
Computer Arithmetic Fundamentals Koç

Carry Look-Ahead Adder

The carry look-ahead adder is based on computing the carry bits Ci prior to the
summation. The carry look-ahead logic makes use of the relationship between the
carry bits Ci and the input bits Ai and Bi. We define two variables Gi and Pi, named
as the generate and the propagate functions, as follows:

Gi = AiBi ,

Pi = Ai + Bi .

Then, we expand C1 in terms of G0 and P0, and the input carry C0 as

C1 = A0B0 + C0(A0 + B0) = G0 + C0P0 .

Similarly, C2 is expanded in terms G1, P1, and C1 as

C1 = G1 + C1P1 .

When we substitute C1 in the above equation with the value of C1 in the preceding
equation, we obtain C1 in terms G0, G1, P0, P1, and C0 as

C1 = G1 + C1P1 = G1 + (G0 + C0P0)P1 = G1 + G0P1 + C0P0P1 .

Proceeding in this fashion, we can obtain Ci as function of C0 and G0, G1, . . . , Gi and
P0, P1, . . . , Pi. The carry functions up to C4 are given below:

C1 = G0 + C0P0 ,

C2 = G1 + G0P1 + C0P0P1 ,

C3 = G2 + G1P2 + G0P1P2 + C0P0P1P2 ,

C4 = G3 + G2P3 + G1P2P3 + G0P1P2P3 + C0P0P1P2P3 .

The carry look-ahead logic uses these functions in order to compute all Cis in advance,
and then feeds these values to an array of EXOR gates to compute the sum vector
S. The ithe element of the sum vector is computed using

Si = Ai ⊕Bi ⊕ Ci .

The carry look-ahead adder for k = 3 is illustrated below.

1



C4

A0A1A2A3 B0B1B2B3

Carry Look-Ahead Logic C0

S0

B0

C0

A0

C1

S1

A1

B1

C2

S2

A2

B2

C3

S3

A3

B3

The CLA does not scale up very easily. In order to deal with large operands, we have
basically two approaches:

• The block carry look-ahead adder: First we build small (4-bit or 8-bit) carry
look-ahead logic cells with section generate and propagate functions, and then
stack these to build larger carry look-ahead adders [2, 7, 3].

• The complete carry look-ahead adder: We build a complete carry look-ahead
logic for the given operand size. In order to accomplish this task, the carry
look-ahead functions are formulated in a way to allow the use of the parallel
prefix circuits [1, 4, 5].

The total delay of the carry look-ahead adder is O(log k) which can be significantly
less than the carry propagate adder. There is a penalty paid for this gain: The
area increases. The block carry look-ahead adders require O(k log k) area, while the
complete carry look-ahead adders require O(k) area by making use of efficient parallel
prefix circuits [5, 6]. It seems that a carry look-ahead adder larger than 256 bits is not
cost effective, considering the fact there are better alternatives, e.g., the carry save
adders. Even by employing block carry look-ahead approaches, a carry look-ahead
adder with 1024 bits seems not feasible or cost effective.

References

[1] R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Trans-
actions on Computers, 31(3):260–264, March 1982.

[2] K. Hwang. Computer Arithmetic, Principles, Architecture, and Design. John
Wiley & Sons, 1979.

2



[3] I. Koren. Computer Arithmetic Algorithms. Prentice-Hall, 1993.

[4] D. C. Kozen. The Design and Analysis of Algorithms. Springer, 1992.

[5] R. Ladner and M. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831–838, October 1980.

[6] S. Lakshmivarahan and S. K. Dhall. Parallelism in the Prefix Problem. Oxford
University Press, 1994. In press.

[7] S. Waser and M. J. Flynn. Introduction to Arithmetic for Digital System Design-
ers. Holt, Rinehart and Winston, 1982.

3


