
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-I 1, NO. 1, JANUARY 1985

Testing Formal Specifications to Detect
Design Errors

RICHARD A. KEMMERER, MEMBER, IEEE

Abstract-Fornal specification and verification techniques are now
used to increase the reliability of software systems. However, these ap-
proaches sometimes result in specifying systems that cannot be realized
or that are not usable. This paper demonstrates why it is necessary to
test specifications early in the software life cycle to guarantee a system
that meets its critical requirements and that also provides the desired
functionality. Definitions to provide the framework for classifying the
validity of a functional requirement with respect to a formal specifica-
tion are also introduced. Finally, the design of two tools for testing
formal specifications is discussed.

Index Terms-Design and development, formal verification, reliable
software, requirements, specification, testing.

INTRODUCTION

T HE desire to build reliable software has resulted in the
use of formal specification and verification techniques to

guarantee the correctness of the system being built [11 -[4].
Formal verification demonstrates that an implementation is
consistent with its requirements. The, problem of demonstrat-
ing consistency is approached by decomposing it into a number
of easier problems. The requirements, which are usually an
English statement of.what is desired, are first stated in pre-
cise mathematical terms. This is known as the formal model
or criteria for the system. This formal model expresses the
critical requirements for the system. For example, for a
security system the criteria could be that information at one
security level does not flow to a lower security level. Next,
a high level formal specification of the system is stated. This
specification gives a precise mathematical description of the
behavior of the system omitting all implementation details,
such as resource limitations.- This is followed by zero or more
less abstract specifications which implement the next higher
level specification with a more detailed level of specification.
Finally, the .system is coded in a high order language (HOL).
This HOL implementation must be shown to be consistent
with the original critical requirements.

It should be evident that demonstrating that HOL code is
consistent with critical requirements is a difficult process.
The process is made tractable by verifying the design at every
step (see Fig. 1).
The first step of the verification process is to informally

verify that the formal model properly reflects the critical re-

Manuscript received January 11, 1983; revised March 10, 1984. This
work was supported in part by the National Science Foundation under
Grant ECS81-06688.
The author is with the Department of Computer Science, University

of California, Santa Barbara, CA 93106.

v / SPECIFICATION
FORMAL / Formal Proof
MODEL /

d / NEXT LEVEL
/ FORMAL

Formal Proof / SPECIFICATION

FORMAL Formal Proofs
SPECIFICATION l

Formal Proof I I
LOWEST LEVEL

_ \ FORMAL
HOL \ SPECIFICATION
IMPLEMENTATION

Fig. 1. Formal verification hierarchy.

quirements. This is the only informal step in the process.
Since the formal model is at a high level of abstraction and
contains no unnecessary details, it is usually a simple task to
review the formal model with the persons who generated the
requirements and determine whether the model properly re-
flects the critical requirements. Next it is necessary to prove
that the highest level specifications are consistent with the
formal model. This approach differs based 'on whether the
specifications are presented using a state machine approach
[5] or an algebraic approach [61. The method presented in
this paper uses the state machine approach, which specifies the
effect of performing each operation based on certain entry
conditions being satisfied. That is, for each operation there
are entry and exit conditions, and if the state of the machine
before the operation is invoked satisfies the entry conditions,
then the state after the operation completes execution will
satisfy the exit conditions. When using the state machine
approach one must verify that the initial state satisfies the
formal model and that every operation preserves the model.
After the highest level formal specification has been shown

to be consistent with the formal model, it is necessary to show
that the next lower level specification-,- if one exists, is consis-
tent with the level above it. This process continues from
level to level until the lowest level specification is shown to be
consistent with the level above it. Finally, it is necessary to
show that the HOL implementation is consistent with the low-
est level specification.
Since each level of specification is shown to be consistent

with the level above, and the HOL implementation is shown to

0098-5589/85/0100-0032$01.00 © 1985 IEEE

32

KEMMERER: TESTING FORMAL SPECIFICATIONS

be consistent with the lowest level, by induction the HOL
implementation is consistent with the highest level specifica-
tion. In addition, since the highest level specification was

shown to satisfy the formal model of the critical requirements,
the implementation satisfies the formal model.
There is a problem with this approach: although the specifi-

cation satisfies the correctness criteria, there may be no imple-
mentation that is consistent with the specification and at the
same time provides the desired functionality. The real disaster
is that this is usually not discovered until the design has gone

through several levels of..refinement, with each level being
formally verified, and the implementation is in progress or

completed. The result is a "yo-yo" effect where the designer
goes back to the top level and rewrites the specification to
allow an implementation that provides the desired function-
ality while.preserving the correctness criteria.
This "yo-yo" effect is costly and time consuming, particu-

larly where proofs have to be redone because the specifica-
tion has changed [71. An approach to reducing the "yo-yo"

effect is to test the specifications to see if they allow the de-
sired functionality, particularly for special cases. For instance,
one might test what the result of performing a particular se-

quence of operations would be. This can be achieved by
executing some test cases to see if the desired results are ob-
tained. The problem is that most specification languages are

nonprocedural. This paper considers two approaches to solv-
ing this problem. The first is to convert the nonprocedural
specifications into a procedural form. This procedural form
then serves as a rapid prototype to use for testing. The other
approach is to perform a symbolic execution of the sequence

of operations and check the resultant symbolic values to see

if they define the desired set of resultant states.
In this paper the term functional requirements is used in a

nonstandard way. That is, some of the functional require-
ments may not be known at design time. In fact, some func-
tional requirements may arise during the testing of the rapid
prototype. Although this is different from the prescribed soft-
ware engineering approach, it more accurately reflects the way
large software systems are built.
In the next section some definitions for classifying the

validity of functional requirements with respect to a formal
specification are presented. An example system with critical
and functional requirements is then presented. Next, a par-
ticular nonprocedural specification language is considered and
a specification of the example system is given. Using this
formal specification, the functional requirements for the
example are both symbolically executed and translated to a

procedural form. Finally, the design of two tools for testing
specifications are presented and their strengths and weaknesses
are discussed.

VALIDITY OF FUNCTIONAL REQUIREMENTS
The advantage of using a nonprocedural specification lan-

guage is that during the design stages of.the software life cycle
no commitment is made to the order in which the constituent
parts of an operation are to be performed. This allows the
implementor to choose the order that is most efficient in
terms of time or space. When converting a nonprocedural

33

specification to a procedural form that can be executed, only
one possible implementation is being considered. Therefore,
if the desired functionality is provided by the resulting imple-
mentation, this does not guarantee that all implementations
will provide the desired functionality. In the following para-
graphs formal definitions make this distinction explicit.
A functional requirement F consists of a start.predicate

Fstart, a sequence of operations SEQ, and a resultant predi-
cate Fresult. The start predicate defines the set of states of
the system from.which the sequence of operations can be in-
voked. Each operation is to be invoked in the order.that it
appears in the sequence and with the specified actual param-
eters. The resultant predicate defines the set of states that
satisfy the desired result after executing the sequence of opera-
tions. The start predicate, sequence of operations, and re-
sultant predicate may contain free identifiers. Thus, the
functional requirement is actually a schema representing all
uniform value assignments to these identifiers. Note that the
start predicate may be identically true, indicating that the
sequence of operations may be invoked from any state or it
may be so precisely restricted that only one or no state satis-
fies its constraints. It may be useful to the reader to think
of a functional requirement as a test case. The following no-
tation is used in the definitions.
Let S be a formal -specification.
Let I(S) be an implementation of.specification S.
Let IMP(S) be.the set of all possible implementations of S.
Let STATES(I) be the set of all possible states for imple-

mentation I.
Each state in STATES(I). is uniquely determined by the values
assigned to the state variables of implementation I.
A particular functional- requirement is satisfiable with re-

spect to a given speciflcation if there is some implementation
of the specification that gives the desired functionality.
Definition 1: If F is a functional re.quirement for a system

formally specified by S, then F is satisfiable with respect to S
iff

(3IjCIMP(S))(VP, PESTATES(I))
(Fstart (P)-*Fresult(SEQ(P))).
A functional requirement is unsatisfiable if it is not satis-

fiable; i.e., if 'none of the possible implementations of the
specification gives the desired functionality.
Definition 2: IfF is a functional requirement for the system

formally specified by S, then F is unsatisfiable with respect to
S iff

(VI, ICIMP(S))(3 P,PCSTATES(I))
(Fstart(P)&'-.Fresult(SEQ(P))).

Finally, a functional requirement is valid with respect to a
given specification if every possible implementation of that
specification gives the desired functionality.
Definition 3: If F is a functional requirement for the sys-

tem formally specified by 5, then F is valid with respect to
S iff

(VI IEIMP(S))(VP, PESTATES(I))
(Fstart (P)-*Fre'sult(SEQ(P))) .

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 1, JANUARY 1985

Clearly, it is desirable to have all the functional requirements
be' valid with respect to the specifilcation. This says that no
matter how the implementor chooses to implement the speci-
fication, if the implementation is consistent with the specifi-
cation then the desired results will be obtained. One way of
guaranteeing this is to have the specifications contain all of
the desired functional requirements. However, by taking this
approach the specifications get too cumbersome and the veri-
fication too costly when dealing with real systems.
A more reasonable approach is to have the specification de-

fine the minimal critical requirements and to test whether the
desired functional requirements are satisfiable by executing
the functional requirements on the specifications. Two meth-
ods for executing functional requirements are considered in
this paper.
Before looking at an example it would be useful to discuss

why functional requirements are defined to be satisfiable/un-
satisfiable/valid with respect to a specification. Intuitively,
a functional requirement is valid if it describes a user
need, independent of the formal specification. Following this
reasoning it would be more intuitive to say that it is desirable
to have the specification be valid for all of the functional
requirements. However, functional requirements as used in
this paper may not all be known at design time. In fact, when
testing a specification, test cases that are not necessarily going
to be final requirements for the system may be tried. These
are the "what would happen if" type test cases. Therefore,
it is more reasonable to classify a functional requirement as
being satisfiable/unsatisfiable/valid with respect to a formal
specification.

AN EXAMPLE SYSTEM
The -example system considered in this paper is a university

library database. There are two types of users of the database:
normal borrowers and users with library staff status. The data-
base transactions are as follows.

* Check out a copy of a book.
* Return a copy of a book.
* Add a copy of a book to the library.
* Remove a copy of a book from the library.
* Get a list of titles of books in the library by a particular

author.
* Find out what books are currently checked out by a par-

ticular borrower.
* Find out what borrower last checked out a particular

copy of a book.
These transactions have the following restrictions. A copy

of a book may be added or removed from the library only by
someone with library staff status. (In actual libraries only
cataloging staff have the right to add or remove copies; the re-
striction here is a simplification.) Library staff status is also
required to find out which borrower last checked out a copy
of a book. A borrower without library staff status may find
out only what books he or she has checked out. However, a
user with library staff status may find out what books are
checked out by any borrower.
The critical requirements that the database must satisfy at

all times are as follows.

* All copies in the library must be either checked out or
available for checkout.

* No copy of a book may be both checked out and avail-
able for checkout.

* A borrower may not have more than some predetermined
number of books checked out at one time.

* A borrower may not have more than one copy of the
same book checked out at one time.
Referring to the last two requirements as "critical" is a slight

exaggeration since most libraries enforce these only informally.
As an example of a functional requirement consider the case

where a particular author, Clyde Wroteit, has published three
books, but the library has copies of only two. If a user were
to invoke a transaction to get a list of titles of books by Clyde
Wroteit presently in the library, then, the result returned
should be the titles of the two books that the library has in
its collection. Otherwise, the functional requirement will
not be satisfied although the critical requirements are.
Another more complex functional requirement considered

in this paper concerns a borrower that currently has two less
than the allowed number of books checked out, and attempts
to check out three books which are not copies of any books
that he currently has checked out, nor copies of each other.
In attempting to check out the third book the transaction
should not be successful since the borrower will have reached
his book limit. The borrower then decides that he would
rather have the third book than the first and returns the first
book. He then again attempts to check out the third book.
The result of this sequence of operations should be to have. the
borrower possess the second and third book and for the first
book to be available for checkout. The borrower should also
have his limit of books checked out.

In the following sections a formal specification for the ex-
ample system is presented and it is shown how these functional
requirements can be tested using the proposed specification
testing approaches.

THE SPECIFICATION LANGUAGE
The formal speciflcation language that is used in this paper is

a variant of Ina Jo,® which is a nonprocedural assertion
language that is an extension of first-order predicate calculus.
The language assumes that the system is modeled as a state
machine. The key elements of the language are types, con-
stants, variables, definitions, initial conditions, criteria, and
transforms. A criterion is a conjunction of assertions that
specify the critical requirements of a good state. A criterion
is often referred to as a state invariant since it must hold for
all states including the initial state. An Ina Jo language trans-
form is a state transition function; it specifies what the values
of the state variables will be after the state transition relative
to what their values were before the transition was fired.
A complete description of the Ina Jo language can be found in
the Ina Jo Reference Manual [2].
Before giving a formal specification of the example system,

a brief discussion of some of the notation is necessary. The

® Ina Jo is a trademark of System Development Corporation, a
Burroughs Company.

34

KEMMERER: TESTING FORMAL SPECIFICATIONS

following symbols are used for logical operations:

& Logical AND
Logical OR
Logical NOT

- Logical implication.

In addition there is a conditional form

(if A then B else C)

where A is a predicate and B and C are well-formed terms.
The notation for set operation is

6 is a member of
U set union

set difference
{a, b c} the set consisting of elements a, b - - and c
{set description} the set described by set description.

The language also contains the following quantifier notation:

V for all
3 there exists.

Three other special Ina Jo symbols that may be used are

N" to indicate the new value of a variable
(e.g., N"v l is new value of variable v 1)

NC" which indicates no change to the value of a variable
T" which defines a subtype of a given type T.

SPECIFICATION OF THE EXAMPLE SYSTEM

Fig. 2 gives a top level Ina Jo specification for the example
system. The state variable Library is the set of books cur-
rently in the library. Checked-Out indicates whether a par-
ticular book is checked out, and Responsible indicates which
user last checked out a particular book. The number of books
currently checked out by a particular user is indicated by the
state variable Number_Out and the Boolean Never_Out is
true if the book was never checked out. The state variables
User_Result, Book_Result, and Title_Result are necessary
to specify the results of the last three transforms. This is re-
quired because Ina Jo transforms are procedures and not func-
tions (i.e., they cannot return a value).
The CRITERION expresses the critical requirements of the

system that must hold in every state. The INITIAL section
specifies that initially the library is empty and there are no
books checked out to any users.

SYMBOLICALLY EXECUTING THE
FUNCTIONAL REQUIREMENTS

When testing functional requirements, first one must deter-
mine how to state the restrictions placed on the start state in
terms of the state variables. The first functional requirement
presented earlier stated that if a particular author has pub-
lished three books, but the library has copies of only two of
these books, then a query for titles of books by the author
should return only the titles of the two books in the library. A
restatement of the start state for this requirement in terms of
state variables might be: Author(b 1) = a 1, Author(b2) = a 1,
Author(b3) = al, bI 6 Library, b12 E Library, and V b5:

Specification Library
LEVEL Top_Level

TYPE
User,
Book,
Book Title,
Book-Author,
Book_Collection = Set Of Book,
Titles = Set Of Book_Title,
Natural = T" i:Integer (i-O)

CONSTANT
Title(Book):Book Title,
Author(Book):Book Author,
Library_Staff(User):Boolean,
Book_Limit:Natural,
Copy Of(Bl:Book,B2:Book):Boolean =

Author(B1) = Author(B2)
& Title(B1) = Title(B2)

VARIABLE
Library:Book_Collection,
Checked Out(Book):Boolean,
Responsible(Book):User,
Number.Books(User):Natural,
Never _Out(Book):Boolean,

User Result:User,
Book_Result:Book_Collection,
Title_Result:Titles

DEFINE
Available(B:Book):Boolean =

B E Library & -Checked_Out(B),
Checked_Out_To(U:User,B:Book):Boolean =

Checked Out(B)
& Responsible(B)=U

CRITERION
v b:Book(b E Library -

(Checked Out(b) & Available(b)
Checked_Out(b) & Available(b)))

& v u:User(Number Books(u) < Book_Limit)
& v u:User,bl,b2:Book(

Checked Out To(u,bl)
& Checked_Out_To(u,b2)
& Copy_Of(bl,b2)

bl=b2)
INITIAL

Library = Empty
& Nu:User (Number_Books(u) = 0)
& vb:Book (-Checked_Out(b))

TRA,NSFORM Check Out(U:User,B:Book) External
Effect

(if Available(B)
& Number_Books(U) < BookhLmit
& v B1:Book (Checked-Out_To(U,BI) - -Copy_Of(B,Bl))

then v U1:User (NNumber_Books(Ul) =
(if Ul=U

then Number_Books(U) + 1
else Number_Books(U1)))

& v B1:Book(
(if B1=B

then N"CheckedtOut(B)
& N"Responsible(B)=U
& N"Never_Out(B)

else NC"(Checked_Out(Bl), Responsible(B1),
Never_Out(B 1))))

else NC"(Number_Books,Checked_Out,Responsible,Never-Out))

TRANSFORM Return(B:Book) External
Effect
(if Checked_Out(B)

then v B1:Book (N"CheckedOut(Bl) =
(if B=B1

then False
else Checked-Out(B1)))

& v U1:User (N"Number Books(U1) =
(if Ul=Responsible(B)

then Number,Books(Ul) -1
else Number_Books(U1)))

else NC"(Checked_Out,Number_Books))

TR.ANSFORM Add-A_Book(U:User,B:I3ook) External
Effect

(if Library-Staff(U)
& B e Library

then N"Library Library u tBj
& v B1:Book(

N"Checked.Out(Bl) =
(if B=B1

then False
else Checked_Out(B1))

& N"Never_Out(Bl) =

(if B=B1

Fig. 2. Ina Jo specification of example system.

35

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-il, NO. 1, JANUARY 1985

then True
else Never..Out(B1)))

else NC"(Library,Checked_Out,Responsible,Never_Out))

TRANSFORM Remove_A_Book(U: User,B:Book) External
Effe ct

(if hAbrary Staff(U)
& Available(B)

then-N"Library = Library tBj
else NC'(Library))

TRANSFORM Last_Responsible(U:User,B:Book) External
Effect
(if Library_Staff(U)
& B E Library
& -Never_Out(B)

then N"User_Result = Responsible(B)
else NC"(User_Result))

TRANSFORM What_Checked_Out(Requester,Whom:User) External
Effect
(if (Library-Staff(Requester) Requester=Whom)

then vBl:B3ook(
Checked_Out_To(Whomn,B1) & B1 e N"Book_Result
Checked_Out_To(Whom,Bl) & B1 £ N"Book_Result)

else NC"(Book_Result))
TRANSFORM Titles_By-Author(By-Whom:Book_Author) External
Effect
N"Title_Result = tTl:Book_Title (3 Bl:Book

Author(B1)=By,Whom & Title(B31)=Tl))j
END Top-Level
END Library

Fig. 2. (Continued.)

Book(b 5 E Library -* Copy_Of(b 5, b 3)). Next, a general
statement of the desired resultant state in terms of state vari-
ables must be formulated. The complete functional require-
ment is

Fstart: bh, b2, b3: Book & al: Author
& '-Copy_Of(bl, b2) & -Copy_Of(bl, b3)

& -Copy_Of(b2, b3)
& Author(bl)=al & Author(b2)=a1 & Author(b3)=a1
& Vb4:Book(

Author(b4)=al -
Copy_Of(b4, b 1)
Copy_Of(b4, b2)
ICopy_Of(b4, b3)

& bI E Library & b2 El Library
& V b 5: Book (b 5 E Library e 'Copy_Of(b 5, b3))

SEQ: Titles_By_Author(al)
Fresult: Title_Result = {Title(bl), Title(b2)}

Note the free identifiers bl, b2, b3, and al that appear in
Fstart, SEQ, and Fresult.
Now symbolic execution will be used to check the validity

of this functional requirement with respect to the example
specification, but first some more notation. Assume that the
sequence of operations to be tested is started in some state q,
and let var(q) denote the value of state variable var in state q.
Furthermore, let succ(q) denote the state reached by applying
the proper transform in the sequence to state q. Thus, if the
sequence contains three transforms and the start state is p,
then the resultant state would be succ(succ(succ(p))).
To symbolically execute a functional requirement on a speci-

fication the effect section of the transform being executed
must be altered as follows. If a state variable appears in the
effects section not preceded by the new value symbol N", its
current value is used to determine the effects of the transform.
Therefore, each state variable not preceded by N" is replaced
by the value it has in the state where the transform is fired.
Thus, if the sequence contains three transforms and the third

transform contains state variable var 1 not preceded by anN",
and the sequence was initiated in state p, then varl is replaced
by varl(succ(succ(p)). That is, the first transform resulted in
state succ(p) and the second transform resulted in state
succ(succ(p)), which is the state in which the third transform
was fired.
In addition, each occurrence of a state variable var preceded

by N" is replaced by var(succ(q)), where q is the state in
which this transform was fired.

Finally, any variable that does not appear in the effects
section preceded by N" is added to the result of firing the
transform as var(succ(q)) = var(q). This occurs because the
Ina Jo processor assumes that any variable that is not explic-
itly mentioned as changing remains unchanged, and it auto-
matically appends Nl"var = var to the effect of the transform
when processing the specification.
The result of symbolically executing transform Titles_By_

Author(aI) starting in state p is

Title_Result(succ(p)) = {T1:Book_Title (]3IB 1:Book (
Author(Bl)=al & Title(Bl)=T1))}

and for all the other state variables their value in state succ(p)
is equal to their value in state p.
Since p satisfies Fstart, it is known from the third line of

the predicate defining Fstart that books bl, b2, and b3 have
author al and from the fourth, fifth, and sixth lines it is
known that the only other books that have al as their author
are copies of bl, b2, or b3. Therefore, the set defined as the
new value of Title_Result is

{Title(bl), Title(b2), Title(b3)}.

Now for this resultant state to satisfy the desired resultant
state it must be the case that

{Title(bl), Title(b2), Title(b3)} = {Title(bl), Title(b2)}.

However, this is true only if Title(bl) = Title(b3) or
Title(b2) = Title(b3). Expanding the second conjunct in the
second line defining Fstart yields

-(Author(b1)=Author(b3) & Title(b)=Title(b3))

which by moving the not inside is equivalent to

Author(b 1)>=Author(b3)1 Title(b 1).= Title(b 3)

but by the third line of the predicate defining Fstart

Author(bl)=al & Author(b3)=al

thus, Author(bl)=Author(b3). Therefore, it must be the case
that

Title(b I Title (b 3)

Similarly, expanding the third disjunct in the second line de-
fining Fstart yields

Title (b2)-=Title (b3).

Therefore, the two sets are not equal and the resultant state
does not satisfy the desired result. That is, the functional
requirement is not valid with respect to the example specifica-
tion.

36

KEMMERER: TESTING FORMAL SPECIFICATIONS

When symbolically executing a functional requirement, no

assumptions are made about a particular implementation.
Therefore, if the functional requirement is satisfied, then all
implementations that are consistent with the specification will
satisfy the requirement. Thus, the functional requirement is
valid with respect to the specification. If the functional re-

quirement is not satisfied by the specification, then the func-
tional specification may be either satisfiable or unsatisfiable
with respect to the specification. To show that it is unsatis-
fiable requires showing that Fstart can be true and that the re-

sultant state implies -Fresult, for then no implementation
that is consistent with the specification can satisfy the func-
tional requirement. The first functional requirement is not
valid with respect to the sample specification because the re-

striction that B 1 be an element of the library was not in-
cluded. The correct effect for the Titles_By_Author trans-
form is

N"Title Result = {T1: Book_Title (:I B 1: Book(
B1 E Library & Author(B 1)

= By_Whom & Title(B)-T1))}.

Now, the second functional requirement is considered. To
demonstrate the symbolic execution of this functional require-
ment the succ notation is extended. If p is a predicate defin-
ing a set of states, then succ(p) defines the set of states that
can be reached by applying the proper transform in the se-

quence to the set of states defined by p. The second func-
tional requirement is expressed as follows.

Fstart: bkl, bk2, bk3:Book & usl:User
& -Copy_Of(bkl, bk2) & -Copy_Of(bkl, bk3)

& -Copy_Of(bk2, bk3)
& Available(bkl) & Available(bk2) & Available(bk3)
& V b4:Book (

Checked_OutLTo(usl, b4)
-Copy_Of(b4, bkl) & -Copy_Of(b4, bk2)
& ~-Copy- Of(b4, bk3))

& Number_Books(usl)=Book_Limit - 2

SEQ: Check_Out(usl, bkl), Check_Out(usl, bk2),
Check_Out(usl, bk3), Return (bkl),
Check_Out(usl, bk3)

Fresult: Number_Books(usl =Book_Limit
& Checked_Out_To(usl, bk2)
& Checked_Out_To(usl, bk3)
& Available(bkl)

Symbolic execution is now used to check the validity of this
functional requirement with respect to the example specifi-
cation. The effect of symbolically executing Check_Out(usl,
bkl) is

(if Available(bkl)
& Number_Books(usl) < Book_Limit
& V B 1:Book (

Checked_OutUTo(usl, B 1) -Copy_of(bkl, B 1))
then

V U1: User (N"Number_Books(U1)=
(if Ul-usl

then Number_Books(usl) + 1

else Number_Books(Ul)))
& V B 1: Book (

(ifB 1 =bkl
then N"Checked_Out(bkl)

&-N "Responsible (bk 1l) usl
& -N "Never_Out (bk 1)

else NC "(Checked-Out(B 1), Responsible(B1),
Never_Out(B 1))))

else NC"(Number-Books, Checked-Out, Responsible,
Never_Out))

In Fstart bkl is available and none of the copies that usl has
checked out are copies- of bkl. Furthermore, us1 has two less
than the limit of books checked out. Therefore, the condi-
tional is satisfied and the effect of symbolically executing
Check_Out(usl, bkl) in state Fstart is specified by the then
clause.
Thus, succ(Fstart) is specified by

V Ul :User (Number Books(Ul)(succ(Fstart)) =
(if Ul=usl

then Number_Books(usl)(Fstart) + 1
else Number_Books(Ul)(Fstart)))

& V B1:Book(
(ifB 1 =bkl

then Checked_Out(bkl)(succ(Fstart))
& Responsible(bkl)(succ(Fstart))=usl
& -Never_Out (bkl)(succ(Fstart))

else Checked_Out(B l)(succ(Fstart))
=Checked_Out(B 1)(Fstart)
& Responsible (Bl)(succ(Fstart))

=Responsible(B 1)(Fstart)
& Never_Out(B l)(succ(Fstart))

=Never_Out(B l)(Fstart))))

and all other state variables have the same value that they had
in state Fstart.
In particular, the predicate defining succ(Fstart) is

1 bkl, bk2, bk3:Book & usI :User
2 & -Copy_Of(bkl, bk2) & -Copy_Of(bkl, bk3) &

-Copy_Of(bk2, bk3)
3 & Available (bk2) & Available (bk3)
4 &bkl CLibrary
5 & Checked_Out(bkl)
6 & Responsible(bkl)=usl
7 &-Never_Out(bkl)
8 &Vb4:Book(

Checked Out To(usl, b4) -
-Copy_of(b4, bk2) & -Copy_Of(b4, bk3))

9 & Number_Books(usl)=Book_Limit - 1

Lines 1 and 2 of the predicate follow directly from Fstart
since they are type and constant declarations. Lines 5, 6, and
7 are a result of the effect of the transform. Line 9 is derived
by substituting Book-Limit - 2 for Number_Books(usl)
(Fstart). The derivations of lines 3, 4, and 8 are the most in-
teresting. In Fstart Available(bkl) was true, and by expand-
ing the definition of Available one derives

bkl E Library & -Checked_Out(bkl)

37

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 1, JANUARY 1985

but the effect of the transform specifies Checked_Out(bkl) in
the new state. Therefore, Available(bkl) is no longer true.
However, bkl is still an elenment of the library. This results in
lines 3 and 4. The effect of the transform specifies that
Checked_Out(bkl) & Responsible(bkl)=usl, but this is the
definition of Checked_Out_To(usl, bkl). Now, by the defi-
nition of Copy-Of one can derive Copy_Of(bkl, bkl). That
is, in succ(Fstart)

Checked_Out_To(usl, bkl)
& Copy_Of(bkl, bkl)

Therefore, -Copy_Of(b4, bkl) is simplified out of the con-
sequent of the universally quantified expression that partially
defined Fstart. The resulting expression is line 8.
Next Check_Out(usl, bk2) is symbolically executed from

state succ(Fstart). As was the case with the previous trans-
form bk2 is available, none of the books checked out by
usl are copies of bk2, and usl has less than the limit of
books checked out (i.e., Book_Limit - 1). Therefore, the
condition is satisfied and the then clause specifies the state
succ(succ(Fstart)) based on succ(Fstart).
The predicate defining succ(succ(Fstart))) is

1 bkl, bk2, bk3:;Book & usi :User
2 & -Copy_Of(bkl, bk2) & -Copy_Of(bkl, bk3)
& -Copy_Of(bk2, bk3)

3 & Available(bk3)
4 & bkl E Library & bk2 E Library
5 & Checked Out(bkl) & Checked Out (bk2)
6 & Responsible(bkl)=usl & Responsible(bk2)=usl
7 & -Never Out(bkl) & -Never Out(bk2)
8 &Vb4:Book(

Checked_Out_To(usl, b4)-e
-Copy Of(b4, bk3))

9 & Number_Books(usl)=Book_Limit
The reasoning for deriving this state definition is identical to
the reasoning for deriving state succ(Fstart).
The transform Check_Out(usl, bk3) is symbolically ex-

ecuted next starting in state succ(succ(Fstart)). Since
Number_Books(usl) = Book_Limit, Number_Books(usl) <
Book-Limit is not satisfied in this state. Since the conditional
is false, the else clause defines the new state. However, the
else clause specifies that there is no change to any state
variable; therefore, succ(succ(succ(Fstart))) = succ(succ
(Fstart)).
The next state transform to be symbolically executed is

Return (bkl) starting in state succ(succ(succ(Fstart))). Since
bkl is checked out the conditional of the effect is satisfied and
the then clause defines the new state as follows.

V B 1:Book(Checked_Out(B 1)(succ (q)) =

(ifB=B 1
then False
else Checked_Out(B 1)(q)))

& V Ul :User(Number_Books(UI)(suCc(q)) =
(if U =Responsible(bkl)(q)

then Number_Books(Ul)(q) - 1
else Number_Books(Ul)(q)))

where state q is succ(succ(succ(Fstart))).

The predicate defining state succ(succ(succ(succ(Fstart)))) is

1 bkl, bk2, bk3:Book & usl:User
2 & -Copy_Of(bkl, bk2) & -Copy_Of(bkl, bk3)
& -CopyOf(bk2, bk3)

3 & Available(bkl) & Available(bk3)
4 &bk2ELibrary
5 & CheckedtOut(bk2)
6 & Responsible(bkl)=usl & Responsible(bk2)=usl
7 & -Never_Out(bkl) &-Never_Out(bk2)
8 &Vb4:Book(

Checked_OuUtTo(usl, b4) -
-Copy_Of(b4, bk3))

9 & Number_Books(us =Book-Limit - 1

Since the effect of Return specifies -Checked_Out(bkl)
and because bkl is an element of the library, Available(bkl)
is true in the new state. Notice that Responsible(bkl)=
usl and -Never_Out(bkl) are still present since Return
does not modify these state variables.

Finally, Checked_Out(usl, bk3) is symbolically executed
in state succ(succ(succ(succ(Fstart)))). Since bk3 is available,
none of the books checked out to usl are copies of bk3, and
usl has less than the limit of books checked out, the final
state is defined by the then clause of the effect section of the
Check-Out transform.
The final state is defined by

I bkl,bk2, bk3:Book & usl:User
2 & -Copy_Of(bkl, bk2) & -Copy_Of(bkl, bk3)
& -Copy_Of(bk2, bk3)

3 & Available(bkl)
4 & bk2 6 Library & bk3 E Library
5 & Checked_Out(bk2) & Checked_Out(bk3)
6 & Responsible(bk1)=us1 & Responsible(bk2)=usl
& Responsible(bk3)=usl

7 & -Never_Out(bkl) & -Never_Out(bk2)
& -Never_Out(bk3)

8 & Number Books(usl)=Book_Limit

The reasoning for arriving at this final state is the same as was
used when discussing the first two transforms so it will not be
repeated again.
Now it is necessary to see if the predicate defining the final

state is strong enough to imply Fresult. The first conjunct
of Fresult follows directly since it is identical to line 8 of the
predicate defining the final state. To prove the second con-
junct Checked_OutTo(usl, bk2) is expanded to yield

Checked_Out(bk2) & Responsible(bk2)=usl

but these also follow directly from lines 4 and 5 of the predi-
cate defining the final state. The third conjunct of Fresult is
proved similarly. Finally, the fourth conjunct is identical to
the third line of the predicate defining the final state. Thus,
the conjuncts of Fresult are true in the final state and the
second functional requirement is valid with respect to the
sample specification.
The simplifications outlined above are to be performed

automatically by the symbolic execution tool that is described
in a later section of this paper. Care must be taken when de-
riving the predicates that define the new states to assure that

38

KEMMERER: TESTING FORMAL SPECIFICATIONS

the predicates are not weakened, resulting in information
being lost. For instance, when manually deriving state succ-
(succ(succ(succ(Fstart)))) while symbolically executing the
second functional requirement there was not enough informa-
tion in the predicate defining the previous state to add the
conjunct -Copy_Of(b4, bkl) to the conclusion of the quanti-
fied statement 'in line 8. The information needed was lost when
deriving the predicate to define succ(Fstart). If line 8 of this
predicate had been

V b4:Book (
Checked_Out_To(usl, b4) &b4-=bl

-Copy_Of(b4', bkl) & -Copy_Of(b4, bk2)
& -Copy_Of(b4, bk3))

the information would not have been lost.

USING A RAPID PROTOTYPE TO TEST
FUNCTIONAL REQUIREMENTS

The rapid prototype approach to checking the satisfiability
of the functional requirement converts the nonprocedural
specification into a procedural program and runs test cases on
that program. However, since the resulting program repre-
sents only' one of many possible consistent implementations,
a successful test shows only satisfiability. In the same manner,
an unsuccessful test shows that the functional requirement
tested is not valid, but does not indicate if it is satisfiable or
not.
To convert a nonprocedural Ina Jo specification into a pro-

cedural Pascal-like program it is necessary to determine for
each specification structure how it should be translated into
code structure. For instance, equalities expressions not in-
volving an N" (Number_Books(U) < Book-Limit) become
conditionals which must hold for any of the changes to occur.
If the equalities expression contains a single state variable pre-
ceded by an N", then it becomes an assignment statement.
Thus, N"Responsible(B) = U becomes Responsible[B] := U.
Since Ina Jo allows conditional expressions a target language
that allows conditional expressions would make translation
easier, but is not necessary. If the language does not allow
conditional expressions, then the conditionals move out to an
if statement. All definitions must also be expanded or de-
clared as functions. The Appendix contains a Pascal transla-
tion of the Check_Out and Return transforms as well as the
type, constant, and variable declarations that are necessary to
execute these procedures.
The Check_Out transform is translated to

procedure checkouti(u:user; b:book);
begin

if (available(b) and (numbooks [u]<booklimit)
and notinset(b, u))
then

begin
numbooks[u]:= numbooks [u] + 1;
checkedout[b] :=true;
responsible[b] :=u;
neverout(bJ :=false

end
end

39

Notice that none of the no change specifications are reflected
in the executable code because no code is needed to imple-
ment a no change.
This example points out one problem with converting a

formal specification to executable code. The condition

V B 1 :Book (Checked Out_To(U, B 1) e
Copy_Of(B, B 1))

is deflned on a possibly infinite (it is an unspecified type) do-
main Books. Since it is undesirable to have an infinite domain,
the user must assign finite sizes to these domains. This may be
accomplished by converting unspecified types into enumerated
types (scalar types in Pascal). These enumerated types range
from 1 to some maximum value which is specified by the user.
Thus, the Ina Jo type Book becomes the Pascal enumerated
type

const bookmax = 40;
typebook= l..bookmax;

In the executable code translation in the Appendix the func-
tion notinset implements the predicate discussed above. The
universally quantified statement becomes a for loop which sets
a Boolean false if the conditions being checked are not true
for any value of book.
Type declarations other than unspecified types are trans-

lated to Pascal in a straightforward manner. Ia Jo Booleans
and integers become Pascal Booleans and integers. Ina Jo
enumerated types become Pascal enumerated types, and sets
become sets. For example

type bookcollection = set of book;

An Ina Jo state variable that has a single parameter which is
an unspecified type becomes a Pascal variable array indexed
by the enumerated type corresponding to the unspecified
type. Thus

VARIABLE Checked-Out (Book): Boolean

becomes
7

var checkedout [1. .bookmax] of boolean;

State variables that have more than one parameter may be-
come multidimensional variable arrays.
Ina Jo definitions may become Pascal functions. For in-

stance,

DEFINE Available(B: Book): Boolean == B E Library
& -Checked_Out(B)

becomes

function available(b:book): boolean;
begin

available:= ((b in Library) and not checkedout [b])
end

Functional requirements are tested on the executable
code by trying different test cases that are instances of the
functional requirement. An example of a specific instance of
the second functional requirement to be tested is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 1, JANUARY 1985

Fstart: bookmax=40, usermax= 20, booklimit=4,
copyof[1,2] = false, copyof[1,3] = false,
copyof [2.,3] false, copyof[2,1] false,
copyof[3;,1 I =false, copyof[3,2] false,
I in Library, 2 in Library, 3 in Library,
checkedout [11= false, checkedout [2] = false,
checkedout [31 =false,
checkedout [291 =true, checkedout [30] =true,
29 in Library, 30 in Library,
responsible [29] = 5, responsible [30] = 5,
copyof[1 ,291 = false, copyof[2,29] =false,
copyof[3,29] =false, copyof[29,11 =false,
copyof[29,2] = false, copyof [29,3] =false,
copyof[1,30]= false, copyof[2,30] =false,
copyof[3,30] =false, copyof[30,1] =false,
copyof[30,2] =false, copyof[30,3] =false,
numbooks[51 =2

SEQ: checkout(5, 1), checkout(5,2), checkout(5, 3),
return(1), checkout(,5,3)

Fresult: numbooks[5] =4,
checkedout [2] =true, responsible [2] =5,
checkedout [3] = true, responsible [3] 5,
checkedout [1] = false, 1 in Library

In this instance the three books to be checked out are 1, 2,
and 3 and the user is 5. User 5 already has two books checked
out and they are books 29 and 30.
The program in the Appendix initializes the variables as de-

fined by Fstart and executes SEQ. The resulting values of
the variables agree with Fresult. Therefore, this instance of
the second functional requirement is satisfiable with respect
to the specification.

RAPID PROTOTYPE TOOL

The proposed rapid prototype tool is more than just a com-
piler, for in addition to translating the nonprocedural specifi-
cation into a procedural target language that can be executed,
it provides a testing environment. This testing environment
allows the user to use several modes of operation to test his
specification. One mode is to submit the specification to the
tool which then compiles it into executable code which can
be used as a rapid prototype to test the functionality. Another
mode is to submit the specification along with the start state,
sequence of operations, and resultant state and let the tool
determine whether the functional requirement submitted is
satisfiable with respect to the specification.
The user inputs to the rapid prototyping tool are

1) a formal system specification written in Ina Jo (or some
other suitable specification language);
2) the start state of the system (i.e., values for the state

variables) or the keyword DEFAULT;
3) A sequence of transforms to be executed or the keyword

INTERACTIVE;
4) the expected resultant state of the system, a list of vari-

ables to be output, or the keyword ALL.
The tool then performs as follows.

1) Check the initial values to see that they are consistent with
the criterion (i.e., is the system starting in a correct state?).

If the keyword DEFAULT is used, then the tool will assign
initial values to each of the state variables such that the initial
condition is satisfied.

In either case the initial values of all of the state variables
are printed.
2) If a sequence of transforms is input the tool executes

the procedures that correspond to each of the transforms in
sequence on the compiled specification starting from the ini-
tial state of part 1.

If the keyword INTERACTIVE was input, the tool enters
an interactive mode and requests directions from the user.
The user may ask to have the current state variable values dis-
played, to change the values of state variables, to execute a
procedure, to check whether the resultant condition is satis-
fied by the current state, or to quit testing. If the user changes
the current values of the state variables, then before executing
the next procedure a check is made to see if the new values
of the state variables are consistent with the criterion.
After executing each procedure, whether in the interactive

mode or executing an input sequence, the tool automatically
checks whether the current values of the state variables satisfy
the criterion. If they do not, no more procedures may be
executed, and the current value of each of the state variables
is printed.
3) If an expected resultant state is input the tool checks

whether the final state satisfies the resultant predicate, by sub-
stituting the current values for each of the state variables in
the predicate.

If a list of variables is input the names and values of each of
these variables is printed.

If the keyword ALL is input all of the state variables and
their current values are printed.
Note that if the tool gets a runtime error while executing a

procedure, either input as part of a sequence or while in the
interactive mode, it will immediately terminate execution and
print the current values of all variables as well as the runtime
error.

SYMBOLIC EXECUTION TOOL

The proposed symbolic execution tool is much like the rapid
prototyping tool. It too provides a testing environment allow-
ing the user to use several modes of operation to test his
specifications. Unlike the rapid prototyping tool, however,
the specification is not compiled into executable code.
The user inputs to the symbolic execution tool are the same

as for the rapid prototyping tool, except states are described
by predicates not just by listing their contents.
The tool performs as follows.
1) Check the initial predicate to see that it is consistent with

the criterion (i.e., is the system starting in a correct state?).
If the keyword DEFAULT is used, then the start state is

assumed to be defined by the initial state of the specification.
In either case the predicate defining the start state is printed.
2) If a sequence of transforms is input the tool symbolically

executes each of the transforms in sequence starting from the
initial state of part 1.

40

KEMMERER: TESTING FORMAL SPECIFICATIONS

If the keyword INTERACTIVE was input, the tool enters
an interactive mode and requests directions from the user.
The user may ask to have the predicate defining the current
state displayed, to change the value of the predicate defining
the current state, to symbolically execute a transform, to
check whether the resultant predicate is satisfied by the cur-
rent state, or to quit testing. If the user changes the predicate
defining the current state, a check is made to see if the newly
defined state is consistent with the criterion.
After each transform is symbolically executed the tool auto-

matically checks whether the current state is consistent with
the criterion. If it is not, no more transforms may be executed
and the predicate defining the current state is printed.
3) If a predicate defining the expected resultant state is

input the tool checks to verify whether the final state satis-
fies the resultant predicate.

If the keyword DEFAULT is input, then the predicate which
represents the final state is printed.

ADVANTAGES/DISADVANTAGES OF THE
RAPID PROTOTYPE APPROACH

There are several problem areas in translating Ina Jo to exe-
cutable code. The problem with translating universal and exis-
tential quantifiers was discussed in an earlier section: Ina Jo
specifications often deal with infinite domains, and a likely
part of a specification might be

V i:Pos_Integer(N"var.i = var.i + i).

The resulting infinite for loop, however, would be difficult
to test. The solution proposed for the example is to have
the tester specify the range of the domain, thus converting the
infinite domain to a finite one.
Another problem area arises because Ina Jo allows non-

deterministic specifications. When using the Ina Jo language
if a variable is to be changed under certain circumstances, but
not others, all circumstances must be described explicitly.
This is not enforced by the specification processor; there-
fore, the effect section of an Ina Jo transform may not be de-
terministic. For instance, a possible specification for the Re-
move_A_Book transform, which is incorrect, is

(if Library_Staff(U)
& Available (B)

then N"Library=Library - {B}).

The interpretation of this specification is that if user U has
library staff privileges and book B is available, then the new
value of the set library is equal to its old value with book B
removed. However, it does not specify what the new value of
the library will be if the condition is not met. That is, this
specification is equivalent to the following specification.

(if Library_Staff(U)
& Available(B)

then N"Library=Library {B}
else N"Library=N"Library).

In the Ina Jo language the meaning of N"var=N"var is that the
variable var can assume any value in the new state.
Two immediate solutions to this nondeterministic problem

are: treat the variables as unchanged or treat it as getting a
special undefined value. If the first solution is picked, this
part of the specification will not show up in the executable
code. That is, the particular implementation that does not
change the value of the variable in question is used. The sec-
ond solution more accurately reflects the specification; how-
ever, this solution requires a special undefined value for each
type, which must be treated differently than all other values.
In particular, two variables of the same type with undefined
values should not be considered equal.
In addition to the translation problems, the rapid prototype

approach suffers from all of the disadvantages of testing. For
example, only one test case can be tested 'at a time, and unless
all instances of a functional requirement are tested there is
no guarantee that the functional requirement will be satis-
fiable for all instances. Also, if the right test case is not tried,
an error will not be revealed.
Another problem that was discussed earlier is that using the

rapid prototype approach at best guarantees satisfiability since
it is only checking one implementation of the specification.
The previous paragraphs have outlined some of the dis-

advantages with the rapid prototype approach. There are two
important advantages that can outweigh the disadvantages.
First, a rapid prototype helps the specification writer to debug
the specification. It also helps a potential user experience the
capabilities of the system. It is often only through this type of
experience that the necessary functional requirements can be
discovered. Furthermore, it is better to have the user discover
needs early in the software life cycle, not after the system has
been completely implemented and delivered.
Another reason for having executable code is that although

the result of symbolically executing a sequence of transforms
contains the information that is necessary to determine
whether a desired result is satisfied, it is often difficult to glean
the pertinent information from the remainder.

ADVANTAGES/DISADVANTAGES OF
SYMBOLIC EXECUTION

An advantage of symbolically executing a functional require-
ment is that it allows one to deal with infinite domains. Thus,
universal and existential quantifiers cause no problems. It also
lets the user test a large number of cases at one time.
The biggest problem with symbolic execution is that the

predicates defining the current state can get unmanageable
after executing a sequence of transforms, particularly when
the transforrns contain conditional expressions that can not be
readily resolved. Consider three transforms Tl, T2, and T3
defined as follows.

T1: (ifA then B else C)
T2: (ifD then E else F)
T3: (if G then H else I)

The effect of executing the sequence TI, T2, T3 is

(if G (if D(ifA then B else C)
then E(ifA then B else C)
else F(ifA then B else C))

then H(if D(ifA then B else C)
then.E(ifA then B else C)

41

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 1, JANUARY 1985

else F(ifA then B else C))
else I(if D(ifA then B else C)

then E(ifA then B else C)
else F(ifA theft B else C)))

This effect has been abbreviated, for if s is the start state, then
every occurrence of

(ifA then B else C)

should be replaced by

(ifA (s) then B(s) else C(s)).

As was seen in the earlier examples the result can be simpli-
fied, and the proposed symbolic execution tool will do this
automatically whenever possible. However, the examples that
have been presented in this paper are simple examples used
only for pedagogical purposes. Specifications for real systems
tend to be more complex. Thus, the predicate that defines
the resultant state after executing a sequence of these trans-
forms is likely to be complex.

CONCLUSIONS
This paper has attempted to demonstrate the need for test-

ing formal specifications early in the software life cycle to
guarantee a reliable system that also provides the desired
functionality. Formal definitions to classify the implement-
ability of a functionAl requirement with respect to a specifi-
cation were also presented. In addition, two tools for carrying
out the process of''-testing specifications were proposed: a
rapid prototype tool and a symbolic execution tool. The rapid
prototype tool is the more difficult to implement,' but it
provides the user with a prototype which he can exercise to
see if it meets'his (sometimes fuzzy) functional requirements.
A preliminary symbolic execution tool, which accepts Ina

Jo specifications and tests them under user direction has been
built on a UNIX®) operating system running on a VAX/750.
The goal of this preliminary system was to get it working un-
intelligently; therefore, it performs very little simplification on
the generated formulas. The rapid prototype tool'has been
designed but nQt implemented. Currently work on this project
is concentrating on designing and implementing efficient de-
cision procedures for automatically simplifying the complicated
formulas generated by the symbolic executer. These simpli-
fication procedures will be integrated into the testing tool.

APPENDIX
PASCAL TRANSLATION OF EXAMPLE SPECIFICATION
program examplesys (input, output);
const bookmax = 40; {number of books}

usermax = 20; {number of users}
booklimit = 4;

type book = 1 . .bookmax;
user = 1 .usermax;
bookcollection = set of book;

var library: bookcollection;
checkedout, neverout: array[l . .bookmax] of boolean;

®UNIX is a trademark of Bell Laboratories.

responsible: array [1 . .bookmax] of user;-
numbooks: array [.. usermax] of integer;
copyof: array[l ..bookmax, 1 ..bookmax] of boolean;

function available(b: book): boolean;
begin

available (b in library) and not checkedout [b]
end;
function 'notinset(b:book; u :user): boolean;
var

i: integer;
nocopy: boolean;

begin
nocopy := true;
for i:= 1 to bookmax do

if checkedout [i] and (responsible [i] =u)
and copyoffb, i]

then nocopy false;
notinset := nocopy

end;
procedure checkout(u:user; b:book);
begin

if 'available(b) and (numbooks [u] <booklimit)
and notinset(b, u)

then
begin

numbooks [u] numbooks [u] + 1;
checkedout [b] := true;
responsible[b] :=u;
neverout[b] '=false

end
end;
procedure return (b: book);
begin

if checkedout [b]
then

begin
checkedout[b] false;
numbooks [responsible [b]

numbooks [responsible [bi I - 1
end

end;
begin

'library:= 1[1301;
checkedout [11 false; checkedout [2] :=false;

checkedout [3] :false;
checkedout [291 :=- true; checkedout [30] :=true;
responsible [291 5; responsible [30i : 5;
copyof[1, 2] :=false; copyof[1, 3i :=false;

copyof [2, 3i :=false;
copyof[2, 1] := false; copyof[3, 1 =false;

copyof [3, 2i :=false;
copyof[1, 29] :=false; copy[2, 29] :=false;

copyof[3,29J :=false;
copyof[29, 1I :false; copyof [29, 2] :=false;

copyof[29,3] :=false;
copyof[1, 30] :=false; copyof[2, 30] :=false;

copyof[3, 30] :=false;

42

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-II, NO. 1, JANUARY 1985

copyof[30, 1] :=false; copyof[30, 2] :=false;
copyof[30,3] :=false;

numbooks[5] :=2;
checkout(5, 1);
checkout(5, 2);
checkout (5, 3);
return(l);
checkout(5, 3);
write(numbooks[5], checkedout [2] , responsible [2],

checkedout [3],
responsible [3] , available(1))

end.

ACKNOWLEDGMENT

The author would like to thank J. L. Bruno and P. R. Eggert
for their many useful criticisms and suggestions on an earlier
version of this paper, and also S. T. Eckmann who imple-
mented the preliminary symbolic execution tool.

REFERENCES

[1] D. I. Good, "The proof of a distributed system in Gypsy," Inst.
Comput. Sci., Univ. Texas at Austin, Austin, TX, Tech. Rep. 30,
Sept. 1982.

[2] R. Locasso, J. Scheid, V. Schorre, and P. Eggert, The Ina Jo
Specification Language Reference Manual, System Development
Corp., Santa Monica, CA, SDC document TM-6889/000/01,
Nov. 1980.

131 L. Robinson, The HDM Handbook, Vol. I: Foundations ofHDM,

Comput. Sci. Lab., SRI International, Menlo Park, CA, June,
1979.

14] AFFIRM Reference Manual, D. Thompson and R. Erickson,
Eds., Univ. Southern CaUfornia Information Sciences Inst., Marina
Del Rey, CA, Feb. 1981.

[51 C. A. R. Hoare, "Proof of correctness of data representations,"
Acta Inform., vol. 1, pp. 271-281, 1972.

[6] J. Guttag, E. Horowitz, and D. Musser, "Abstract data types and
software validation," Commun. ACM, vol. 21, pp. 1048-1064,
Dec. 1978.

[7] R. Kemmerer, "Status report on SDC's formal development meth-
odology," in Proc. 2nd Verification Workshop, Gaithersburg, MD,
Apr. 1981.

, ._M Richard A. Kemmerer (M'81) was born in
Allentown, PA, in 1943. He received the B.S.
degree in mathematics from the Pennsylvania
State University, University Park, in 1966, and
the M.S. and Ph.D. degrees in computer science
from the University of California, Los Angeles,
in 1976 and 1979, respectively.
He is currently an Assistant Professor at the

University of California, Santa Barbara. From
1966 to 1974 he worked as a programmer and
systems consultant for North American Rock-

well and the Institute of Transportation and Traffic Engineering at
UCLA. His research interests include formal specification and verifi-
cation, reliable software, and secure systems. He is author of the book
Formal Specification and Verification ofan Operating System Security
Kernel.

Dr. Kemmerer is a member of the IEEE Computer Society and the
Association for Computing Machinery, and he is currently the Vice
Chairman of the IEEE Technical Committee on Security and Privacy.

The Eden System: A Technical Review

GUY T. ALMES, MEMBER, IEEE, ANDREW P. BLACK, EDWARD D. LAZOWSKA,
AND JERRE D. NOE, SENIOR MEMBER. IEEE

Abstract-The Eden project is a five year experiment in designing,
building, and using an "integrated distributed" computing system. We
are attempting to combine the benefits of integration and distribution
by supporting an object based style of programming on top of a node
machine/local network hardware base. Our experimental hypothesis is
that such an architecture will provide an environment conducive to
building distributed applications.
This technical review is written three years into the project. We begin

by summarizing the Eden system: its concepts, history, status, and
context. We next discuss the way in which the task of supporting the
Eden architecture is divided between the kernel, the programming lan-
guage, and user-level (library) code; we describe the experiences with
paper designs and prototype implementations that led us to this division

Manuscript received October 26, 1983; revised June 14, 1984. This
work was supported in part by the National Science Foundation under
Grant MCS-8004 111. Computing equipment was provided in part under
a cooperative research agreement with Digital Equipment Corporation.
The authors are with the Department of Computer Science, University

of Washington, Seattle, WA 98195.

of labor. We then show how distributed applcations make use of
various aspects of the Eden architecture. We conclude by providing
some preliminary evaluations based on our experiences to date.
The objective of our research is to assess the benefits (in terms of

programmability) and the costs (in terms of necessary support) of our
system architecture. We feel we have gained insights on a number of
questions of relevance well beyond Eden or Eden-like systems.
* How should the job of supporting a system such as Eden be divided

between the kernel, the programming language, and user-level (library)
code?
* How do distributed applications make use of various aspects of the

Eden architecture (location independence, concurrency, etc.)?
* Of the many design and implementation choices we have made,

which are apparently good or apparently bad, based on our experience
to date?

Index Terns-Capability, Concurrent Euclid, concurrent programming,
distributed electronic mail, distributed program, distributed system,
Eden, object-oriented system, remote procedure call.

0098-5589/85/0100-0043$01.00 (D 1985 IEEE

43

