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Abstract. Mobile platforms combined with large databases promise
new opportunities for mobile applications. However, mobile computing
devices may experience frequent communication loss while in the field.
In order to support database applications, mobile platforms are required
to cache portions of the available data which can speed access over slow
communication channels and mitigate communication disruptions. We
present a new prefetching technique for databases in mobile environments
based on program analysis. SPREE generates maps of a client program’s
use of structured data to be used by our prefetching runtime system. We
apply SPREE in the context of mobile programming for object struc-
tured databases demonstrating an effective way to prefetch/hoard over
unreliable networks with speedups up to 80% over other techniques.

1 Introduction

Mobile platforms are everywhere. As these devices permeate our lives, we ex-
pect more integration and combined utility with traditional computing. However,
mobile environments differ greatly from traditional environments in many ways.
Low bandwidth, limited power, and poor connectivity are some of the challenges
faced by designers of mobile systems. Emerging mobile database applications,
such as mobile Geographical Information Systems (GIS), are especially difficult
due to their large data requirements and expectation of consistent communica-
tion. In particular, scheduling limited resources for demanding applications over
inconsistent communication links is especially difficult.

Resource scheduling is one of the fundamental problems faced by designers of
any system, but it especially critical on smaller platforms. Knowledge of the fu-
ture is the key to efficient scheduling of resources. In this paper, we focus on the
prefetching or hoarding of data over unreliable links. Knowledge of future events
can come from diverse sources, but has been traditionally in the form of pro-
grammer annotations or analysis of past events. Programmer annotations can be
difficult to construct and may be error prone. Past behavior is not always avail-
able nor is it always a good indicator of future behavior. However, the knowledge
of future access patterns is present in the client programs that use the database
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system. In recent years, there has been an increasing interest in object database
languages with the acceptance of object-oriented and object-relational database
systems. These systems already reduce the “impedance-mismatch” between the
program code and data storage often experienced in traditional SQL environ-
ments. Emerging complex data languages such as JDO [28], OQL [23] provide
new opportunities to explore the benifits that program analysis can bring to
traditional databases.

Our model consists of clients accessing structured data over unreliable links.
Our prefetching approach (SPREE: Shape-assisted PREfetching Engine) is based
on the program code itself. While the stored object structures in a remote
database may be complex, only those objects actually referred to by the program
will ever be accessed. By accurately determining what objects will be accessed
by a program and prefetching only those objects before a disconnection, we can
alleviate or eliminate the effects of the disconnections. In order to determine
what future accesses a program will make, we use compile-time shape analysis.
Shape analysis produces a shape graph for a program point, representing the
way the program traverses program data structures after the program point. A
shape graph is a directed graph with nodes representing runtime program val-
ues and edges representing program field references from those values. The shape
graph is generated by symbolically executing the program code and adding edges
for each access. At runtime, the server generates the set of prefetchable objects
periodically based on client parameters. In order to determine the set of likely
objects for a particular program point, the server is signalled with the client’s
program point and syntactically visible object references. The prefetcher uses
these references and the method’s shape graph to determine the set of possible
future references.

The contribution of this paper include the introduction and analysis of a
new prefetching technique for mobile computers based on shape analysis. This
technique uniquely removes both cold misses as well as other cache misses as
compared to other techniques. Cold misses are especially critical when the overall
cache miss rate is already low or when communication blackouts are common.
Our technique is applicable to mobile database applications that are trying to
operate over faulty channels or where hoarding is critical to the application. We
demonstrate the technique with extensive simulation over faulty communication
channels for a variety of benchmarks. We show SPREE is useful for hoarding
with speedups between 9% and 80% over an infinite cache, and also demonstrate
the system with intermittent connectivity where we show speedups between 2%
and 80% over a recursive object prefetcher. We also examine several techniques
to reduce the overhead of prefetching both on the client side and on the server
reducing both the computational load and bandwidth utilization.

2 Previous Work on Prefetching

Past research in prefetching has spanned from memory cachelines to file systems
and web-pages to object databases. Most previous prefetching research has been



concerned with reducing latency. However, prefetching for mobile platforms is
mostly concerned with the ability to continue to do useful work while the pro-
gram is in a disconnected state. This is sometimes referred to as hoarding. Under
these conditions it becomes of primary importance to have the data available for
further processing.

Several systems have attempted prefetching/hoarding of complete files for
mobile disconnected systems. The CODA file system [18] provides “hoarding
profiles” which augment the usual LRU replacement policy for caching files. The
profile allows the user to manage the local file-system cache by manually attach-
ing priorities to certain files and directories. The cache manager combines the
current priority of a cached object with its hoard priority and some function of its
recent usage. Low-priority objects are reclaimed when needed. The SEER [20]
system provides an automatic predictive hoarding system based on inferring
which files would be used together. In the SEER system, a system observer
tracks file references (open and closes). File references patterns are monitored to
create a semantic distance, which is used to create clusters of related files. Both
use past behavior in order to prioritize or create prefetching schedules for files.
Our technique determines the future access patterns of object-oriented systems
and uses the program code itself to create the schedule.

Prefetching techniques for object oriented systems can be broken into three
main categories: history-based, attribute-based, and code-based. History-based
techniques monitor the user and/or program’s access patterns and prefetch ac-
cording to past behavior. Attribute-based techniques allow the programmer to
mark a class of needed runtime objects. Code-based techniques are generally in
the form of a prefetching runtime in conjunction with explicitly placed prefetch
calls. Approaches to data availability for databases have included full replica-
tion, application specific partitioning, and object clustering based on past be-
havior. The full replication approach [24] has a high overall cost in terms of
duplicated space. Thor [10,13] provides a distributed object-oriented database
system where an Object Query Language could provide object navigation and
allow for hoarding queries to be executed by the application. Phatak [25] con-
sidered hoard attributes to be attributes that capture access patterns for some
set of objects. In both cases, it was up to the user/programmer to determine the
needed query and/or set of attributes. Another approach, prefetch support rela-
tions [11], provides precomputed page answers in order to support prefetching
from an object-oriented database. Rover [16] uses application specific partition-
ing. The application designer must specify which objects are to be placed on
the mobile node. In these systems, the user or designer must classify objects
into prefetchable groups. Knafla provides an extensive review of prefetching for
object oriented databases in [19]. His work focused on analyzing the structure of
object relationships and past workloads in order to predict page access patterns.
SEOF [1] is a page level predictor that uses a two-level queue to filter object
scans from the prefetcher. The first level queue tracks objects that would cause
a page miss. Once the queue threshold is reached any missing object from the
page will cause the entire page to be prefetched. Our work differs in that our



technique is an object level predictor (not dependent on the quality of object
clustering) and does not require historical data to determine object relationships
but deduces them automatically from the code.

Cahoon and McKinly [5] examine dataflow analysis for prefetching object
structures for Java. This works resembles our work, but is targeted to speeding
up scientific applications and uses a different technique. Our method can be
seen encompassing theirs by limiting lookahead to at most one reference and is
focused on supporting disconnections instead of redcuing memory latency.

3 Program Analysis for Prefetching

Shape analysis [14] is a program analysis technique based on an abstract in-
terpretation of a program to determine the “shape” of possible runtime data
structures. Shape analysis produces a set of shape graphs for a program point,
representing the way the program traverses program data structures from that
particular point. A shape graph is a directed graph with nodes representing
symbolic abstract runtime program values and edges representing program field
references from those values. The shape graph is generated by symbolically ex-
ecuting the program code and adding edges for each access.

Shape graphs have previously been used to determine static properties of
programs and for many compile time optimizations including removing synchro-
nization primitives [3,26], parallelization of codes [8], and type safety. Other
uses include null analysis, pointer aliasing, cyclicity detection, reachability, and
typing [12, 22, 29].

class Connector{
Part partA, PartB; ... }
class Part {
Connector left , right, up, down;

Material material;

Supplier supplier ; /\
partB

Cost cost ;

int volume (); } right connector

1: weight = 0 W
2: while (part != null)

3: weight += part.material . density

4: * part.volume ();

5: connector = part.right;

6: if (connector)

7: part = connector.partB;

Fig. 1. Code and shape: only items used in code (part,material) are in the shape
In order to understand what a shape graph is, we present a typical program

fragment of integrated databases in Figure 1. The shape graph shown on the
right of the figure represents the code lines on the left. It navigates the database



in order to weigh the elements. While the database may be large and have a
very rich object structure, many programs may use only part of that structure.
The example code uses only the material,and right fields of each part in the
database ignoring the cost and supplier among other fields. The access pattern
is also revealed in the fact that the code fragment iterates through a list of part
using the right field. In the graph, the node (part) is used to represent the
values of the variable part which access connector through the field right.
The runtime value part.material is shown in the shape graph as AL. The cycle
part through the field right to connector through partB and back to part
contains the needed loop information from the original code. In order to be
completed, the volume method would need to be analyzed and merged with the
shown shape.

3.1 Analysis and Graph Construction

Our analysis is summarized as follows: We extend the well-known shape analysis
with the addition of a single parameter representing the earliest time the pro-
gram could follow a pointer. This value will be used by the runtime system for
scheduling. In more detail, the abstract state of the program can be represented
by a mapping of program variables M to abstract runtime locations and an ab-
stract heap H representing the interconnections between the abstract runtime
locations.

A program variable v can point to a number of heap location at runtime.
During shape analysis, we work with a set of abstract locations. The set of
abstract locations R, will contain those locations determined by the analysis to
be reachable through object manipulations.

The abstract state M is a mapping of program variables to abstract run-
time locations M € P(Varx, R,) where Varx is the set of program variables.
As we are interested only in object interrelationships, M will contain only pro-
gram variable names that are pointer variables. Let H represent the state of the
runtime heap. The heap will capture the object interrelationships and allow a
simple graph representation. The abstract heap, H, is a set of tuples of the form
(R, Ry, f,rw,l) where both R,, and R,, are sets of abstract locations, f is some
field name from the program (i.e., the expression X.f occurs in the program).
rw has the value of either r or w, depending on whether the edge is the result of
a field read or write, and [ € N is earliest expected access of field f in terms of
program intruction count. For example, in Fig. 2, M contains the pair (a, R,),
and the heap H contains the tuple (R, R., f,7,10). A shape graph is a set of
program variable mappings (M), combined with the abstract heap H in a tuple
(M, H).

Shape graphs are created and extended by simulating the actions of the pro-
gram through abstract interpretation, which creates and connects heap tuples.
Simple program actions, such as a field access instruction, create heap tuples.
When two variable are determined to point to the same abstract location, we
unify their heap representations. Unification is a recursive operation that begins
with unifying the abstract locations and continues by unifying the compatible



heap tuples that stem from the originally unified location. Given two abstract
locations, R, and R} that are to be unified, we first unify their abstract locations
and then recursively unify their compatible tuples in the heap.

We say that two heap tuples may wunify when they belong to the same
shape graph and they have a common field access. In other words, two tuples
(Rq, R, f,rwn,1) and (Ry, Ry, g,rw2, m) are unifiable if f = g. Note in Fig. 2
that R, and R are unifiable as they both have a common field F'.

We define a unification operation (L) over the tuples of H as follows: Given
tuples t, = (Rq, R, f,rwq,1) and t, = (Ry, Ry, f,rws, m), we have t, Uty =
{(Ra U Ry, R, U Ry, f,rwy U rwp, min(l,m))|} U {te Uty }. Note that rUr =
r,w U w = w,r Uw = r. Also note that the operation will recursively find and
unify compatible tuples of unified abstract locations. Finally, let T, be the set of
tuples that emminate from the abstract location R,. The unification operation
U is defined over sets T, and T, as simply the union of unification of their
constituent tuples.

We define the unification of program variables in terms of the unification of
their respective abstract locations:

alb=R,URy
= (Ra Uar Rb7 Ra Ug Rb)

M \{(CL, Ra)v (ba Rb)}
U{(a, Ry U Ry), (b, R, U Ry)}

R,Ug Ry=H \{Ta U Tb} U {Ta [ Tb}

Ra Uns Rb =

A graphical example of the unification process is shown in Fig. 2. The process
begins at the root of two different shape graphs. First the abstract locations
R, and R; are unified, then the common edges of the graphs are unified. The
expected access time is the minimum of unified edges. The R/W field has not
been shown. The resulting unification leaves a new shape graph in heap.

Fig. 2. Unification of graphs: Common edges are recursively unified and contain the
earliest expected access

Our dataflow analysis ranges over all labelled program statements S. Given
the control flow graph of the program flow(S), we define the analysis based on
a set of transfer functions f;°4 mapping a set of shape graphs to another set of
shape graphs. ¢ is the initial shape graph (an empty heap).



_ J¢  when s =init(5)
SGin(l) = {U{SGOM(Z’)KZ,Z’) € flow(S)}
5Gou(l) = [P (5Gin (1))

We define the set of transfer functions f54 below. We are interested only in
field operations and variable assignments of pointer variables.

1. [a = b]' Assignment: Unify the two variables.
SG=alUb

2. [a= x.f]l Program variable a takes the value of a field read: create a new
heap tuple and unify the variable with the field.

SG(H) = SG(H)U (Ry, R}, f,r,1)
SG=alua.f

3. [x.f = a]l A field write takes the value of program variable a: create a new
heap tuple and unify the variable with the field.

SG(H)=SG(H)U (R, R, f,w,m)
SG=alx.f

4. [z = new T]' Allocation site: create a new abstract location in the heap.

SG(M) = SG(M) U (z, R)

The static call-graph is used to drive the interprocedural analysis. The call-
graph is partitioned into strongly connected components (SCC), then topologi-
cally sorted so that leaf methods are analyzed first. The method contexts (locals,
globals, return value, and exceptions) for each method are propagated bottom-
up through all possible call sites. Note that all future objects will either be linked
from syntactically visible variable or a global. The shape graphs are propagated
from callee to caller during this phase through the unification of shape graphs.
Method call-sites force shape-graph unification of the caller’s actual parame-
ters with copies of the callees formal parameters. This allows the analysis to be
context-sensitive as the caller’s shape information is not mixed into callee. We
lose this sensitivity for methods belonging to the same SCC (mutually recursive
methods) as all methods will share a single shape context. We also “boost” global
variables into the callers callframe so that we may prefetch structures referenced
by global variables in later callframes as early as possible.

Object-oriented languages usually permit dynamic dispatch at runtime. This
implies that in many cases the actual method receiver cannot be determined at
compile time. We further unify all possible target method graphs into the caller’s
graph causing more uncertainty in the graph. Rapid Type Analysis [2] is applied
to each call site in order to reduce the number of possible targets for each call
site. This method has been shown to greatly reduce the expected number of
target methods with little cost.



3.2 Prefetching at Runtime

In this section we present our prefetching algorithm, which is based on the shape
analysis of the previous section. In order to prefetch at runtime, the algorithm
uses both an actual runtime value combined with the shape graph for the asso-
ciated program point. Prefetching can be done either at the client side or the
server side. We have chosen to investigate server side prefetching, though the
techniques are also immediately applicable to the client side.

From any point in the program, we can follow the associated shape graph to
generate a set of the possibly accessed objects in the database. Given an actual
runtime object and the program point’s associated shape graph, we generate all
actual objects that might be accessed before the next prefetch point. Currently,
we generate shape graphs for all method entry points. Each shape graph repre-
sents how the method will manipulate structures referred to in the future by its
visible references (the object, arguments, globals) in the method body and its
sub-method invocations.

The client programs are automatically instrumented to signal the prefetching
runtime at appropriate points. We permit prefetching to occur only at method
entry, however this choice was arbitrary. Finding more precise prefetch points
could be an interesting avenue of future research. Having an arbitrary number
of prefetch points must be balanced against the cost (size) to maintain shape
graphs for those points. This will be further discussed in section 4.1.

/* Input: An initial object o
A shape graph root ) x/
Queue ServerPrefetch (Object o, SGNode sgroot )
PriorityQue search
Queue fetch
Set seen
int distance = 0
SGNode sgnode = sgroot

search.push ( [o, sgnode, distance] )
while not empty search
[o, sgnode, distance] = search.popmin ()
if not seen.contains ( (o, sgnode) )
seen.add ( [o, sgnode] )
for each edge e of sgnode
next = access_field (o, e.field);
search . push ( [ next, e.target, distancete.dist | )
fetch . push ( next )
return fetch

Fig. 3. Prefetching algorithm for iterating over shape graph and object graph




At runtime, the client is responsible for sending initial object references and
a program location (usually the name of the currently executing method) to the
remote store to allow prefetching. The frequency that the client requests are
sent over the link and the time spent processing prefetched objects represent the
entire overhead of the client.

The server is responsible for interpreting the shape graphs of the program
based on the values sent by the client. Upon receiving a prefetch request, the
server will walk the shape graph with a real object reference (o) and an initial
abstract location (rv) representing the root of the shape graph. Our pseudocode
for a single object reference is represented in Fig. 3. The algorithm traverses
the object graph based on program’s field accesses represented by the shape
graph. We search through the object graph in a breadth-first manner based on
earliest expected access through the field. The computational cost of prefetching
equals the cost of interpreting the shape graph over the input object graph. The
prefetcher ensures that the pair (o,rv) is visited at most once in order to prevent
infinite loops. Array objects are broken into the objects contained, each object
being given an equal probability of access. Combining our object prefetcher with
array prefetching techniques may prove valuable.

4 Experimental Setup

In this section we discuss our analysis and simulation model. Our analysis and
simulation are written in Java. Shape analysis is particularly effective when
used with the rich type structures often employed in object oriented programs.
The analysis is a whole-program analysis that runs completely at compile time.
Our analysis interprets the Java code at the byte-code level and can work for
libraries even without program source code. We use a conservative model of
dynamic class loading by loading all available classes in order to perform the
analysis even when Java reflection is used. A simple class-pruning technique by
Bacon [2] is used to limit the examined classes. The prefetcher does, however,
assume that the class libraries at runtime are the same that were used during the
analysis. This restriction could be removed by always performing the analysis at
load time. Bogda [4] has investigated providing incremental shape analysis for
Java. We would expect in a real system with an optimizing JVM would perform
the analysis during loading where the shape analysis could also be used for other
compiler optimizations. The result of the analysis is a set of shape graphs for
the static prefetch points. The runtime system may not necessarily use all the
graphs available, but may choose which points are the most profitable.

Fig. 4 shows our model of computation. The local cache represents the lim-
ited local storage of the mobile computing device which accesses data from a
larger remote store. All program accesses are checked and allowed only through
the local cache. Those references that are not available from the local cache are
obtained from the remote store through a simulated communication link and
placed in the local cache before the program is allowed to proceed. Commu-
nication is modeled as a single communication line between the program and
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Fig. 4. Program model: programs access memory through a limited cache. The cache
communicates with the heap over an unreliable link

the object repository with a fixed latency and bandwidth per experiment. At
specific program points, the client signals the prefetcher, which repopulates the
local cache. Both accessed objects and prefetched objects use the same channel.
We simulate disconnections by periodically interrupting access to the repository.
While disconnected, any object reference not found in the local cache must wait
for reconnection. The communication time for shape graphs is not included in
our simulation, as we expect that the shape graphs are likely to to be stored in
the remote store, or communicated only once per program connection time.

For the simulation, each benchmark was instrumented to call the runtime
system at all object reference instructions. This allows the simulator to capture
all memory references described above. The client code was also instrumented to
initiate prefetching on the server at method entry. Disconnection delays are sim-
ulated with disconnection events. The disconnection events are exponentially
distributed (Poisson process), with each disconnection lasting a Gaussian dis-
tributed period of time. An object reference not found in the local store is forced
to wait the entire remaining disconnection period. Communication costs were
modeled by adjusting to the total runtime of the program by the time spent
waiting for objects.

4.1 Benchmarks

We instrumented the programs shown in the first column of Tab. 1. We used the
object-oriented benchmark 007 [7] that had been recoded as Java for our study.
Though not originally database applications, we adapted several SPECJVM98
to provide wide variety of programming styles: jess is an expert system shell, db
is a small database, and mtrt is a multi-threaded raytracer. Other SPECJVM98
Benchmarks compress and mpegaudio were omitted due to their integer nature
and small number of objects. Our experiments needed access to the source code
in order to adapt the code to use a simulated database, we therefore also omitted
javac and jack. The benchmarks were modified (one additional source line) to
clear the local cache once the internal data structures had been constructed.
This allowed our simulation to initialize the external data storage, clear the
local cache and restart as if it was operating on an external data source.

Tab. 1 shows the total number of classes examined, the number of classes
instrumented, the methods instrumented, the number of graphs, and the size of
the resulting Java serialized graph structures. The analysis time was considered
negligible as all benchmarks were analyzed is less than 2 seconds on a Pentium



Table 1. Analysis : classes examined and instrumented, methods, # shape graphs, size
of graphs, Runtime: objects initialized and used

Analysis Runtime
Name|total|classes|methods|graphs| size||Allocations Initialized| INF|SPREE
007 650 35 73 173| 88K]||266240 228535|107550 1
jess (1921 151 623| 1910(1308K||26435 11196 1182 27
db 1771 3 28 119| 41K]||542 528 51 1
mtrt 1823 57 157|553 206K]{209630 179527 2498 3

466 Mhz. Note that our analysis has been optimized for neither size nor speed,
but these figures show that both costs are quite small.

4.2 Simulation Parameters

We measured time in our simulation as a function of the total number of the
memory accesses that the program had made. This is reasonable, as few programs
spend the majority of their time computing solely in registers [27]. We tested
our use of program-accesses-as-time by accurately measuring the time between
groups of accesses for non-prefetching programs. Tab. 2 shows that accesses do
actually follow a regular, constant pattern. Both 007 and mtrt had no console
output and were very stable. Fig 5 shows the the interval time for blocks of 5000
accesses across the entire program run for 007. Though not exactly constant,
it is quite stable meaning that time can be measured by simply counting the
number of accesses for this benchmark. The time vs. accesses graphs jess, db
and mtrt were also similar.

We used an average object size of 64 bytes, over a 10 Mbit communication
link with <1lms latency. The client cache was limited between 10% and 100%
of the working set and the server lookahead was limited between 16 and 1024
objects.

° 6000 [~
£
= 5000 |-
S
% 4000
" 000 Table 2. Measuring time using memory ac-
cesses
2000 Name|Accesses|{sample| min| max|mean| med|dev
1000 007* | 2547836| 5000 981({8069| 1109|1058|382
o jess | 304901 500| 66|{1060| 164| 134| 96
db 3982 50| 122116 79| 26|295
007 Program phase (in 5000 access blocks) mtrt*| 1212727 5000|{1483|7459| 1931|1767|565

Fig. 5. Time for groups of 5000 accesses:
a stable value implies that accesses can be
used to measure time
The prefetcher runs periodically while the program is running. In order to
be effective, we expect the prefetcher to capture groups of objects that have




not otherwise been accessed previously. Fig. 6 shows two histograms of cold
misses without prefetching vs. time. As seen in the graphs, the clustering is both
program and program phase dependent. The histograms show 007 on different
time scales. The graphs reveal a self-repeating fractal structure; determining
the expected clustering parameters warrants further study. However, there is a
phase-dependent clustering of cold misses, and periodically prefetching should
work well if we prefetch during periods of calm.
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Fig. 6. Cold misses vs time: clustered cold misses provide prefetching opportunities

We examined the performance of SPREE under varying conditions in order
to test its effectiveness and compare it to an infinite cache, a standard LRU
cache, and a simple recursive prefetcher. In our experiments, we varied the fol-
lowing parameters: disconnection frequency (mtbf), duration of disconnection
(mean), the size of the local cache (cache size) with respect to the entire repos-
itory. Several parameters were used to control the frequency vs. accuracy of the
prefetching: The first group of parameters controlled how often the prefetcher
was signalled by the client reporting its progress. Clients were responsible for
keeping the repository up-to-date in regard to their progress and currently ac-
tive objects which drive the prediction process. In this group, the frequency of
prefetching invocation (interval) controls the number of method invocations be-
tween prefetch requests while callheight controlled the maximum level of the call-
graph that prefetching would occur. On the server side, at each prefetch point,
the maximum number of prefetched objects collected from the object graph was
controlled through the parameter lookahead. Unless specifically mentioned, our
standard interval was 1, the lookahead was 64 objects, the cache 10 % objects of
initialized objects, and the mean communication failure cost 5000 accesses (or 1
ms over 10 Mbit links).

5 Experimental Results

We first examine our prefetcher without regard to caching issues to better un-
derstand the parameters affecting the pretching accuracy and overhead. We then
examine the prefetching under memory contraints and compare it to the recur-
sive object prefetcher.



In order to determine the accuracy of the SPREE, we examined an infinite
cache with infinite lookahead. Once an object has been seen, it will be cached
for the lifetime of the program. As mobile devices become more powerful and/or
for small programs, this is a realistic model. We expect the prefetcher to reduce
or eliminate the number of cold misses suffered by the program.

In Tab. 1, we show the total number of allocated objects created during the
entire run (Allocations), the objects created during initialization phase (Initial-
ized), which approximates the size of the external store, the cold misses with an
infinite cache/no lookahead(INF) and the cold misses with an infinite cache/in-
finite lookahead(SPREE). The small number of prefetcher(SPREE) misses are
objects initialized by the JVM and therefore seen by neither the prefetcher nor
the reachability analysis but accessed during the program.

Disconnection time will adversly affect execution time. In order to gauge the
effect of longer disconnections, we varied the mean duration of a each discon-
nection in Fig. 7. The graph shows relative running of SPREE compared to the
normalized running time of INF. The cost was measured in terms of the running
time of program plus the time program spent waiting for objects not available
in the cache during the disconnects. We varied the mean disconnect period from
500 to 10K accesses (approximately 100 psec to 2 millsec over a 10 Mbit link) .
In real communication systems and modern processors, failures could last much
longer than 10K accesses; however, we decided to use a conservative estimate
and simulate a somewhat faulty link. Under these conditions, we were able to
achieve increasing speedups. As the expected length of disconnection increases,
each missed object has a greater effect on the overall running time.

Legend

500
1000
5000
10000

Legend

Runtime(normalized INF)
Runtime(normalized INF)

Mean disconnect Lookahead

Fig. 7. Varying mean disconnect period on Fig. 8. Varying lookahead on running time
running time

The server side parameter, lookahead, specifies how many future objects the
prefetcher will try to gather and is directly related to the server overhead. As
the lookahead grows, so do inaccuracies due to uncertainties in the shape graph.



By limiting lookahead, we should be able to both reduce inaccuracies and reduce
server overhead. However, limiting lookahead also affects how far into the future
we are exploring. If the expected disconnection period is long, then the program
might benefit from greater lookahead.

In order to see how a changing lookahead would affect the quality of our
prefetching, we examine the benchmark jess with several different lookahead
values. Fig. 8 shows that increasing lookahead between 16 and 1024 objects can
reduce overall running time. As expected, increasing the lookahead decreased the
number of misses (both while disconnected and cold), while decreasing the total
running time. Increasing the lookahead should allow the prefetcher to gather
more objects earlier, reducing both the cold misses and the overall running time.
However, lookahead follows the law of diminishing returns. Most of the missing
objects have been found with a lookahead of 64, and that after this point, the
prefetcher collects many unused objects. We note that the prefetcher could rarely
see more than 64 future objects for all benchmarks.

5.1 Prefetching with Constrained Memory

So far, we have examined prefetching by itself, without considering its impact
on the reduction of the program’s available memory. In this section, we examine
the behavior of the prefetcher when integrated with a fixed local cache. Previous
studies [6] have shown the need for an integrated prefetching/caching strategy.

We compare an infinite cache (INF) with pure LRU and with prefetch-
ing/LRU. The client places objects into an LRU cache marked with the actual
prefetch time. In this way, all prefetched objects will be newer than all currently
stored objects, but will not keep newly accessed objects from entering the cache.

With small lookahead we saw increasingly good performance with increasing
cache as seen in Fig. 9. However, aggressively prefetching can be detrimental as
it may pollute the cache with future references. Fig. 10 examines the effect of the
limited cache on running time by allowing the prefetcher to replace a proportion
of the cached objects on each prefetch attempt. Under very limited cache (10%)
and high lookahead (1024), cache pollution resulted in worse performance than
standard LRU in several cases (db, mtrt).

We examined a heuristic technique that suggests ignoring prefetches near
the bottom the static call-graph might improve the overhead. In Fig. 11, we ran
each benchmark with a cache limited to approximately 10% of the initialized
objects. Limiting prefetch requests to the upper part of the static call-graph did
not adversely affect the efficiency of the prefetcher, while lowering significantly
the overhead (see Tab. 3). The number of calls made to the prefetcher drops
signifigantly after just pruning the leaf procedures.

Another possibility to reduce the overhead of the prefetcher was to disable
prefetching where the results of the prefetching were data dependent. For exam-
ple, prefetching a single call to a retrieve function on a hash table would return
the entire hash table as all elements are equally likely. Currently these program
points are culled by limiting the lookahead.
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In our last experiment we compared our prefetcher with a simple recursive
prefetcher that prefetches the next level of outgoing object links. This prefetcher
design uses the naive strategy that if an object is accessed, then it is likely
that one of its neighboring objects will be accessed next. Though simple, this
technique has been applied to context specific web-prefetching i.e. sending all
embedded image links when a specific web page is requested.

Table 4. SPREE(S) vs. REC(R) prefetcher with disconnections. Time overall and
bandwidth utilization

overall idle|prefetch|transfer| avg
007-S |214344116 2049 3620|4344689| 488.0
007-R 219476192 3470| 540640{3935439| 485.5
jess-S| T770056K| 231626 64345 28018| 982.1
jess-R| 845066K| 290432| 14343| 20878|2890.5
db-S 561109 3722 230 354(9442.8
db-R 686062 3542 396 510(7578.6
mtrt-S 31135K|1135043| 67030| 27580(3162.7
mtrt-R| 56079K|1152618| 44000/ 37630({6721.4

We compared our prefetcher to a recursive prefetcher in Tab. 4 with dis-
connections lasting approximately 1 second (5M accesses). While the number
of disconnections experienced by the applications was small(<20), the effect
on overall runtime was great. SPREE was able to provide speedups between
2% and 80%. Bandwidth utilization for 007, mtrt and db were comparable for
both techniques, while jess used considerably more under SPREE. Upon exam-
ination, the majority of prefetchable objects for jess were not used due to its
dynamic nature(rule engine). Decreasing bandwidth utilization for very dynamic
programs will be the subject of future research. The 007 benchmark was I/O
bound, most prefetch were converted to standard transfers as they were needed
almost immediately.
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In summary, our experiments demonstrate SPREE to be an effective and
accurate prefetcher under a variety of conditions. When operating under few
memory constraints, we are able to prefetch far into the future accesses of a pro-
gram effectively hoarding data for future use when disconnected. When operating
over noisy or unreliable links, SPREE smoothed out these short disconnections
(< 1 ms) providing significant speedups over non-prefetching systems depending
on the rate and duration of disconnections.

We also examined several parameters to control overhead both on the client
and on the server of the prefetcher. While no single parameter was best for
both memory constrained/limitless devices, controlling the prefetcher interval
was effective for limited memory devices while pruning by call-height was more
effective for limitless memory. On the server side, we determined that lookahead
between 16 and 64 was best over our set of benchmarks. We compared SPREE
to a recursive prefetcher that also required no prior training. When operating
with disconnections, SPREE was able to improve between 2% and 80% over a
recursive prefetcher.

6 Future Work and Conclusions

We have introduced SPREE(Shape-assisted PREfetching Engine), a new method
of accurate prefetching and/or hoarding for object programs operating on databases.
Data-flow analysis is used to create static reachability graphs for use at runtime.
Compared to other prefetching techniques, SPREE reduces cold misses the very
first time the program is run and is accurate. While other prefetchers often
must be trained in order to perform well, our technique also is applicable to
dynamically constructed data structures, for which training is impossible.
Combining the shape graph technique with statistical models [9, 17, 19] based
on past behavior may improve the accuracy of the prefetcher in a similar way



that statistical branch prediction has been successful for instruction prediction.
Shape-graph prefetching may be applicable to the work on smart memories [15,
21] in order to reduce memory latency for pointer based programs. Smart memo-
ries allow simple code to be executed at the level of memory by placing memory,
a local interconnect and a processor core on a single memory chip. As our graph
interpretation algorithm is quite simple, program information could be preloaded
allowing the memory to calculate the future memory references.

Our technique is applicable to mobile distributed databases and other appli-
cations. We have examined the technique on several benchmarks using a simu-
lated communication system with disconnections. Results show speedups upto
80.8% in the presence of disconnections over competing techniques. SPREE is
unique in that we can support large lookaheads and eliminate cold misses with-
out training.
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