin” generates a C program “pan.c” from 
the specification file 
– This C program implements the on-the-fly nested-depth 

first search algorithm
– You compile “pan.c” and run it to the model checking

• Spin generates a counter-example trace if it finds out that a 
property is violated

% mutex1 -a
warning: for p.o. reduction to be valid the never c laim must be stutter-closed
(never claims generated from LTL formulae are stutt er-closed)
(Spin Version 3.4.17 -- 9 September 2002)

+ Partial Order Reduction

Full statespace search for:
never-claim             +
assertion violations    + (if within scope of claim )
acceptance   cycles     + (fairness disabled)
invalid endstates       - (disabled by never-claim)

State-vector 28 byte, depth reached 27, errors: 0
36 states, stored
11 states, matched
47 transitions (= stored+matched)

0 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)

1.493   memory usage (Mbyte)

unreached in proctype :init:
(0 of 3 states)

unreached in proctype process1
(0 of 5 states)

unreached in proctype process2
(0 of 5 states)

Infinite State Model Checking 

• Model checking is undecidable if the data domains are 
unbounded
– For example if you have unbounded integer variables 

• Symbolic model checking can be extended to infinite 
domains
– Instead of Boolean logic, use linear arithmetic formulas 

to encode unbounded integers or reals
– However, the fixpoints are not guaranteed to converge

Infinite State Model Checking

There are infinite state symbolic model checkers which use 
conservative approximation techniques such as widening 

• HyTech: for verification of hybrid systems. 
– HyTech verifies properties of systems with both discrete 

components (specified as state machines) and 
continuous components (specified with differential 
equations)

• Action Language Verifier (developed by my research group) 
for verification of systems with unbounded integer variables 
– There is an extension of Action Language Verifier which 

uses shape analysis to verify concurrent linked lists
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Conservative Approximations

• Given a temporal logic property p, compute a lower ( p− ) or 
an upper ( p+ ) approximation to the truth set of the property  

• Model checker can give three answers:

II pppp−−

“The property is satisfied”

II pp

“I don’t know”

“The property is false and here is a counter-example”

II pp ¬¬ pp−−
sates whichsates which
violate the violate the 
propertyproperty

pp++

pp−−

Bounded Model Checking

• In bounded model checking the idea is to check properties 
on paths bounded by a fixed length instead of looking at 
infinite paths 

• Assume that we are using a boolean encoding of the 
transition system as we did in BDD-based model checking

• If the paths are bounded, instead of computing the fixpoints, 
one can unroll the transition relation by introducing new 
boolean variables in each step and convert the bounded 
model checking problem to SAT problem
– Although SAT is known to be NP-hard there are SAT 

solvers which are quite efficient in practice
• Recently there has been a lot of work based on this 

approach

Timed Automata

There are some classes of infinite state systems for which 
model checking is decidable

• Timed automata: Finite state control + clocks (real valued) 
– Clocks increase with a fixed rate and they can be reset 

to zero when a transition is taken
• Model checking timed automata is decidable

– It is possible to construct a finite state abstraction which 
preserves the temporal logic properties

• A lot of applications in real time systems
– There are model checking tools available for timed 

automata

Push-down Automata

Another class of infinite state systems for which model 
checking is decidable 

• Push-down automata: Finite state control + one stack
• LTL model checking for push-down automata is decidable
• This may sound like a theoretical result but it has been the 

basis of some promising research on model checking 
programs
– A program with finite data domains which uses recursion 

can be modeled as a pushdown automaton

Model Checking Programs

• Recently researchers developed tools for model checking 
programs
– These model checkers work directly on programs, i.e., 

their input language is the programming language
• SLAM project at Microsoft Research

– Symbolic model checking for C programs, unbounded 
recursion, no concurrency

• Uses predicate abstraction and BDDs
• Java Path Finder (JPF) at NASA Ames

– Explicit state model checking for Java programs, 
bounded search, bounded recursion, handles 
concurrency

• Verisoft from Bell Labs
– C programs, handles concurrency, bounded search, 

bounded recursion, stateless search

Model Checking Programs

• Program model checking tools generally rely on automated 
abstraction techniques to reduce the state space of the 
system such as: 
– Abstract interpretation
– Predicate abstraction

• If the abstraction is conservative then, if there is no error in
the abstracted program we can conclude that there is no 
error in the original program

• In general the problem is to construct a finite state model 
from the program such that the errors or absence of errors 
can be demonstrated on the finite state model
– Model extraction problem
– BANDERA: A tool for extracting finite state models from 

programs 
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Abstract Interpretation Example

• Assume that we have two integer variables x and y
• Define an abstract domain for integers  

– For example: {⊥, 
Т

, neg, zero, pos}
• Define abstraction and concretization functions between the 

integer domain and this abstract domain
• Interpret integer expressions in the abstract domain

• Abstraction will reduce the state space significantly, 
however it will also introduce spurious behaviors which are 
not in the original system 

if (y == 0) {
x = 2;
y = x;

}

if (y == zero) {
x = pos;
y = x;

}

Predicate Abstraction

• An automated abstraction technique which can be used to 
reduce the state space of a program

• The basic idea in predicate abstraction is to remove some 
variables from the program by just keeping information 
about a set of predicates about them

• For example a predicate such as x = y maybe the only 
information necessary about variables x and y to determine 
the behavior of the program
– In that case we can just store a boolean variable which 

corresponds to the predicate x = y and remove variables 
x and y from the program

– Predicate abstraction is a technique for doing such 
abstractions automatically

Predicate Abstraction

• Given a program and a set of predicates, predicate 
abstraction abstracts the program so that only the 
information about the given predicates are preserved

• The abstracted program adds nondeterminism since in 
some cases it may not be possible to figure out what the 
next value of a predicate will be based on the predicates in 
the given set

• One needs an automated theorem prover to compute the 
abstraction

Predicate Abstraction, Simple Example

• Assume that we have again two integer variables x,y
• We want to abstract the program based on a single 

predicate x=y which we will represent as the boolean 
variable B in the abstract program

Concrete Statement
y := y + 1

Abstract Statement

y := y + 1 {x = y}

y := y + 1 {x ≠ y}{x ≠ y + 1}

{x = y + 1}

Step 1: Calculate the precondition

Step 2: Rewrite in terms of predicatesStep 2a: Use Decision Procedures

x = y → x = y + 1 ? No

x ≠ y → x = y + 1 ? No

x = y → x ≠ y + 1 ? Yes

x ≠ y → x ≠ y + 1 ?  No

{x = y + 1} y := y + 1 {B}
{B}  y := y + 1 {~B}

Step 3: Abstract Code

IF B THEN B := false
ELSE B := true | false

(Example taken from Matt Dwyer’s slides)

Predicate Abstraction +  Model Checking Push Down 
Automata

• Predicate abstraction combined with results on model 
checking pushdown automata led to some promising tools
– SLAM project at Microsoft Research for verification of C 

programs
– This tool is being used to verify device drivers at 

Microsoft
• The main idea:

– Use predicate abstraction to obtain finite state 
abstractions of a program

– A program with finite data domains and recursion can be 
modeled as a pushdown automaton 

– Use results on model checking push-down automata to 
verify the abstracted (recursive) program

Java Path Finder

• Program checker for Java
• Properties to be verified  

– Properties can be specified as assertions
• static checking of assertions

– It can also verify LTL properties
• Implements both depth-first and breadth-first search and 

looks for assertion violations statically
• Uses static analysis techniques to improve the efficiency of 

the search
• Requires a complete Java program
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Java Path Finder, First Version

• First version 
– A translator from Java to PROMELA
– Use SPIN for model checking

• Since SPIN cannot handle unbounded data
– Restrict the program to finite domains

• A fixed number of objects from each class
• Fixed bounds for array sizes 

• Does not scale well if these fixed bounds are increased

• Java source code is required for translation

Java Path Finder, Current Version

• Current version of the JPF has its own virtual machine: 
JPF-JVM
– Executes Java bytecode

• can handle pure Java but can not handle native code
– Has its own garbage collection
– Stores the visited states and stores current path 
– Offers some methods to the user to optimize verification 

• Traversal algorithm 
– Traverses the state-graph of the program
– Tells JPF-JVM to move forward, backward in the

state space, and evaluate the assertion

• The rest of the slides on the current version of JPF

Storing the States

• JPF implements a depth-first search on the state space of 
the given Java program
– To do depth first search we need to store the visited 

states
• There are also verification tools which use stateless 

search such as Verisoft
• The state of the program consists of

– information for each thread in the Java program
• a stack of frames, one for each method called

– the static variables in classes
• locks and fields for the classes

– the dynamic variables (fields) in objects
• locks and fields for the objects

Storing States Efficiently

• Since different states can have common parts each state is 
divided to a set of components which are stored separately
– locks, frames, fields 

• Keep a pool for each component
– A table of field values, lock values, frame values

• Instead of storing the value of a component in a state store 
an index at which the component is stored in the table in 
the state
– The whole state becomes an integer vector

• JPF collapses states to integer vectors using this idea

State Space Explosion

• State space explosion if one of the major challenges in 
model checking

• The idea is to reduce the number of states that have to be 
visited during state space exploration

• Here are some approaches used to attack state space 
explosion
– Symmetry reduction

• search equivalent states only once 
– Partial order reduction

• do not search thread interleavings that generate 
equivalent behavior

– Abstraction
• Abstract parts of the state to reduce the size of the 

state space

Symmetry Reduction

• Some states of the program may be equivalent
– Equivalent states should be searched only once  

• Some states may differ only in their memory layout, the 
order objects are created, etc. 
– these may not have any effect on the behavior of the 

program
• JPF makes sure that the order which the classes are 

loaded does not effect the state 
– There is a canonical ordering of the classes in the 

memory
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Symmetry Reduction

• A similar problem occurs for location of dynamically 
allocated objects in the heap
– If we store the memory location as the state, then we 

can miss equivalent states which have different memory 
layouts

– JPF tries to remedy this problem by storing some 
information about the new statements that create an 
object and the number of times they are executed

Partial Order Reduction

• Statements of concurrently executing threads can generate 
many different  interleavings
– all these different interleavings are allowable behavior of 

the program
• A model checker has to check all possible interleavings that 

the behavior of the program is correct in all cases 
– However different interleavings may generate equivalent 

behaviors
• In such cases it is sufficient to check just one interleaving 

without exhausting all the possibilities
– This is called partial order reduction

class S1 { int x;}
class FirstTask

extends Thread {
public void run() {
S1 s1; int x = 1;
s1 = new S!();
x = 3;

}}

class Main {
public static void main(String[] args) {

FirstTask task1 = new FirstTask();
SecondTask task2 = new SecondTask();
task1.statr(); task2.start();

}} 

class S2 { int y;}
class SecondTask

extends Thread {
public void run() {
S2 s2; int x = 1;
s2 = new S2();
x = 3;

}}

state space search generates 258 states
with symmetry reduction: 105 states
with partial order reduction: 68 states
with symmetry reduction + partial order reduction : 38 states

Static Analysis

• JPF uses following static analysis techniques for reducing 
the state space:
– slicing
– partial evaluation

• Given a slicing criterion slicing reduces the size of a 
program by removing the parts of the program that have no 
effect on the slicing criterion
– A slicing criterion could be a program point
– Program slices are computed using dependency 

analysis
• Partial evaluation propagates constant values and 

simplifies expressions

Abstraction and Restriction

• JPF also uses abstraction techniques such as predicate 
abstraction to reduce the state space

• Still, in order to check a program with JPF, typically, you 
need to restrict the domains of the variables, the sizes of 
the arrays, etc.

• Abstraction over approximates the program behavior
– causes spurious counter-examples

• Restriction under approximates the program behavior
– may result in missed errors

• If both under and over approximation techniques are used 
then the resulting verification technique is neither sound nor 
complete
– However, it is still useful as a debugging tool and it is 

helpful in finding bugs

JPF Java Modeling Primitives

• Atomicity (used to reduce the state space)
– beginAtomic(), endAtomic()

• Nondeterminism (used to model non-determinism caused 
by abstraction)
– int random(int); 

boolean randomBool(); 
Object randomObject(String cname);

• Properties (used to specify properties to be verified)
– AssertTrue(boolean cond)
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Annotated Java Code for a Reader-Writer Lock

import gov.nasa.arc.ase.jpf.jvm.Verify;
class ReaderWriter {
private int nr;
private boolean busy;
private Object Condr_enter;
private Object Condw_enter;
public ReaderWriter() {

Verify.beginAtomic();
nr = 0; busy=false ;
Condr_enter =new Object();
Condw_enter =new Object();
Verify.endAtomic();

}
public boolean read_exit(){

boolean result=false;
synchronized(this){

nr = (nr - 1);
result=true;

}
Verify.assertTrue(!busy || nr==0 );
return result;

}

private boolean Guarded_r_enter(){ 
boolean result=false;
synchronized(this){
if(!busy){nr = (nr + 

1);result=true;}}
return result;

}
public void read_enter(){

synchronized(Condr_enter){
while (! Guarded_r_enter()){

try{Condr_enter.wait();}
catch(InterruptedException e){}

}}
Verify.assertTrue(!busy || nr==0 );

}
private boolean Guarded_w_enter(){…}
public void write_enter(){…}
public boolean write_exit(){…}
};

JPF Output
>java gov.nasa.arc.ase.jpf.jvm.Main rwmain

JPF 2.1 - (C) 1999,2002 RIACS/NASA Ames Research Cen ter
JVM 2.1 - (C) 1999,2002 RIACS/NASA Ames Research Cen ter

Loading class gov.nasa.arc.ase.jpf.jvm.reflection.J avaLangObjectReflection
Loading class gov.nasa.arc.ase.jpf.jvm.reflection.J avaLangThreadReflection
==============================

No Errors Found
==============================

-----------------------------------
States visited       : 36,999
Transitions executed : 68,759
Instructions executed: 213,462
Maximum stack depth  : 9,010
Intermediate steps   : 2,774
Memory used          : 22.1MB
Memory used after gc : 14.49MB
Storage memory       : 7.33MB
Collected objects    : 51
Mark and sweep runs  : 55,302
Execution time       : 20.401s
Speed                : 3,370tr/s
-----------------------------------

Example Error Trace

1 error found: Deadlock
========================

*** Path to error: ***
========================

Steps to error: 2521
Step #0 Thread #0
Step #1 Thread #0

rwmain.java:4        ReaderWriter monitor=new  Read erWriter();
Step #2 Thread #0

ReaderWriter.java:10          public ReaderWriter( ) {
…
Step #2519 Thread #2

ReaderWriter.java:71           while (! Guarded_w_e nter()){
Step #2520 Thread #2

ReaderWriter.java:73           Condw_enter.wait();

THE END THE END THE END THE END THE END


