448 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7. NO. 4. MAY 1989

Analyzing Encryption Protocols Using Formal
Verification Techniques

RICHARD A. KEMMERER, SENIOR MEMBER, IEEE

Abstract—This paper presents an approach to analyzing encryption
protocols using machine-aided formal verification techniques. The
properties that the protocol should preserve are expressed as state in-
variants, and the theorems that must be proved to guarantee that the
cryptographic facility satisfies the invariants are automatically gener-
ated by the verification system.

A formal specification of an example system is presented, and sev-
eral weaknesses that were revealed by attempting to verify and test the
specification formally are discussed.

INTRODUCTION

UCH work has been done in the area of analyzing

encryption algorithms, such as DES [2]-[4], [7]. A
vast amount of work has also been expended on formally
verifying communication protocols [13], [14], [17], [23],
[26]. In contrast, very little work has been devoted to the
analysis and formal verification of encryption protocols,
and the work that has been presented has not made use of
the available formal verification systems [1], [10], [21].
In this paper an approach to analyzing encryption proto-
cols using machine-aided formal verification techniques
is presented.

When considering a secure network that uses encryp-
tion to achieve its security (as opposed to using only phys-
ical security), one must consider both encryption algo-
rithms and encryption protocols. An encryption algorithm,
such as DES or RSA, is used to convert clear text into
cipher text or cipher text into clear text. That is, the unen-
crypted message (clear text) is enciphered using a partic-
ular encryption algorithm to produce the unreadable cipher
text. Similarly, the same or a symmetric algorithm is used
to recover the original clear text message from the en-
crypted cipher text. An encryption protocol is a set of
rules or procedures for using the encryption algorithm to
send and receive messages in a secure manner over a net-
work. The approach presented in this paper does not at-
tempt to prove anything about the strength of the encryp-
tion algorithms being used. On the contrary, it may
assume that the obvious desirable properties, such as that
no key will coincidentally decrypt text encrypted using a

Manuscript received August 1, 1988; revised January 15, 1989. This
research was supported in part by the System Development Group of Un-
isys Corporation and in part by the University of California under a Ml-
CRO grant.

The author is with the Department of Computer Science, University of
California, Santa Barbara, CA 93106.

IEEE Log Number 8927170.

different key, hold for the encryption scheme being em-
ployed.

The idea of the approach to analyzing encryption pro-
tocols that is presented in this paper is to specify formally
the components of the cryptographic facility and the as-
sociated cryptographic operations. The components are
represented as state constants and variables, and the op-
erations are represented as state transitions. The desirable
properties that the protocol is to preserve are expressed as
state invariants, and the theorems that must be proved to
guarantee that the system satisfies the invariants are au-
tomatically generated by the verification system.

The following section reviews past work on the analysis
of encryption protocols. This is followed by a brief over-
view of the formal specification language that is used.
Next, a sample system is presented along with the desir-
able cryptographic properties for that system. A formal
specification for the example system is then given, fol-
lowed by a discussion of formally verifying and testing
encryption protocol specifications. A weakness of the ex-
ample specification that was discovered through testing
the specification is presented, and a further weakness
using semiweak DES keys is also discussed. Finally, a
comparison to other work in this area is given, and some
thoughts on the usefulness of the approach presented in
this paper are discussed.

PrEvIOUS WORK

One of the earliest and best-known works devoted to
the analysis of encryption protocols is that of Dolev and
Yao [10], which concentrated on two-party public key
protocols. In this work, the authors pointed out that al-
though a protocol may be secure against passive attacks,
such as an eavesdropper, it may be vulnerable to active
attacks. In their work, they develop mathematical models
for cascade and name-stamp protocols and propose algo-
rithms to test if a protocol of either of these types is se-
cure.

Book and Otto [1] later extended the work of Dolev and
Yao to consider message authentication as well as secu-
rity. In this work, algorithms for determining whether a
two-party protocol is sender verifiable or receiver verifi-
able are presented.

Recently reported work by Moore [21] analyzes a num-
ber of previously known encryption protocol failures.
After analyzing these failures, Moore then describes three
distinct classifications for encryption protocol failures.

0733-8716/89/0500-0448%01.00 © 1989 IEEE

KEMMERER: ANALYZING ENCRYPTION PROTOCOLS

She also presents some guidelines for the development of
sound protocols based on her analysis.

Formal specification and verification techniques have
become an accepted technique for ensuring that a critical
system satisfies its requirements. In fact, the National
Computer Security Center, which certifies systems for use
in classified or other sensitive environments, requires for-
mal specification and verification of system designs for its
highest rating [9]. There are, however, some in the se-
curity community that still view with suspicion the use of
formal verification techniques to achieve reliable soft-
ware. The most vocal of these are DeMillo, Lipton, and
Perlis [8], who argue that *‘it is a social process that de-
termines whether mathematicians feel confident about a
theorem—and we believe that, because no comparable so-
cial process can take place among program verifiers, pro-
gram verification is bound to fail.”” They also state that
“‘scientists should not confuse mathematical models with
reality—and verification is nothing but a model of believ-
ability.”” Another often-cited reference to the shortcom-
ings of formal verification techniques appeared in Thomp-
son’s 1983 Turing Award lecture [28], where he said ‘‘no
amount of source-level verification or scrutiny will pro-
tect you from using untrusted code.”” Thompson is spe-
cifically referring to a flaw that he had put in the C com-
piler that would allow him to subvert the login command.
Because the offending source code was removed after its
use, there was no trace in the source. Thus, it would be
necessary to verify formally the object code to find the
problem. Although there is some validity to these argu-
ments, formal specification and verification techniques
should not be abandoned until there is a better method to
replace them.

Formal specification and verification techniques have
often been used in secure operating systems and commu-
nication protocol efforts. There are also a number of for-
mal verification systems currently available [6], [12],
[22], {241, [27]. These systems all use mathematical tech-
niques to guarantee the correctness of the system being
designed and implemented. To use these techniques, it is
necessary to have a formal notation, which is usually an
extension of first-order predicate calculus, and a proof
theory.

The three encryption protocol analysis efforts reported
above do not use formal verification techniques. There
have, however, been several efforts reported in the liter-
ature that do use formal verification techniques to model
secure networks [5], [16], [29], although none of these
efforts models active attacks. That is, they do not consider
the active intruder.

A notable exception is the Interrogator work of Millen
et al. [20]. The Interrogator tool was built explicitly for
analyzing encryption protocols. It uses a Prolog specifi-
cation as a formal notation to express the encryption pro-
tocol. When using the Interrogator, the Prolog program
exhaustively searches for penetrations. The Interrogator
also includes a sophisticated display that dynamically il-
lustrates the progress of the protocol being tested.

449

The recently reported work of Longley [18] uses an ex-
pert system and is similar to the Interrogator approach in
that it is rule based and also performs an exhaustive search
once the rules are all defined. It also considers possible
penetrations and tries those.

The approach reported here differs from Millen’s and
Longley’s work in that the goal is to use an existing for-
mal verification approach and its associated tools to verify
formally that an encryption protocol specification satisfies
its stated security requirements or, alternatively, to dis-
cover weaknesses in the specification. The formal verifi-
cation system and language that are used are presented in
the next section.

THE FORMAL SPECIFICATION LANGUAGE

The formal verification system discussed in this paper
uses the state machine approach to formal specification.
When using the state machine approach, a system is
viewed as being in various states. One state is differen-
tiated from another by the values of state variables, and
the values of these variables can be changed only via well-
defined state transitions.

The formal specification language that is used is a var-
iant of Ina Jo®, which is a nonprocedural assertion lan-
guage that is an extension of first-order predicate calcu-
lus. The key elements of the Ina Jo language are types,
constants, variables, definitions, initial conditions, crite-
ria, and transforms. A criterion is a conjunction of asser-
tions that specify the critical requirements for a good state
(i.e., a secure state). A criterion is often referred to as a
state invariant since it must hold for all states, including
the initial state. An Ina Jo language transform is a state
transition function; it specifies what the values of the state
variables will be after the state transition relative to their
values before the transition. The system being specified
can change state only as described by one of the state
transforms. A complete description of the Ina Jo language
can be found in the Ina Jo Reference Manual [24].

Before giving a formal specification of the example sys-
tem, a brief discussion of some of the notation is neces-
sary. The following symbols are used for logical opera-
tions:

& logical AND,
— logical implication.

In addition, there is a conditional form,
(if A then B else C),

where A4 is a predicate and B and C are well-formed terms.
The notation for set operations is:

€ is a member of,
U set union,
{a,b,..,c} set consisting of elements a. b, . . ,

and c,

{ set description } set described by set description.

®Ina Jo is a trademark of the System Development Group of Unisys.

450 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 7. NO. 4, MAY 1989

The language also contains the following quantifier no-
tation:

v for all,
3 there exists.

Two other special Ina Jo symbols that may be used are

N" to indicate the new value of a variable (e.g., N "vl
is new value of variable v1),
T" which defines a subtype of a given type T.

AN EXAMPLE SYSTEM

The system being used as a pedagogical example in this
paper is a single-domain communication system using dy-
namically generated primary keys and two secret master
keys, as described in [19]. The architecture of the system
is presented in Fig. 1.

The host manages the communication keys for the sys-
tem, and the terminals communicate directly with the host
system. Whenever a terminal wants to start a new session
with the host, the host generates a new session key. If this
key were sent to the terminal in the clear, a penetrator
tapping the line could intercept the key and decipher all
of the messages for that session. To prevent this, each
terminal has a permanent terminal key that is used by the
host to distribute the new session key to a terminal when
a new session is initiated. That is, a terminal’s session
key is the primary communication key for that terminal.
It is dynamically generated by the host for each session.
The static terminal key is the terminal’s secondary com-
munication key. It is used by the host to encrypt new ses-
sion keys for transmission to the terminal.

Both the terminal keys and the current session keys are
stored at the host. However, because a penetrator can be
an authorized user, it is unsafe to store the terminal and
session keys in the clear at the host. Thus, they are stored
in encrypted form. The two host master keys are used for
encrypting these keys. The following paragraphs give the
details of the key table structures and the cryptographic
facility.

There are two data structures of interest in the host: the
terminal key table and the session key table. The terminal
key table is static. Each entry in this table contains the
unique terminal key for the corresponding terminal en-
crypted using a secret master key KMH1. The table looks
as follows:

Egpmi(Terminal Key(1))

Expun{Terminal Key(2))

Egpun(Terminal Key(i))

Eypy(Terminal Key(n))

In this paper, Ey., n.me (text) is used to denote text en-
crypted using the key key-name. Similarly, Dy,

—name¢

HOST

KMHO
KMH {

SESSION TERMINAL
KEY TABLE KEY TABLE

"

TERMINAL 1

HOST
CRYPTOGRAPHIC
FACILITY

TERMINAL 2 °

TERMINAL
CRYPTOGRAPHIC
FACILITY

TERMINAL N (CONT AINS TERMINAL KEY(N))

Fig. 1. System architecture.

(text) is used to denote text decrypted using the key key-
name. Since terminal keys never change, this table is con-
stant for the lifetime of the system.

Unlike the terminal key table, the session key table is
a dynamic structure. This table is updated each time a
new terminal session is started; there is one current ses-
sion key per terminal. Each entry in the table contains the
current session key for the corresponding terminal en-
crypted using a second secret master key KMHO. The ses-
sion key table looks as follows:

Epno(Session Key(1))

EypuolSession Key(2))

EyrolSession Key(i))

EypnolSession Key(n))

No terminal key or session key and neither master key
is in the clear in the host. To store the two masters keys,
a cryptographic facility is connected to the host. This fa-
cility may be accessed only through the limited crypto-
graphic operations that are provided. In addition, the fa-
cility is assumed to be housed in a tamper-sensing
container, such as the one described by Simmons [25], so
that the vital information it contains is physically pro-
tected. The operations provided by the cryptographic fa-
cility are encipher data (ECPH), decipher data (DCPH),
and reencipher from the master key (RFMK). The inter-
action between the host and its cryptographic facility is
shown in Fig. 2.

The encipher operation is used when the host wants to
send an encrypted message to a terminal. The host pro-
vides the clear text message (msg) along with the en-
crypted form of the appropriate terminal’s current session
key, Exmuo (Session Key(i)), to the cryptographic facility
and is returned the message encrypted using the termi-
nal’s session key. Fig. 3 illustrates this process.

KEMMERER: ANALYZING ENCRYPTION PROTOCOLS

CRYPTOGRAPHIC
FACILITY

HOST

ENCRYPTION
ALGORITHMS

Fig. 2. Host and cryptographic facility.

HOST HOST CRYPTOGRAPHIC FACILITY

SESSION
KEY_TABLE

N

E (SESSION KEY(i))
KMHO

SESSION KEY(i)

N

Fig. 3. The encipher operation (ECPH).

When the host receives an encrypted message from ter-
minal i, it uses the decipher operation provided by the
cryptographic facility in a similar manner to get the mes-
sage in the clear. That is, the decipher operation must first
decrypt the key presented and then use the result to de-
cipher the text presented. Fig. 4 illustrates the decipher
process.

Each time a terminal initiates a session with the host a
new session key is needed. Therefore, the host needs ac-
cess to a generate session key operation. It is not neces-
sary, however, to have session key generation be an op-
eration provided by the cryptographic facility. The
seemingly contrary requirements of having the host gen-
erate the session key and having no key in the clear out-
side the cryptographic facility are resolved by having the
host generate an encrypted version of the session key. The
entry in the host’s session key table that corresponds to
the terminal requesting a session is then replaced by the
encrypted key. Meyer and Matyas describe a method of
accomplishing this by using a pseudorandom number gen-
erator to generate a value that is interpreted as the new
session key encrypted using the secret master key KMHO
[19].

Since the requesting terminal is also sent a copy of the
session key, it is necessary to have an operation to trans-
late the new session key enciphered using the KMHO mas-
ter key to a form enciphered using the requesting termi-
nal’s terminal key. The reencipher from master key
operation provides this service. It takes two keys as input,

451

HOST

HOST CRYPTOGRAPHIC FACILITY

E session kev(159 — J

SESSION
KEY TABLE

3 (SESSION KEY(1))
KMHO

DECRYPT

DECRYPT

Fig. 4. The decipher operation (DCPH).

HOST CRYPTOGRAPHIC FACILITY

HOST
E TERMINAL KEY(Y SESSION KEY(D)

ENCRYPT

ﬁ

TERMINAL KEV(OE ? ﬁ
DECRYPT

KMH1

SESSION KEY(i)

TERMINAL KEY TABLE

SESSION KEY TABLE

DECRYPT

KMHO

RFMK

Fig. 5. Reencipher from master key (RFMK).

decrypts one using KMHI1, decrypts the other using
KMHO, and then uses the result of the first decryption to
encipher the result of the second decryption. Fig. 5 illus-
trates this process.

In addition to the host’s cryptographic facility, each ter-
minal is assumed to have a cryptographic facility that con-
tains its permanent terminal key and that provides opera-
tions for encrypting and decrypting messages.

Operations for setting the secret master keys in the
host’s cryptographic facility or the secret terminal keys in
the terminal cryptographic facilities have intentionally
been avoided in this paper. It is assumed that these secret
keys are distributed by courier or some other trusted
means.

An assumption of this system is that the intruder can
eavesdrop on the communication lines. That is, the in-
truder can obtain any information communicated between
the host and the terminals. In addition, the intruder can
masquerade as an authorized user, and he/she can invoke
any of the operations of the host’s cryptographic facility.

An obvious desirable property of this system that one
may wish to verify is that no clear key exists outside the
cryptographic facilities of the host and terminals.

452 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7. NO. 4, MAY 1989

FORMAL SPECIFICATION OF THE EXAMPLE SYSTEM

The complete Ina Jo specification for the example sys-
tem is presented in the Appendix. In this section, the im-
portant aspects of the specification are discussed.

In the example system, each terminal has a constant
terminal key. This is represented in the model by the par-
ameterized Ina Jo constant

Terminal_Key(Terminal_Num): Key.

Similarly, each terminal’s session key, which is dynamic,
is represented by the parameterized Ina Jo variable

Session_Key(Terminal_Num): Key.

As the terms imply, an Ina Jo constant is unchanged from
state to state, and an Ina Jo variable may change from
state to state. It is the values of the state variables that
differentiate one state from another.

The other state variables in the specification are the sets
Keys_Used and Intruder_Info, which are both of type in-
formation. Keys_Used indicates all of the keys that have
ever been used by the system. The Intruder_Info variable
tabulates all of the information to which the intruder has
access. This includes the contents of the encrypted key
tables as well as any information communicated between
the host and the terminals.

The four cryptographic operations for the example sys-
tem are represented by the Ina Jo transforms ECPH,
DCPH, RFMK, and Generate_Session_Key. The first
three correspond to the operations provided by the host’s
cryptographic facility, and the last is provided by the host
itself. Since only traffic that is a key or an encrypted form
of a key is of interest, there is no need to model any of
the send or receive text operations. It is also assumed that
the intruder cannot correctly guess random text that cor-
responds to some encrypted key.! Therefore, the ECPH,
DCPH, and RFMK operations change state only when
they are invoked with information that the intruder has
available. Thus, the state transitions that correspond to
these operations are written using a conditional form
where there is no state change if the information provided
is not available to the intruder (i.e., not an element of the
set Intruder_Info).

The constants Encrypt and Decrypt represent the en-
cryption and decryption algorithms, respectively. They
both take a key and text pair and return text. Properties
of the encryption and decryption algorithms are repre-
sented in the specification as axioms. An Ina Jo axiom is
an expression of a property that is assumed. Thus, these
qualities are assumed about the algorithms. For instance,
one could express the fact that the encryption and decryp-
tion functions were commutative by using the axiom

AXIOM v rText, k1,k2:Key (Encrypt(kt,Decrypt
(k2,1) = Decrypt(k2,Encrypt(kl,1))).

Similarly, the following axioms express the properties that

'This is a reasonable assumption because the encryption algorithms are
assumed to be as strong as advertised.

no key is an identity function for any text and that no key
will correctly decrypt text encrypted using another key.

AXIOM vV r:Text, k1:Key (Encrypt(kl,r) # 1)
and

AXIOM Vv nText, kl,k2:Key (kI
Decrypt(k2,Encrypt(kl,1)) # 1).

+ k2 -

Note that all of these assumptions are not expressed in the
example specification.

The fact that the intruder receives all of the information
that is communicated between the host and the terminals
is expressed in the Generate_Session_Key transform,
where the intruder’s information is enhanced with the new
session key encrypted using the terminal key of the re-
questing terminal. Also, since the intruder can masquer-
ade as an authorized user, whenever one of the crypto-
graphic operations is invoked, the intruder’s information
is updated with the new information that is produced.

The critical requirements that the system is to satisfy in
all states are expressed in the criterion clause of the for-
mal specification. For the example system, the criterion
states that any key that the intruder has (i.e., any key con-
tained in the set Intruder_Info) must not be a key that was
used by the system (i.e., a key in the set Keys Used).
Note that this includes keys used in the past as well as
those presently being used. The criterion is expressed as
follows:

CRITERION Vv k:Key
k ¢ Keys_Used).

(k € Intruder_Info -

The initial clause describes the requirements that must
be satisfied when the system is initialized. For the ex-
ample system, the initial value of the Keys Used variable
is the set of keys currently being used (i.e., all terminal
keys and session keys as well as both master keys). The
initial value of the Intruder_Info variable is the appropri-
ately encrypted versions of the terminal and session keys.
Because the keys are not required to have any particular
value, their values are not specified in the initial clause.
However, since the desirable property is for the intruder
never to have any keys in the clear, the last conjunct of
the initial clause states that none of the encrypted values
of the keys can be coincidentally equal to a key being
used. That is,

V k1,k2:Key (k1 € Intruder_Info & k2 € Keys Used
- k1 + k2).

The need for this additional requirement is discussed in
the next section.

To verify that the system specified satisfies the invari-
ant requirements, as expressed in the criteria, two types
of theorems are generated. The first states that the initial
state satisfies the invariant, and the second, which is gen-
erated for each transform, states that if the state where the
transform is fired satisfies the invariant, then the resultant
state will also satisfy the invariant. Thus, by induction,
all reachable states will satisfy the invariant.

KEMMERER: ANALYZING ENCRYPTION PROTOCOLS

If one can verify the theorems generated, then any sys-
tem that is consistent with the specification will preserve
the invariant. The reader should note that, for a system to
be consistent with the specification, its encryption algo-
rithms must satisfy the axioms stated about encrypt and
decrypt.

FORMALLY VERIFYING THE SPECIFICATION

After the formal specification is completed, one can
verify the theorems that are generated to check if the crit-
ical requirements (Ina Jo criteria) are satisfied. If the theo-
rems are verified and the encryption algorithms satisfy the
assumed axioms, then the system will satisfy its critical
requirements.

Because the axioms represent the properties that the en-
cryption algorithms are to satisfy, one can verify the sys-
tem assuming the use of a different encryption scheme by
replacing the current axioms with axioms that express the
properties of the new encryption scheme.

An advantage of expressing the system using formal
notation and attempting to prove properties about the
specification is that, if the generated theorems cannot be
proved, the failed proofs often point to weaknesses in the
system or to an incompleteness in the specification. That
is, they often indicate the additional assumptions required
about the encryption algorithm (i.e., missing axioms),
weaknesses in the protocols, or missing constraints in the
specification. For example, the original specification for
the example system did not include the third conjunct that
is now in the initial clause. However, without this con-
junct, the initial clause was not strong enough to imply
the invariant. After analyzing the failed proof, the possi-
bility of an encrypted version of a key being coinciden-
tally identical to another key was apparent. By adding the
third conjunct to the initial clause, the problem was
avoided. This was a reasonable change to make to the
specification since the occurrence of coincidental values
is easy to check when the system is initialized.

Being aware of the coincidental key value problem in
the initial clause resulted in a strengthening of the speci-
fication for the Generate Session Key operation. That is,
the requirements

Encrypt(KMHO,k) ¢ Keys_Used
and
Encrypt(Terminal _Key(Ter),k) € Keys_Used

were added to the formal specification to prevent the en-
crypted value chosen as a new session key from being
coincidentally equal to the value of a key that had been
used in the past. This requirement is likely to be harder
to realize in an actual system since it requires recording
information about all keys that have been used over the
entire lifetime of the system.

TESTING THE FORMAL SPECIFICATION

There is a specification execution tool for the Ina Jo
language called Inatest [11]. This tool allows Ina Jo spec-

453

ifications to be analyzed by symbolically executing the
formal specifications. With the Inatest tool, it is possible
to introduce assumptions about the system interactively,
execute sequences of transforms, and check the results of
these executions. This provides the user with a rapid pro-
totype for testing properties of the cryptographic facilities
[15].

Using the Inatest tool revealed the following weakness
in the example formal specification. If the secret master
keys KMHO and KMH1 are equal, then the intruder can
obtain a session key in the clear. This flaw is demon-
strated by first simulating an innocent user invoking the
Generate _Session_Key transform, which generates a new
session key k. This key is communicated to the requesting
terminal (encrypted using the terminal key of the request-
ing terminal) at the start of the current session; therefore,
the encrypted key becomes part of the eavesdropping in-
truder’s information. The DCPH transform is then in-
voked by the intruder using the encrypted terminal key
from the host’s terminal key table and the intercepted ses-
sion key encrypted using the requesting terminal’s ter-
minal key as text. The result is that the session key of the
innocent user is now in the clear, and any messages en-
crypted using this key can now be deciphered. Fig. 6 il-
lustrates the result of executing the DCPH transform on
the two encrypted keys. Note that the first decrypt yields
the appropriate terminal key only because KMHO =
KMHI1.

When using the Inatest tool to test a formal Ina Jo spec-
ification, the user defines a start state, a sequence of trans-
forms (with the appropriate actual parameters) to be exe-
cuted, and a desired resultant state. To test this weakness,
the default start state, which is the initial state, was used.
and it was also assumed that KMHO = KMHI.

Keys_Used = Terminal_Keys U Session_Keys U
{KMHO,KMH1}
& Intruder_Info =
{ks:Key (3 r:Terminal _Num
(ks = Encrypt(KMHO,Session_Key(1))))}
U {kr:Key (3 r:-Terminal_Num
(kt = Encrypt(KMH1,Terminal _Key(1))))}
& V k1,k2:Key (k1 € Intruder_Info & k2 € Keys_Used
— k1 #k2)
& KMHO = KMHI1.

The sequence of transforms to be executed consists of the
Generate _Session_Key transform followed by the DCPH
transform. The parameters of the DCPH transform are the
encrypted terminal key for terminal ¢ and the current ses-
sion key for terminal ¢ encrypted using the terminal key
for terminal ¢. Both keys are known to be part of the in-
truder’s information. The first is from the terminal key
table, and the second was sent to terminal r when the cur-
rent session was started. Letting k represent the key that
results from executing the Generate_Session_Key trans-
form on behalf of terminal r, the sequence is,

Generate _Session_Key(7)

454 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 4, MAY 1989

HOST CRYPTOGRAPHIC FACILITY

SESSION KEY(t)

E TERMINAL KEY(Y) (SESSION KEY(1))

DECRYPT

/r/LTERmNAL KEY ()

DECRYPT
e —

|

Fig. 6. Protocol flaw using DCPH.

TERMINAI
E g (TERMINAL KEY(D)

followed by

DCPH(Encrypt(KMHI1,Terminal_Key(r)),
Encrypt(Terminal _Key(7),k)).

The desired resultant state requires that the key for ter-
minal 7 that was generated by the Generate_Session_Key
transform be part of the intruder’s information. This re-
quirement is expressed as

k € Intruder_Info.

This is a clear violation of the security requirement since
k is one of the keys used by the system.
By expanding Generate_Session_Key, one gets

3 k:Key V t1:Terminal_Num (
Encrypt(KMHO,k) ¢ Keys Used
& Encrypt(Terminal _Key(r),k) ¢ Keys Used
& k ¢ Keys Used
& N"Session_Key(r) =
(iftl =+
then k
else Session_Key(t1))
& N"Keys_Used = Keys_Used U {k}
& N "Intruder_Info = Intruder Info U
{Encrypt(KMHO,k),Encrypt(Terminal_Key
(0),k))}.

The existential is instantiated to k, and the resulting in-
formation is combined with the start state information.
Next, by expanding the DCPH transform, one gets

N"Intruder_Info =
(if Encrypt(Terminal _Key(?),k) € Intruder_Info
& Encrypt(KMH1,Terminal _Key(z)) € Intruder_Info
then Intruder_Info U
{Decrypt(Decrypt(KMHO,Encrypt(KMH 1,
Terminal_Key())),Encrypt(Terminal _
Key(1,k))}
else Intruder_Info).

Since both keys are part of the intruder’s information, this
can be reduced to

N"Intruder_Info = Intruder_Info U
{Decrypt(Decrypt(KMHO,Encrypt(KMH1,
Terminal _Key(?))),Encrypt(Terminal _
Key(),k))}.

However, the start state specifies that KMHO = KMH1;
therefore, KMH1 can be substituted for KMHO in the in-
nermost Decrypt, yielding

N"Intruder_Info = Intruder_Info U
{Decrypt(Decrypt(KMH1,Encrypt(KMH]1,
Terminal_Key())),Encrypt(Terminal _
Key(1),k))}.

Then, by applying the first axiom, the expression reduces
to

N"Intruder_Info = Intruder_Info U
{Decrypt(Terminal _Key(#),Encrypt(Terminal _
Key(n,k))}.

Applying the first axiom again yields
N "Intruder_Info = Intruder_Info U {k}.

The desired result follows directly.

This is a well-known weakness of using a single master
key that is presented in [19]. To strengthen the specifi-
cation to avoid this particular problem, one needs to add
the axiom

AXIOM KMHO # KMHI.

SEMIWEAK KEY MODIFICATION TO THE EXAMPLE
SYSTEM

As was mentioned earlier, the work reported in this pa-
per assumes that the encryption algorithms perform as
promised. That is, nothing is proved about the strength of
the encryption algorithms. One can use the Inatest sys-
tem, however, to analyze the effect of weaknesses in the
encryption algorithm. For example, one could analyze the
effect of using semiweak key pairs with the DES algo-
rithm and the example system. Semiweak keys as pre-
sented in [7] are two keys k1 and k2, such that, for any
clear text ¢, Encrypt(k2,Encrypt(k,1,7)) = t. This can be
added to the example specification by using the following
axiom:

AXIOM 13 k1,k2:Key V 1:Text
(Encrypt(k2,Encrypt(kl,5)) = t).

Given this axiom, it is trivial to demonstrate how the sys-
tem can be compromised.

To demonstrate an example compromise, the Inatest
tool was used. When using this tool, one can test hypo-
thetical situations like this without changing the original
specification. This is accomplished by using the add com-
mand to add a predicate to the known information. For
example, suppose the secret master key KMH1 and some
session key formed a semiweak key pair. This informa-
tion could be added to the knowledge base of Inatest by
using the add command and the following predicate:

3 i:Terminal_Num V t:Text
(Encrypt(Session_Key(i),Encrypt(KHM1,1)) = 1).

Now, the intruder posing as terminal i can invoke the en-
cipher operation using any of the stored encrypted termi-

KEMMERER: ANALYZING ENCRYPTION PROTOCOLS

HOST CRYPTOGRAPHIC FACILITY

HOST

TERMINAL KEY () —]/[

TERMINAL KEY TABLE

ENCRYPT

SESSION KEY(1)

SESSION KEY TABLE

DECRYPT

ECPH KMHO

[

Fig. 7. Semiweak key DES key flaw using ECPH.

nal keys as the message and get the corresponding ter-
minal key in the clear. Fig. 7 illustrates this flaw. By re-
peating this for all of the encrypted terminal keys in the
terminal key table, the intruder can obtain all of the ter-
minal keys in the clear.

COMPARISON TO OTHER WORK

As was mentioned in the previous work section, very
little research has been devoted to the analysis and formal
verification of encryption protocols. In particular, formal
verification techniques have not been used in most of the
analysis efforts that have been reported. Like the work of
Dolev and Yao and Book and Otto, the approach reported
in this paper considers the active attacks as well as the
passive attacks. That is, the model includes the intruder
as part of the formal specification.

The approach outlined in this paper is closest to the
work of Millen et al. [20]. However, the work reported
in this paper differs from Millen’s work in that the goal
of the work being reported is to use existing formal veri-
fication tools to verify formally that an encryption proto-
col specification satisfies its security requirements (as ex-
pressed in the Ina Jo criteria). This is accomplished by
using the existing Formal Development Methodology
(FDM) tool suite and treating the encryption protocol
specification like any Ina Jo formal specification. The two
efforts are similar in that they both use a formal notation
to express the protocol.

The use of the Inatest tool for testing particular scena-
rios is also similar to the use of the Interrogator tool.
However, there are at the same time major differences be-
tween using Inatest to test a protocol and using the Inter-
rogator. When using the Interrogator, the Prolog program
exhaustively searches for penetrations. Inatest, in con-
trast, does not search through a large number of scenarios
to detect a vulnerability. It is the task of the human ana-
lyzer to come up with a possible scenario, which is then
checked using the Inatest tool to execute the formal spec-

455

ification. Inatest does not direct the analyst to determine
what tests to try; it merely aids the analyst by keeping
track of state information and performing reductions when
possible.

Like the Interrogator, Longley’s rule-based expert sys-
tem also performs an exhaustive search using the rules
that define the protocol. However, it can also be used in
a manner similar to that of the Inatest tool in that specific
penetrations can be tried just like a test case using Inatest.
Longley says that his system provides ‘‘A working model
upon which experiments can be conducted.”” This is ex-
actly the goal of the Inatest system.

In comparing the work reported in this paper to the work
of Millen ez al. and Longley, three approaches to analyz-
ing an encryption protocol can be identified. They are

1) formally verify that the protocol specification satis-
fies the desired critical requirements,

2) exhaustively test the protocol, hoping to uncover a
flaw, and

3) test a particular scenario to try to uncover or sub-
stantiate a flaw.

The work reported in this paper uses both 1) and 3), Mil-
len and Longley use 2), and Longley, to some extent, also
uses 3).

Clearly, if approach 1) could be achieved, it would be
the most desirable approach. However, it is often impos-
sible to prove formally the theorems generated from the
protocol specification. An example of a problem that was
encountered when trying to prove a particular protocol is
the need for the formulation of the notion that attempting
to decrypt with the wrong key gives no additional infor-
mation. Rather, it adds another layer of encryption to the
already-encrypted text. That is, if k1 # k2, then

Decrypt(k2,Encrypt(k1,1))
is equivalent to
Encrypt(k3,Encrypt(k1,?))

for some key k3. The concise expression of concepts like
these is difficult, but without them the proofs are not pos-
sible. The earlier example involving encrypted keys that
were coincidentally equal to clear keys also required the
formulation of a concept before the protocol proofs could
be attempted.

Approach 2), the exhaustive search approach, will re-
veal protocol flaws if they exist. However, as is the case
with exhaustive testing, there is some concern about the
use of this approach on more complex encryption proto-
cols for which it may not be feasible to try all paths.

Approach 3) suffers from all of the standard problems
of testing. In particular, if one does not test the appropri-
ate scenario, no flaws will be revealed. It is our experi-
ence, however, that if one has difficulty in trying to prove
one of the theorems generated using approach 1), then
these failed proofs often lead to scenarios that can be
tested using approach 3). Experience shows that these
scenarios are likely to reveal flaws in the encryption pro-

456 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 4, MAY 1989

tocol. A combination of all three approaches is likely to
be most fruitful.

Finally, the work reported here is similar to that of
Moore [21] in that it is anticipated that, by formally ana-
lyzing encryption protocols, guidelines can be established
for the design of encryption protocols for secure net-
works.

CONCLUSIONS

This paper has proposed an approach to analyzing en-
cryption protocols using formal specification and verifi-
cation techniques and existing tools. With this approach,
nothing is proved about the encryption algorithms. That
is, encryption algorithms that satisfy the properties ex-
pressed in the axioms are assumed to be available.

A single-domain communication system with dynami-
cally generated primary keys was formally specified using
the Ina Jo specification language. Some problems discov-
ered when attempting to prove the original specification
were discussed, and a weakness in the formal specifica-
tion that was revealed by using an interactive testing tool
was presented. A second flaw using semiweak DES keys
was also presented.

An advantage of this approach is that the properties of
a cryptographic facility can be tested before the facility is
built. First, the system is represented using a formal no-
tation. The resulting formal specification is used to gen-
erate the necessary theorems that ensure that the system
satisfies certain desired properties. If the generated theo-
rems cannot be proved, then the failed proofs often point
to weaknesses in the system or to an incompleteness in
the specification. That is, they often indicate the addi-
tional assumptions required about the encryption algo-
rithm, weaknesses in the protocols, or missing constraints
in the specification.

Another advantage of this approach is that the crypto-
graphic facility can be analyzed assuming different en-
cryption algorithms by replacing the set of axioms that
express the properties assumed about the encryption al-
gorithms with a new set of axioms that express the prop-
erties of a different encryption algorithm. This was the
approach used when analyzing the use of semiweak DES
keys.

The first flaw that was presented was a previously
known weakness of the protocol being analyzed, and the
second would be obvious to anyone familiar with DES
semiweak keys. The value of the proposed approach will
be demonstrated when a flaw is discovered in a protocol
that has previously been assumed to be secure.

APPENDIX
FORMAL SPECIFICATION OF THE EXAMPLE SYSTEM
SPECIFICATION Crypto
LEVEL Top_Level

TYPE
Text,
Key subtype Text,
Pos_Integer = T i:Integer (i >0),
Information = Set Of Text

CONSTANT
Num_Terminals: Pos_Integer,
KMHO, KMHI: Key,
Encrypt(Key, Text): Text,
Decrypt(Key,Text): Text

TYPE
Terminal Num =
T" r:Pos_Integer (r < = Num_Terminals)

CONSTANT
Terminal _Key(Terminal_Num): Key,
Terminal _Keys: Information =
{k:Key (3 :Terminal_Num
(k = Terminal_Key(#)))}

AXIOM
v t:Text, k1,k2:Key
(k1 = k2 — Decrypt(kl,Encrypt(k2,5)) = 1)

AXIOM
v r:Text, k1,k2:Key
(k1 = k2 — Encrypt(kl, Decrypt(k2,1)) = t)

VARIABLE
Session_Key(Terminal _Num): Key,
Keys_Used: Information,
Intruder_Info: Information

DEFINE
Session_Keys: Information ==
{k:Key (3 #:Terminal Num
(k = Session_ Key(5)))}

" CRITERION

V k:Key (k € Intruder_Info — k ¢ Keys_Used)

INITIAL
Keys_Used = Terminal_Keys U Session_Keys U
{KMHO0,KMH1}
& Intruder_Info =
{ks:Key (3 :Terminal_Num
(ks = Encrypt(KMHO, Session_Key(1))))}
U {kr:Key (3 :Terminal Num
(kt = Encrypt(KMH1,Terminal _Key(#))))}
& V k1,k2:Key (k1 € Intruder_Info & k2 € Keys Used
— k1 #k2)

Transform ECPH(K:Key, T:Text) EXTERNAL
Effect
N"Intruder_Info =
(if T € Intruder_Info & K € Intruder_Info
then Intruder_Info U
{Encrypt(Decrypt (KMHO0,K),T)}
else Intruder_Info)

Transform DCPH(K1:Key, T1:Text) EXTERNAL
Effect
N "Intruder_Info =
(if T1 € Intruder_Info &K1 € Intruder_Info
then Intruder_Info U
{Decrypt(Decrypt (KMHO,K1),T1)}
else Intruder_Info)

KEMMERER: ANALYZING ENCRYPTION PROTOCOLS

(1
{21

(31

(4]
[5]

{61

[7]

18]

[9

(10]

(1]

Transform RFMK(K1:Key, K2:Key) EXTERNAL
Effect
N "Intruder_Info
(if K1 € Intruder_Info & K2 e Intruder_Info
then Intruder_Info U {Encrypt(Decrypt
(KMH1,K1), Decrypt(KMHO,K2))}
else Intruder_Info)

Transform Generate_Session_Key(Ter: Terminal _
Num) EXTERNAL
Effect
3 k:Key V t:Terminal_Num
(Encrypt(KMHO,k) ¢ Keys Used
& Encrypt(Terminal _Key(Ter) k) ¢
Keys_Used
& k ¢ Keys_Used
& N"Session_Key(r) =
(ift = Ter
then &k
else Session_Key(r))
& N"Keys_Used = Keys_Used U {k}
& N"Intruder_Info = Intruder_Info U
{Encrypt(KMHO,k),Encrypt(Terminal
_Key(Ter),k))}

END Top_Level
END Crypto

REFERENCES

R. V. Book and F. Otto, **The verifiability of two-party protocols,”
in Advances in Cryptography—Eurocrypt '85, 1985.

E. F. Brickell, *‘Breaking iterated knapsacks,’” in Advances in Cryp-
tology: Proceedings of Crypto '84 (Lecture Notes in Computer Sci-
ence 196). New York: Springer-Verlag, 1985.

E. F. Brickell, J. H. Moore, and M. R. Purtill, ‘*Structure of the S-
boxes of the DES,"" in Proc. CRYPTO '86, Santa Barbara, CA, Aug.
1986.

E. F. Brickell and A. M. Odlyzko, **Cryptanalysis: A survey of re-
cent results,”” Proc. IEEE, vol. 76, May 1988.

D. Britton, ‘‘Formal verification of a secure network with end-to-end
encryption,”” in Proc. IEEE Symp. Security Privacy, Qakland, CA,
Apr. 1984.

J. Crow, D. Denning, P. Ladkin, M. Melliar-Smith, J. Rushby, R.
Schwartz, R. Shostak, and F. von Henke, **SRI verification system
version 2.0 specification language description.”” Computer Science
Lab., SRI International, Menlo Park, CA, Nov. 1985.

D. W. Davies, *'Some regular properties of the ‘Data Encryption
Standard’ Algorithm,”" in Proc. Crypto '81, Advances in Cryptog-
raphy, Dep. Elec. Comput. Eng., Univ. Calif., Santa Barbara, Rep.
ECE 82-04, Aug. 1981.

R. A. DeMillo, R. J. Lipton, and A. J. Perlis, **Social processes and
proofs of theorems and programs.’ Commun. ACM, vol. 22, no. 5.
May 1979.

“*‘Department of Defense trusted computer systems evaluation crite-
ria,”” National Computer Security Center, DOD 5200.28-STD, Dec.
1985.

D. Dolev and A. C. Yao, **On the security of public key protocols,™
IEEE Trans. Inform. Theory, vol. IT-29, Mar. 1983. An extended
abstract appears in Proc. 22nd IEEE Symp. Foundations Comput. Sci.,
1981.

S. T. Eckmann and R. A. Kemmerer, “'INATEST: An interactive
environment for testing formal specifications,’* presented at the 3rd
Workshop Formal Verification, Pajaro Dunes, CA, Feb. 1985; also,
ACM Software Eng. Notes, vol. 10, no. 4, Aug. 1985.

[12]

{13]

[14]
[1s5]

[16]

117]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28

[29]

457

D. 1. Good, B. L. DiVito, and M. K. Smith, **Using the Gypsy meth-
odology,”” Inst. Comput. Sci., Univ. Texas, Austin, TX, June 1984.
G. J. Holzmann, **Automated protocol validation in Argos: Assertion
proving and scatter searching,”’ [EEE Trans. Software Eng.. vol. SE-
13, June 1987.

C. A. Sunshine, Special Issue on Protocol Specification and Verifi-
cation, IEEE Trans. Commun., vol. COM-30, Dec. 1982.

R. A. Kemmerer, ‘*Testing formal specifications to detect design er-
rors,”’ IEEE Trans. Software Eng., vol. SE-11, Jan. 1985.

R. A. Kemmerer, Verification Assessment Study Final Report, Vols.
I-V, National Computer Security Center, Rep. C3-CR01-86. Mar.
1986.

S. S. Lam and A. U. Shankar, *‘Protocol verification via projec-
tions,”’ IEEE Trans. Software Eng., vol. SE-10, July 1984.

D. Longley, ‘‘Expert systems applied to the analysis of key manage-
ment schemes,”’ in Computers & Security, Vol. 6. New York: El-
sevier Science, 1987.

C. H. Meyer and S. M. Matyas, Cryptography.
1980.

J. K. Millen, S. C. Clark, and S. B. Freedman. **The Interrogator:
Protocol security analysis,’” IEEE Trans. Software Eng., vol. SE-13,
Feb. 1987.

J. H. Moore, **Protocol failures in crypto systems.™* Proc. IEEE. vol.
76, May 1988.

L. Robinson, The HDM Handbook, Vol I: The Foundations of HDM,
Computer Science Lab., SRI International, Menlo Park, CA, June
1979.

H. Rudin and C. H. West, Eds., Protocol Specification, Testing, and
Verification 1II. Amsterdam, The Netherlands: Elsevier Science,
North-Holland, 1983.

J. Scheid and S. Holtsberg, Ina Jo Specification Language Reference
Manual, System Development Group, Unisys Corp., Santa Monica.
CA, Sept. 1988.

G.]J. Simmons, ‘*How to (selectively) broadcast a secret,”” in Proc.
IEEE Symp. Security Privacy, Oakland, CA, Apr. 1985.

C. A. Sunshine, D. H. Thompson, R. W. Erickson. and S. L. Ger-
hart, “*Specification and verification of communication protocols in
AFFIRM using state transition models,”’ IEEE Trans. Software Eng.,
vol. SE-8, Sept. 1982.

D. H. Thompson and R. W. Erickson. Eds., Affirm Reference Man-
ual, Inform. Sci. Inst., Univ. Southern Calif., Marina del Rey, CA.
Feb. 1981.

K. Thompson, *‘Reflections on trusting trust,”” Commun. ACM., vol.
27, no. 8, Aug. 1984.

J. M. Wing and M. Nixon, **Extending Ina Jo with temporal logic.™
IEEE Trans. Software Eng., vol. SE-13. Feb. 1987.

New York: Wiley.

Richard A. Kemmerer (M 80-SM'89) was born
in Allentown, PA, in 1943. He received the B.S.
degree in mathematics from The Pennsylvania
State University. University Park, in 1966 and the
M.S. and Ph.D. degrees in computer science from
the University of California, Los Angcles
(UCLA), in 1976 and 1979, respectively.

Since 1979 he has been on the Faculty of the
Department of Computer Science at the Univer-
sity of California, Santa Barbara, where he is cur-
rently an Associate Professor. He has been a vis-

itor at the Massachusetts Institute of Technology. the Wang Institute. and
the Politecnico di Milano. From 1966 to 1974 he worked as a programmer
and systems consultant for North American Rockwell and the Institute of
Transportation and Traffic Engineering at UCLA. His research interests
include formal specification and verification, reliable software. and securce
systems. He is the author of the book Formal Specification and Verification
of an Operating Svstem Security Kernel.

Dr. Kemmerer is a Senior Member of the IEEE Computer Society. the
Association for Computing Machinery (ACM). and the International As-
sociation for Cryptologic Research. He is a past Chairman of the 1EEE
Technical Committee on Security and Privacy and a member of the Advi-
sory Board for the ACM’s Special Interest Group on Security, Audit. and
Control.

