Carry Look-Ahead Adder

The carry look-ahead adder is based on computing the carry bits C_{i} prior to the summation. The carry look-ahead logic makes use of the relationship between the carry bits C_{i} and the input bits A_{i} and B_{i}. We define two variables G_{i} and P_{i}, named as the generate and the propagate functions, as follows:

$$
\begin{aligned}
G_{i} & =A_{i} B_{i}, \\
P_{i} & =A_{i}+B_{i} .
\end{aligned}
$$

Then, we expand C_{1} in terms of G_{0} and P_{0}, and the input carry C_{0} as

$$
C_{1}=A_{0} B_{0}+C_{0}\left(A_{0}+B_{0}\right)=G_{0}+C_{0} P_{0}
$$

Similarly, C_{2} is expanded in terms G_{1}, P_{1}, and C_{1} as

$$
C_{1}=G_{1}+C_{1} P_{1}
$$

When we substitute C_{1} in the above equation with the value of C_{1} in the preceding equation, we obtain C_{1} in terms $G_{0}, G_{1}, P_{0}, P_{1}$, and C_{0} as

$$
C_{1}=G_{1}+C_{1} P_{1}=G_{1}+\left(G_{0}+C_{0} P_{0}\right) P_{1}=G_{1}+G_{0} P_{1}+C_{0} P_{0} P_{1}
$$

Proceeding in this fashion, we can obtain C_{i} as function of C_{0} and $G_{0}, G_{1}, \ldots, G_{i}$ and $P_{0}, P_{1}, \ldots, P_{i}$. The carry functions up to C_{4} are given below:

$$
\begin{aligned}
& C_{1}=G_{0}+C_{0} P_{0}, \\
& C_{2}=G_{1}+G_{0} P_{1}+C_{0} P_{0} P_{1}, \\
& C_{3}=G_{2}+G_{1} P_{2}+G_{0} P_{1} P_{2}+C_{0} P_{0} P_{1} P_{2}, \\
& C_{4}=G_{3}+G_{2} P_{3}+G_{1} P_{2} P_{3}+G_{0} P_{1} P_{2} P_{3}+C_{0} P_{0} P_{1} P_{2} P_{3} .
\end{aligned}
$$

The carry look-ahead logic uses these functions in order to compute all $C_{i} \mathrm{~s}$ in advance, and then feeds these values to an array of EXOR gates to compute the sum vector S. The i the element of the sum vector is computed using

$$
S_{i}=A_{i} \oplus B_{i} \oplus C_{i} .
$$

The carry look-ahead adder for $k=3$ is illustrated below.

The CLA does not scale up very easily. In order to deal with large operands, we have basically two approaches:

- The block carry look-ahead adder: First we build small (4-bit or 8-bit) carry look-ahead logic cells with section generate and propagate functions, and then stack these to build larger carry look-ahead adders [2, 7, 3].
- The complete carry look-ahead adder: We build a complete carry look-ahead logic for the given operand size. In order to accomplish this task, the carry look-ahead functions are formulated in a way to allow the use of the parallel prefix circuits $[1,4,5]$.

The total delay of the carry look-ahead adder is $O(\log k)$ which can be significantly less than the carry propagate adder. There is a penalty paid for this gain: The area increases. The block carry look-ahead adders require $O(k \log k)$ area, while the complete carry look-ahead adders require $O(k)$ area by making use of efficient parallel prefix circuits [5, 6]. It seems that a carry look-ahead adder larger than 256 bits is not cost effective, considering the fact there are better alternatives, e.g., the carry save adders. Even by employing block carry look-ahead approaches, a carry look-ahead adder with 1024 bits seems not feasible or cost effective.

References

[1] R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Transactions on Computers, 31(3):260-264, March 1982.
[2] K. Hwang. Computer Arithmetic, Principles, Architecture, and Design. John Wiley \& Sons, 1979.
[3] I. Koren. Computer Arithmetic Algorithms. Prentice-Hall, 1993.
[4] D. C. Kozen. The Design and Analysis of Algorithms. Springer, 1992.
[5] R. Ladner and M. Fischer. Parallel prefix computation. Journal of the ACM, 27(4):831-838, October 1980.
[6] S. Lakshmivarahan and S. K. Dhall. Parallelism in the Prefix Problem. Oxford University Press, 1994. In press.
[7] S. Waser and M. J. Flynn. Introduction to Arithmetic for Digital System Designers. Holt, Rinehart and Winston, 1982.

