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Abstract. Programmers have come to expect better integration betskstabhases
and the programming languages they use. While this trentine@s unabated,
database concurrency scheduling has remained blind todlgegms. We propose
that the database client programs provide a large untapedriation resource
for increasing database throughput.

Given this increase in expressive power between programmaed databases,
we investigate how program analysis can increase dataloaserrcency. In this

paper, we demonstrate a predictive locking scheduler figobbatabases. In par-
ticular we examine the possibility to predict the client&ewf locks. Given ac-
curate predictions, we can increase concurrency throud leak release, per-

form deadlock detection and prevention, and determine vendocks should be
granted before or during a transaction. Furthermore, weodstrate our tech-
nigues on the OO7 and other benchmarks.

1 Introduction

The problem of transaction and lock scheduling is the mastiémental problem in

concurrency control in databases. Finding the optimaldelees known to be an NP-
hard even for the offline version of the problem when all eséne., transactions) in

the system are known in advance [16]. Furthermore, ther® igemeral-case online
algorithm that would approximate the optimal offline sautivithin some small bound.
Yet, in many specific cases of the systems that exist in pegtiis possible to design a
scheduler that takes advantage of the information aboutdutansactions, producing
a more efficient (even though non-optimal) schedule.

Knowledge of the future is the key to efficient schedulingaxfources. This knowl-
edge of future events can come from diverse sources, butdestbaditionally in the
form of programmer annotations. Programmer annotatibiesigh used, are in general
difficult for the programmers to construct and are likely daror prone. Therefore,
most systems have adopted an overly conservative view aun@sno knowledge of
future requests.

However, the knowledge of future access patterns is préséné client programs
that use the database system. In recent years, there haam@®reasing interest in
object database languages with the acceptance of objecit@d and object-relational
database systems. These systems already reduce the “imcpeidsmatch” between
the program code and data storage often experienced itidreadiSQL environments.



With the emergence of complex database interface languaggsas JDO [13],
OQL [15], and the use of complex types in databases that étite gap between pro-
gramming languages and data modelling languages, we exfilerbenefits that this
tighter integration brings. Our work takes a new approachhiaing program analysis
and object databases in order to extract information thihtwiuseful to the database
system. In this paper, we present new techniques for scingduhnsactions in object-
oriented database (OODB) management systems. The teehisiglso applicable to
Object-Relational databases provided that the query Eggis rich enough to warrant
analysis.

This paper’s main contributions are: deadlock handlingrwés based on the types
manipulated by the program, a technique that allows eadk telease in order to in-
crease concurrency, and a method to determine whethelttiors locks should be
preclaimed, e.g., before the transaction begins, or takaduglly during the transac-
tion.

In detail, we investigate the use of program analysis taaexinteresting properties
of programs that can be used by a database system. Our teetiniased on shape
analysis, a whole-program analysis that has previously us¢he compiler research
community to determine certain static program properiies.output of shape analysis
is a set of graphs representing the way a portion of a progangates and manipu-
lates its data structures. These structures allow the ds¢atystem to determine what
the client will do as it continues to execute thereby captyfuture knowledge of the
client’s object use.

In order to test our ideas, we constructed a benchmark gsiiiet ran experiments
with the standard OO7 benchmark set and with the prototypeaf reservation system
that we have developed. The paper shows the gain obtainedusing each proposed
scheduling enhancement in terms of the average executiendi a transaction and its
standard deviation.

2 Related Work

There has been a tremendous amount of work dealing withectina concurrency and
scheduling [3, 19]. However, schedulers in most databasters)s that exist in practice
do not attempt to predict. The main reason for this is twafa)cEliciting and collect-
ing information about future transactions is a non-trivadk, and b) Such predictive
schedulers would be highly specialized and tailored to tiquaar application.

Some database systems that attempt to predict based onstbeytof previous
executions, which is collected with profiling. In particylthis technique is commonly
used for query optimization in relational databases. Hangvstory-based prediction
is different from prediction that relies on program anaysvhile the former predicts
solely based on past workloads, the latter gives more mreofsrmation about the
future execution of the currently running transactions.

Many predictors have been demonstrated in practice. Moghasfe are based on
simplifying assumptions about how a program will accesa.dadr example, programs
often perform sequential reads from the disk. i.e. whiledieg a very large array.
For this reason, many disk drives automatically performidcbread-ahead. However,



when data is complex and accessed in a scattered way, sidleoitahead not be
appropriate behavior as we may read many unused pages.

Object-oriented programs can and usually do have complecbtructures. These
pointer-based structures make it especially difficult &dict what object(s) the system
will be using in the future. Though an important problentjditwork has been car-
ried out for predicting access patterns in complex poibtesed structures. Knafla [10]
demonstrates prefetching for OODBs using history-baselnigues. Cahoon and
McKinly [5] have examined a dataflow analysis for prefetchivbject structures in
Java. In contrast, our approach constructs a succinctgeptation of the program’s
access pattern and uses it to drive the prediction procesabiDing the program rep-
resentation with real data allows the predictive scheduolarfer the most likely objects
to be used by the program in the future.

3 Model

Our model encompasses the design of most existing middéessmstems for object
management. Clients may send requests to a server which chayer a set of ob-

jects that reside solely on the servers. An object servatsholultiple objects and the
database on a server consists of a set of root objects sudiltbéer objects accessible
from these root objects.

Multiple clients are allowed to access the server conctigrémoking server-side
transactions. During each transaction, the client mayeefse multiple objects on the
server. The database at the server includes a scheduledenetich is responsible
for maintaining the consistency of the transactions andottjects. In this work, we
consider both pessimistic and optimistic concurrencydmiodels.

4 Predicting Object Accesses and Execution Times based on&e
Graphs

4.1 Background

Shape analysiss a program analysis technique based on an abstract ietatipn of
a program to determine the “shape” of possible runtime datectsires. Shape anal-
ysis produces ahape graptfor a program point, representing the way the program
traverses program data structures from that particulartpéishape graph is a directed
graph with nodes representing symbolic abstract runtiragnam values and edges rep-
resenting program field references from those values. Tagesgraph is generated by
symbolically executing the program code and adding edgesdith access.

In order to provide intuition, we present a typical prograagiment of integrated
databases in Figure 1. The shape graph shown on the right éifitive is derived from
the code lines on the lett.

! The code is taken from the OO7 database [6]; it navigates dkebese of machine parts in
order to weigh the elements. However, the code semantiamaimportant for this example.



class Connectof
Part partA, PartB; ...}
class Part {
Connector left , right, up, down;
Material material;
Supplier supplier;
Cost cost;

int volume (); }
;/partB\
1: weight =0

2: while (part !'= null)
3: weight += part.material . density right

x part.volume (); aterial
connector = part.right; \\

4:
5:
6: part = null;
7
8:

if (connector !=null)
part = connector.partB;

Fig. 1. Code fragment and its shape graph: only items used in the(pade andmaterial )
are in the graph.

The example code uses only tmaterial  andright fields of eaclpart inthe
database ignoring theost andsupplier  among other fields. This is quite typical
for database programs: while the database may be large aedaheery rich object
structure, many programs may use only part of that strucfline access pattern is
also revealed in the fact that the code fragment iteratesigir a list ofpart using
theright field. In the graph, the nodeédrt ) is used to represent the values of the
variablepart which accessonnector through the fieldight . The runtime value
part.material is shown in the shape graph A&. The cyclepart through the
field right to connector throughpartB and back tgpart contains the needed
loop information from the original code. Note that thelume function may access
additional objects that are not presented in the shape graph

Shape graphs have previously been used to determine stapierties of programs
and for many compile time optimizations including removBygchronization primi-
tives [4, 17], parallelization of codes [8], and type saf@ther uses include null anal-
ysis, pointer aliasing, cyclicity detection, reachapjliand typing [9, 14, 20]. Use of
shape graphs for prefetching has been explored in our prewviork [11]. This work
adopts the shape graph structure and its constructionitdguthat are similar to the ex-
isting implementations. Yet, this is the first time to thettdour knowledge that shape
graphs are exploited for improving lock schedulers in ireisgd database systems.

4.2 Overview of the Approach

Our lock scheduling techniques that we introduce later ictiSe 5 rely on the esti-
mation of a) the set of objects to be accessed by a transaatidithe order of those



accesses, b) whether the access is read or write, and c) ¢hatmn time of a trans-
action during which a given object is accessed. In this sective describe how this
information is obtained by using shape analysis.

Shape graphs that capture the way in which the program’saccisses data, allow
us to follow the same datapaths that the original programavale in order to access
the data effectively predicting its future access pattéfmcannot follow the exact path,
as the code surely has data-dependent branches. Howeveapiige a unified view
of all program paths in the program’s shape graph. Whilerdssilts in a necessarily
conservative estimation (a superset which may be sevenaktiarger than the actual
set of accessed objects), it is incomparably smaller tharethire database, which can
be exploited to devise efficient lock schedulers.

Our implementation of shape analysis consists of two corapts compile-time
construction of a shape graph and runtime prediction, whggs the program’s access
pattern represented by the shape graph and the actual gjoggatt contained in the
OODB to generate the estimated set of future accesses amdretiuired information.
It is important to emphasize that deployment of these coraptandoes not require
rewriting the existing database programs: the constrogtiocess can be coupled with
the standard compilation process whereas the runtimeqgioedian be integrated with
the scheduler of existing OODB systems in a way that is traresy for the application.
Since shape graphs are small even for large programs, theaige does not require a
lot of resources and their runtime traversal is computatigreffective. Sections 4.3
and 4.4 provide further information about the shape analysplementation.

In this paper, we also define the type—shape graph which isetthection of the
shape graph to track the types and the access order of the ttygieare manipulated
by the program. The type—shape graph is used to determitietyf@e properties of a
transaction. The type—shape graph reduction is one-wénatrgiven a shape-graph, we
can construct a type—shape graph.

4.3 Compile-time Construction

The variant of shape analysis we are using is a whole-proglaminsensitive, context
sensitive data flow analysis and is similar in design to thm®sented in [4,17,11].
Previously shape analysis has been used to determinempierties of programs that
manipulate heap data structures. In this paper, we take el approach examining
how the results of program analysis can be combined with twveamintime to increase
runtime efficiency.

Shape graphs are created and extended by simulating tlomscti the program
through abstract interpretation, which creates and cdaradastract heap tuples. Sim-
ple program actions, such as a field access instructiontechexap tuples. When two
variables are determined to point to the same abstracidocate unify their heap rep-
resentations. Unification is a recursive operation thatrizegith unifying the abstract
locations and continues by unifying the compatible heafesifhat stem from the orig-
inally unified location. Heap tuples are compatible when dfstract locations have
similarly labelled incoming shape edges. Given two abstiamations, that are to be
unified, we first unify their abstract locations and then rsimely unify their compati-
ble tuples in the heap.



The construction of the shape graph in Figure 1 begins agwell The reference
to thepart in line 2 creates an abstract variable in the symbolic imttgtion of the
program. Line 3 creates the link from tpart abstract location to some unspecified
location AL) when the fieldmaterial  is accessed. Similarly, line 5 creates both the
abstract locatioonnector and the edgeight between them when interpreted.
Finally, in line 7 the edggartB is created due to the field access and the resulting
abstract location is unified to the originphrt because of the assignment. Line 4
contains a call to a sub-method. The analysis of the subadetiould be similar to
the one described above. After both methods have been adalye local parameters
passed to the method are unified with the formal parametetisebprocess described
below. Program actions causing unification are summarizddlle 1.

Method calls are combined in a bottom-to-top fashion. Th#cstall-graph is used
to drive the entire interprocedural analysis. The calldras partitioned into strongly
connected components (SCC), then topologically sorted.riithod contexts (locals,
globals, return value, and exceptions) for each methodrapagated bottom-up through
all possible call sites. The shape graphs are propagateddatiee to caller during this
phase through the unification of shape graphs. This alloaifalysis to be context-
sensitive as the caller’s shape information is not mixeal gailee. We lose this sensitiv-
ity for methods belonging to the same SCC (mutually recersiethods) as all methods
will share a single shape context [17]. In many cases theahatathod receiver cannot
be determined at compile time and this is a cause of uncértamirthe graph. Rapid
Type Analysis [2] is applied to each call site in order to reelthe number of possible
targets for each call site. For each target, the actual peteasare unified with a copy
of callee method context in the caller's method context. example, the method call
part.volume() in line 4 of Figure 1 generates a sub-shape graph based oypthe t
of part at runtime. This sub-shape graph is merged into the catierisext at the call
point. Since we cannot determine at compile time which roatiypepart will have,
we must unify all shape graphs from the target set.

Table 1. Statements causing unification of shape graphs and theateThe fieldsirray, formal
andreturn are special fields for array reference, method local andrretaues respectively.

Statement Abstract Location Description

X =y unify(AL(z), AL(y)) Assignment

x. field=y, y=x. field unify(AL(z).field, AL(y)) Field assignment

x = aJi], a[i] = x unify(AL(z), AL(a).array) Array assignmeqt

return X unify(AL(z), AL(m).return) Function return

v = f( a,...,an) Victarget(f)UNIfY(AL(a;), AL(t).formal(z)) || Invocation
Victarget (5)UNIFY(AL(v), AL(t).return

X =new T AL(z) =0 Allocation

During shape analysis, we decorate the shape graph wiithuaéts depending upon
how the shape graph will be used. For example, a simple agtetsthe basic shape
analysis described above labels each edge with value depending if the resulting
abstract location is the result a field read or field write afien respectively. During



unification, a read operation unified with a write results wrée otherwise the attribute
remains the same. This information can be used to statideftgrmine whether the
element could ever be the target of a write operation.

We also label each shape edge with the count of the first ahddasss instruction.
This value is calculated by examining the basic blocks ofttduesaction and finding the
minimum/maximum number of the instructions over all patkeded to access some
abstract location. This value will be used to determine thjea access order and assist
in determining the expected execution time as explaineléridgllowing section.

Type-shape graphs are constructed by merging edges of a ghaph. Edges on
which the end points have compatible types may be mergedn@®the analysis, ab-
stract location (shape edge endpoints) are labelled wittsét of types that they refer
to in the actual program source. Compatible abstract locatare those that have a
common super type in the class hierarchy.

The analysis must create shape graphs for the entire proggatascribed above.
However, we need to store only those shapes that will be baefuntime. At a min-
imum, we must store an entire graph for each top-level viiabthe transaction, in
which case the predictor will run once before the beginnifipe transaction. Further
graphs may be stored depending on how often the predictdaeps will be used during
the transaction. Each additional run will refine the pradictesults but impose certain
runtime overhead.

The shape graphs themselves may be stored either on theaiien the database
server. The shape graphs are quite small (usually no monesthaeral hundred nodes
per transaction) and need to be communicated at most ongegdhe entire client
session.

4.4 Runtime Use

The runtime system can be triggered in a variety of ways téopmrthe actual pre-
diction: either through programmer annotations or throaigtomatic identification and
instrumentation of transaction routines.

Upon entrance, the runtime interprets the shape graph lbgerdtual program data
generating the set of objects used by program. The runtigeritdim produces the
future accessed objects based on the shapes extractedhegonagram. Along with
each object to be accessed it also produces whether the chjede the target of a
write operation, the expected order in which the objectblvéilaccessed and finally the
time the algorithm needs to compute while accessing thectshje

Before a transaction starts, we can follow the associatagesgraph to generate an
unordered set of the possibly accessed objects in the dataBasen a transaction root
object and the program point’'s associated shape graph, merage all actual objects
that might be accessed during the transaction. Each shape grapheeizréew the
transaction will manipulate structures referred to in tineife by its visible references
(the object, arguments, globals) in the transaction body.

In our system, the database is responsible for interprétieghape graphs of the
client. Upon receiving a transaction request, the serviémalk the shape graph with a
real object database object. This effectively simulatepadsible program paths taken
during the transaction over the database.



// Input: An initial object o
/11 A shape graph sg)
I/l Return: A set of accessed objects
List DetermineObjects (Object o, ShapeGraph sg)
Queue search // Tuples of form (object, abstract node)
Set objects // Set of objects found
Set seen // Tuples (object, abstract node) already visitegd
push (o, root (sg)) on search;
while not empty search
(o, rv) = pop search;
if (o, rv) not in seen
seen = seenU (o0, rv);
for each edge e in adjacent edges of rv
next = read field e.toNode of object o;
push (next, rv.e.toNode) on search;
objects = objectsU next;
return objects;

Fig. 2. Algorithm to determine objects using shape graph and oljeqth
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Fig. 3. Shape graph and object graph: Objects are linked througisfeeid have been labelled
with expected access time using shape graph.

Our pseudo-code for walking the object graph is shown in féigu The algorithm
traverses the object graph based on program'’s field acceyzesented by the shape
graph. We search through the object graph in a breadth-faisher based on earliest
expected access through the field. Thus, the runtime cosedfqgtion equals the cost
of interpreting the shape graph over the input object graph.

The prediction walk is usually only done at the beginninghaf transaction. How-
ever, the runtime system is capable of re-running the wdlkther precision is desired
and the associated shape graphs are available as discusssrtion 4.3.

The basic algorithm outlined above returns a unordered fspbssibly accessed
objects. We have extended the above algorithm in severa way

Determine R/W attributes As described in the Section 4.3, a read/write attribute was
added to each shape edge depending on whether the edge at&sl drg a read/write



operation in the source text. The runtime algorithm was fiedito track these edges
and return whether, during the transaction, an objaghtincur a write.

While visiting a shape node-object pair, the algorithmlievaéd to visit all outgoing
shape edges. If any edge had a write attribute, then thetotgescthe target of a possible
write and was labelled as such.

Determine access orderWe modified the basic shape graph construction algorithm
to label each shape edge with a minimum number of basic ktgins passed through
while reaching the shape node. During unification, we foumedrhinimum of instruc-
tions over all paths before reaching a particular node.

While collecting the accessed objects at runtime, we miairitee number of in-
structions the code would take to reach the object. Each &dga increases the total
number of instructions needed to reach the object. Themntilgorithm was also
modified to use a priority queue in order to maintain a soritgtf objects in expected
access order.

For example, Figure 3 has a shape graph with each abstratidlomode labelled
with the count of the earliest access instruction. On thietrige show a database object
graph. The database objeatd (.06) have been labelled with their expected first access
time. In the example, Object5 was reachable both througdNJ with an instruction
count of 20, or simplyNJ with a count of 15. Note that it is possible that two objects
may have the same first access time. This occurs when a datadhsg branch in the
program code is merged together in the shape graph.

Determine expected execution timeWe measure the instructions contained in the
basic-blocks creating the longest path between field aese8y estimating the in-
struction time for these instruction sequences, we caneagi an expected time of
computation between accesses.

The object finding algorithm is modified again to keep trackhef maximum num-
ber of instructions to be executed during the navigatiohefdata structure. After visit-
ing the data structure guided by the shape graph, we estiheteimber of instructions
to completely execute the transaction. This techniquesgiveonservative measure of
the total time needed to execute the transaction by summiagall program paths.
Currently we model only execution time and do not take intooanit 1/0 costs. We
believe this is not too strict a limitation, as in this case target platform will have
gathered the expected objects into local memory.

In each case the graph generated at compile time will be us@uthe runtimeon
the actual datdo providing the runtime with knowledge of how the prograni act in
the future. The shape graph was annotated with aspects ahttgzed program which
would be useful to the runtime system. In our next section iseuss these methods in
detail.

5 Predictive Schedulers

The problem of transaction and lock scheduling is the mastidmental problem in
concurrency control in databases that attracted a vast minoduesearch [3, 16, 19].
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Yet, little work has been done on predictive schedulerss himainly due to the fact
that eliciting and collecting information about futurerisactions is a non-trivial task,
especially if this has to be done in a generic way that is ritresd to any specific
application.

Shape analysis is of great aid here as it can provide infeomabout the future ex-
ecution and needs of the currently running transactioris e¥ploiting this information
is far from trivial. This is because finding the optimal schkeds known to be NP-hard
even for the offline version of the problem when all events (transactions) in the sys-
tem are known in advance [16]. Additionally, there is no gafiease online algorithm
that would approximate the optimal offline solution withiomse constant bound.

In this paper, we seek not to devise a completely new schetuterather to en-
hance commonly used schedulers, such as 2PL [3] by takinandalye of the partial
future information that is provided by the shape analysis: &proach is to augment
existing OODBs with the prediction mechanisms of Sectiomd the scheduler ex-
tensions presented below. Specifically, we propose thiggrate enhancements of the
the 2PL scheduler: deadlock handling, early lock release aaaptive preclaiming. It
is important to emphasize that while presented separatelhyis paper for the sake of
clarity, in practice they are integrated into the same saleed

These techniques are particularly effective when locksaaese-grain because for
fine-grain locking, the runtime overhead of bookkeepingghtand only a small frac-
tion of the database is locked, problems such as data carieare rare, which does
not leave much to improve upon. However, fine-grain locksuamegsual in practice be-
cause most object-oriented database systems group olpjecpmges and assign locks
on per-page rather than per-object basis. In the presenjate assume for the sake of
clarity that each object has an associated lock. Yet, aligbleniques that we discuss at
the level of individual objects can be applied at the levadlgject pages.

5.1 Interaction between the Program, Scheduler, and Shaperfalysis

Transparency is an important goal in the design of intedrdtgabase systems as the
programmer would rather avoid learning a new programmindehand rewriting ex-
isting database programs. In the method we propose thegmuger only has to anno-
tate the program with statements indicating the beginnimbemnd of each transaction.
Typically, such statements already exist in an OODB progsarthat no programmer’s
effortis required at all. This information is used by both #ihape analysis, as described
in Section 4.3, and the scheduler.

All other information about the objects, transactions, lo#ts can be derived from
the program automatically. In particular, there is no splegiogram interface for re-
leasing locks. This is important because database syshahare enforcing some level
of transaction isolation, do not trust applications to askelocks. Yet, some additional
annotations may turn useful, e.g., to indicate that themmiseed to acquire a lock for
a particular object and to account for this object in shadyais. Since such (possibly
useful) optimizations are not essential for the methodpleg have developed, we do
not consider them in this paper.

The interaction between the scheduler and shape analysisniswhat more com-
plicated even though this complexity is hidden from the pangmer. To start with, they
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need to agree about unique identifiers for transactionsranddction types. Essentially,
the runtime shape analysis has to convey the informationtdbture object accesses of

a transaction to the scheduler. This is done by invokingrtlleUREACCESSESMethod
provided by the scheduler’'s API at least once for each titsg when the transaction
begins. It is possible that as the transaction proceedshiduge analysis will have more
precise information about future accesses and it will gdtie scheduler by invoking

the FUTUREACCESSESmMethod again. The number of such invocations depends on the
granularity of shape analysis as discussed in Section 4.3.

5.2 Deadlock Handling

In two-phase locking and other similar locking protocolsnsactions need to wait
when requested locks cannot be granted immediately. Thaet, af transactions, each
holding some locks and requesting an additional one, mayugnbeing mutually
blocked. Such cyclic wait situations are commonly knowd@adlocksThere are sev-
eral extensions of the basic two-phase locking protocohfordling deadlocks; those
can be broadly divided into two categories: deadlock diteetnd deadlock prevention
techniques. We now briefly describe the techniques and shavphogram analysis can
be used to enhance them.

Deadlock detection approaches attempt to detect the ddasitoation if it occurs
and then to break the cycle by aborting one or more transactithe detection algo-
rithms are generally based on the notion efaits-for graph(WFG), which is a graph
G = (V, E) whose nodes are the active transactions, and in which anaédige form
(t;,t;) indicates that; waits fort; to release a lock that it needs. There is a deadlock
in the execution if and only if there is a cycle in WFG.

Maintaining WFG throughout the execution is considerede@spre, which was the
motivation for alternative deadlock prevention methodsed§e methods do not explic-
itly maintain WFG but rather detect “dangerous” situatidingt can possibly lead to
a future deadlock and abort at least one of the conflictingstiations based on some
heuristics, such await-die or wound-wait Situations are identified as dangerous in
an efficient but simple-minded way: for example, if there isoaflict between a pair
of transactions and one transaction has a smaller iderttiger the second one. Such
deadlock prevention strategies impose a smaller overhieadditional testing opera-
tions compared with deadlock detection but may cause signifiy more transaction
aborts, many of which are in states that do not lead to dekdloc

If all locks that are needed for a transaction are known iraade when the trans-
action starts, it is possible to achieve almost “perfecttiek prevention” that avoids
aborts altogether without sacrificing concurrency. Onénsuethod is based on the no-
tion of resource-allocatiorgraph, in which both currently executing transactions and
currently assigned locks are vertices. A directed edge tramsactiorl’; to lock L;
implies that eithefl; waits for L; or T; will requestL; in the future. A directed edge
from lock L; to transactior¥; implies thatZ; is being held byrl;. The lock scheduler
maintains this graph and uses it as follows: a transadtjahat requestd.; waits as
long as grantind.; to T; would create a cycle in the resource-allocation graph.

It should be noted that while this method is considered irgmrfrom theoretical
point of view, it is never used in practice, mainly becausediifficult to elicit informa-
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tion about the locks that a given transaction is going to esgin the future. Another

reason is that resource-allocation graph can have seiraed s many nodes as WFG
and significantly more edges due to accounting for futur& keguests. Thus, main-
taining this graph and detecting cycles in it is consideoadexpensive.

w ] [ | [ ]
@ @ @

TT1 TT2 TT3

Fig. 4. Transaction object lock order and type graph.

Information obtained from program analysis as describeskiction 4, can be used
to facilitate deadlock handling in several ways. First ¢f @hen constructing WFG,
we can efficiently identify and prune dependencies that ctbe part of the deadlock
cycle based on the type information. In this way, we reduessthe of WFG and make
cycle detection faster, thereby eliminating the major diefficy of deadlock detection
approaches. To illustrate how our technique works, let nsicer the following exam-
ple: transaction of typ&@'T; first locks an object of typ€&T7, then an object of type
OT5;, an object of type)T; and finally an object of typ®1T,. Transaction of typ& 7%
locks objects of typ&®Ts andOT; in this order. Transaction of tygET; locks objects
of type OT3, OTy, andOT} (see Fig. 4). Observe that a cycle in WFG can be created
only by transactions of typeET} andT'T3, and only due to waits on objects of types
OT, andOTs. Thus, transactions of tygET; and dependencies between transactions
of T'Ty andTT3 due to objects of typ&T, do not need to be inserted into WFG.

To capture this intuition, we make use of the type shape graelscribed in Sec-
tion 4.2. Section 4.3 explains how to construct a type shapgligfor each transaction
type. In order to facilitate deadlock detection, graphsfrifferent transaction types
are merged into a single graph in the following way: all nogdehe graphs that corre-
spond to the same object type are combined into a single fradexample, Figure 4
shows the merged graph for the example above.

Our methodology for pruning WFG nodes and edges is based efiotlowing
theorem:

Theorem 1. If transactionsly, T, . .., T,, create a cycle in WFG at runtime, then the
static object types that belong to the type shape graphsogaction typegiype(11),
Type(Ts), ..., Type(T,) create a cycle in the merged type shape graph. Furthermore,
every edge that is part in the WFG cycle is due to wait on theaihyhose type is a
node in the type shape graph cycle.
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It should be emphasized that while this technique is verneganit is inherently
conservative due to being based on purely static compile-firogram analysis. In
other words, more scrupulous and dynamic analysis couldepnoore parts of WFG.
We can lose precision at several stages: when the functidnghresents the transaction
has many branches (as explained in Section 4.3) and whegingdan object shape
graph to a type shape graph. Yet, this methodology can signily decrease the size
of WFG in many existing applications because most transastiraverse objects in
the same order of types. For example, in the OO7 applicaseribed in Section 6,
a transaction never accesses a low level construct cabbedi@part before accessing a
higher level composite part which contains the same atoanic jget, we improve this
methodology further by complementing it with runtime arsdythat takes into account
the dynamic information about the execution.

Program analysis not only facilitates deadlock detectionitoalso makes perfect
deadlock prevention feasible. Specifically, having theiinfation about future object
accesses as described in Section 4.4 allows us to set up ¢jes a@dthe resource-
allocation graph that represent future lock requests. ey, this method may some-
times yield a conservative estimate because shape anadysdeduce only a superset
of the actual objects to be accessed. However, once credtes leeginning of a trans-
action, future request edges can be incrementally remavé&d@asaction proceeds and
more precise knowledge about transaction execution idaifhe interaction between
the lock scheduler and shape analysis as described in Bécfipallows such incre-
mental updates.

Program analysis can also make algorithms based on thercesallocation graph
more efficient: similarly to WFG, we can reduce the size of thgource-allocation
graph by using the information extracted from type shapehgaFinally, we can use
hybrid deadlock detection-prevention schemes. For exam@ can use deadlock de-
tection as long as the deadlock rate is low and switch to de&dbrevention if the
deadlock rate exceeds a predefined threshold.

5.3 Early Lock Release

All of the existing variations of the classical two-phasentoit protocol can be classi-
fied as strict or non-strict. In strict protocols, all lock® deld until the end of trans-
action, while in non-strict protocols, locks can be releki§¢he transaction no longer
needs to access the object [3]. It is generally considersdati early release of a write
lock may pose a problem because other transactions mayhchiteh a lock and read
the new object value that has not been committed yet and magr be committed in
the case of an aborted or failed transaction. However, ealbase of a read lock is
highly desirable as it makes the object accessible to othesactions and improves the
concurrency of the execution.

Yet, most practical systems are using strict protocolsiseanplementing an early
release of read locks is far from straightforward. The maawson for this is the chal-
lenge in detecting that the transaction has finished acupske object. In order to
perform such a detection without requiring the programmeadd annotations, the
scheduler has to predict future object accesses by theatrtmis. Note that this is ex-
actly where the shape analysis proves useful as we discirsSedtion 4.4.
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Another problem may arise if a transactidn unlocks an objec; and then ac-
quires a lock for another obje€l,: if another transaction acquires write locks for both
0: andO, and commits between the two operationgpfthe two transactions cannot
be serialized. To address this issue, the classical natsto-phase locking acquires
all locks that the transaction requires prior to releashmg lbcks that are no longer
needed. Again, this might require the scheduler to preldétuture accesses of a trans-
action. Furthermore, preclaiming of locks (i.e., acquirail the locks up front at the
beginning of a transaction) can hurt the concurrency, aalhedf the transaction is
long (see Section 5.4 for a discussion of preclaiming).

To eliminate the need of preclaimingltruistic lockinghas been proposed [18].
Informally speaking, the general idea behind altruistickiag is that if a transaction
T releases a lock fo©), then any other transactidf, that acquires a lock fo©,
beforeT; terminates, can acquire only locks released’py The rationale here is to
preventl; from accessing an object that may be required’bin the future. However,
altruistic locking is still conservative because an acedss, to an object that has not
been released b, does not necessarily lead to a problem.

It may appear that simply disallowiri, to access any object that may be required
by T; in the future will solve the problem. Unfortunately, thisnist the case: ifl;
modifiesO, and then another transacti@h accesses firgD, and then another object
that is required by} in the future, the execution is not serializable.

In this work, we propose a solution based on the notiocenfsal dependend$2]:

transactioril’; causally precedes transaction (denoted ag? kb T, if either a)T5 is
initiated afterTy by the same client, or b)» acquires a lock thdl; has released, or

¢) there is another transactidfy such thatl} hb T,. Our causality-awarescheduler
is the standard non-strict two-phase locking with the felfty extension: it precludes

the situation when there are two transactiGhsand 7, such that7} b Ty, and 75
holds a lock forO, that may be requested 13y in the future. If a transaction requests
a lock and granting the lock may lead to such a situation,efeest is blocked untif}
acquires a lock o@; or terminates.

Theorem 2. Causality-aware scheduler generates only executionsaklabne-copy
serializable.

Techniques for tracking causality, such as assigning &sing logical timestamps
to transactions, are well known and have been extensivadyest through the literature.
However, the application of the knowledge of causal depecids for locking sched-
ulers appears to be new. Furthermore, by using type shapbgvee can exclude from
our consideration some transaction types like we did fodtbek handling as presented
in Section 5.2. We discuss the performance of the proposezhse in Section 6.2.

2 More precisely, altruistic locking extends the scheduteriface by adding a “donate” opera-
tion. This operation signifies that the transaction doeseet] the object any longer while the
actual unlocking is done at the end of the transaction.
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5.4 Adaptive Lock Preclaiming

While the standard two-phase locking protocol acquiresc lehen the object is ac-
cessed for the first time, there is a group of schedulersccatiaservativewo-phase
locking [3,19] thatpreclaimall potentially required locks up front when the execu-
tion of a transaction begins. [3] explores the tradeoff leetvthe two approaches. In
summary, gradual lock acquisition works better when datderdion is low and trans-
actions are long whereas preclaiming is more suitable feraghplications with high
data contention and short transactions.

Note that preclaiming requires the knowledge of future ases which can be ob-
tained only by programmer annotations or tools like shayais. Furthermore, ad-
vanced knowledge of future accesses allows us to devisdieelfyybrid schemes. By
using shape analysis we can estimate the future data camtéewel across the trans-
actions that have already started and decide whether toarsevative or standard
two-phase locking. Furthermore, predicting executioreBrmakes it possible to pre-
claim locks for short transactions but assign locks grdguallonger ones.

Finally, by using shape analysis combined with the infofareabout the execution
history, we can sort objects by their popularity, i.e., tegme of concurrency in access-
ing the object. Observe that popular objects are typicalteased for a shorter time.
This provides the rationale for preclaiming: If a transawtiirst accesses a popular ob-
jectOq, and then a less popular obj&et, it will be more efficient to acquire locks on
the both objects simultaneously. The full algorithm is presd in Figure 5.

Upon starting a transaction
S = set of all objects that will be locked with probability «
sort S by object popularity in the ascending order

Upon requesting a lock for objet]
verify that preclaiming will not create a possibility for amduced deadlock
acquire locks for all objectS[1], ..., S[i] that have not been acquired yet

Upon raising the probability of a lock not in S
recalculateS and acquirel if necessary and does not create a possibility for a dead|ock

Fig. 5. Adaptive lock preclaiming based on object popularities

6 Experiments

We have developed a simulation test-bed in order to testehinance of the tech-
niques described in Section 5 and their effect on data ctintersing the same sim-
ulation technique, we ran experiments with two differenplagations: a prototype of
a car reservation system that we developed, and the sta@fardoenchmark [6] for
object-oriented databases. In order to perform tests fifingudata contention condi-
tions, we have designed a synthetic workload generatorpteatuces a sequence of
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operations to be invoked at certain times along with the patars to be passed to
those operations. We have also implemented an artificehtlhat replays a previously
generated sequence of operations. The main venue of ourimgmgs was to com-

pare the predictive lock scheduler with the standard sdeesiulo this end, we have
implemented a strict two-phase locking (S2PL) and optimsthedulers. The overall
test-bed architecture is depicted in Figure 6.

Generated Workload

Artificial Clients

Prototype Application

Logging Facility

Lock Scheduler

il

Fig. 6. The testbed implementation

6.1 Prototype of a Car Reservation System

Consider a database system for online car reservationsahdie placed through Web
requests. For the sake of an example, assume that the dataiydains three different
parts: a large partition of reservation$)( a large partition of available carB], and the
rest of data that contains, e.g., rental rules and te@sThere are three different types
of transactions: Frequent user transactions update gledsting individual reserva-
tions and place new ones. To this end, they need to lockhere are also infrequent
traversing and maintenance transactions. A maintenaansaction updates the main-
tenance information for the fleet of cars owned by the compeyeby lockingB for

a very long time. A traversing transaction computes a tetassignment of available
cars to existing reservations. This transaction la€kshen 4, and finally B. The fol-
lowing problem can occur if the scheduler incrementallygrsslocks by only looking

at the currently granted ones: A traversing transactioainbtiocks forC' and A. Then

a maintenance transaction starts and it is granted a locR fde traversing transac-
tion now cannot obtain a lock fd8 and it has to wait until the maintenance transaction
terminates. Meanwhile, many user transactions are blook&eduse they cannot access
A. If the scheduler knew to take future events into accoumtpitld delay the mainte-
nance transaction accessi#an order to let the traversing transaction finish and release
the lock it holds onA.

We defined three different sets of parameters for the purpbtesting. These pa-
rameters determine the frequency and the duration of lomkedch transaction. The
values of these parameters for each of the configuratiorgiver in Table 2.

We repeatedly ran a simulation of our prototype 100 timesfarh configuration.
Tables 3 and 4 summarize the results of our experimentse Baditows execution times
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Table 2. Parameters used in different experiments

Configuration 1Configuration 2Configuration 3
User transaction rate 300/se¢ 30/seq 30/seq
User transaction duration 30ms 30ms 30ms
Mainten. transaction duration 60000ms 2000ms 2000ms
Traversing transaction id 30mg 30mg 200ms
Traversing transaction i 30ms 30ms 500ms
Traversing transaction i@ 500ms 500ms 500ms
Traversing transaction period 1min 1min 1min
Mainten. transaction period 6min 2min 2min

in milliseconds for the S2PL, predictive, and optimistibedulers as well as the proper
execution time of the transactions. The predictive schaxdsignificantly outperforms
the S2PL scheduler for the first configuration while beinghtly better for the second
and third configuration. This improvement is solely due te #uaptive preclaiming
technique described in Section 5.4 because no lock can &&sed early in this appli-
cation. The optimistic scheduler did not perform well in edperiments because of the
high number of conflicts. For all configurations, the trairggdransaction was either
completely starved or took a very long time to complete. lkemnore, the abort rate
was high for the optimistic scheduler as shown in Table 4.

Table 3. Comparison of transaction execution times in various canfiions and for different
schedulers

Configuration 1 Configuration 2 Configuration 3

Traversa|UserMainten|TraversalUserMainten| TraversalUserMainten
Execution| 560 30 | 60000| 560 | 30| 2000 1200 | 30 | 2000
S2PL 7577 |3423 60024 | 860 | 43| 2010 1241 | 43| 2010
Predictive] 6829 | 43 | 60024 | 876 | 40| 2010 1242 | 43| 2010
Optimistic| starved| 54 | 60024 | 4327 | 40 | 2010 | starved| 40 | 2010

Table 4. Comparison of transaction abort rates in various configamatand for different sched-
ulers

Configuration 1 Configuration 2 Configuration 3
TraversalUsel Mainten| TraversalUsellMainten]| TraversalUser Mainten
Optimisticc many | 15 0 6.33 |0.077 O many |0.07] O

6.2 The OO7 Benchmarks

Several standard benchmark sets for object-oriented asg¢absuch as OOL1 [7], and
007 [6], have been designed to facilitate the testing of erpmtal database design
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techniques in realistic settings. We opted to conduct opesments with the OO7

benchmark since it is the most complex in terms of the datastascture and supported
operation set. Additionally, the OO7 benchmark exhibitsch object structure that

lends itself well to program shape analysis. Since the walgDO7 benchmark were
written in C++ while our shape analysis implementation vedide Java, we extended a
Java port of the OO7 benchmarks [1].

The OO7 DatabaseIn this section, we summarize those details of the OO7 databa
descriptionin [6] that are relevant to our experiments. B&iechmark models a database
for CAD/CAM/CASE applications. A key component of the dadab is a set odom-
posite partsEach composite part corresponds to a design primitive agchnregister
cell in a VLSI CAD application.

At a lower level, each composite part has an associated gfsgtbmic parts Intu-
itively, the atomic parts within a composite part are theésiaut of which the composite
part is constructed. For example, if a composite part cpmeds to a procedure in a
CASE application, each of the atomic parts in its associgtagh might correspond to
avariable, statement, or expression in the procedure. @n@@part in each composite
part’s graph is designated as the “root part.”

Composite parts are grouped iriase assembli€sFor example, in a VLS| CAD
application, an assembly might correspond to the desiga fegister file or an ALU.
Base assemblies are further grouped tdmplex assembligghich can be part of up-
per level complex assemblies. Cycles between assembéeasoamllowed. Therefore,
the overall organization can be visualized as a set of adgdridrarchies, each hierar-
chy being called anodule

complex
assemblies

base
assemblies |/

T

V—  ¥V— —

IEIEEEAREEAERE

2 3

Fig. 7.007 module structure

Figure 7 depicts the full structure of an OO7 module. Thedrighy scale is config-
urable with respect to several parameters. In our expetsnee worked with a single
module because all operations provided by the benchmatlmag single module so
that having multiple modules does not create any intergstimcurrency issues. Other
relevant parameters are the number of composite parts pdulendhe number of com-
posite parts per base assembly, the number of levels in seeddy hierarchy, and the

% Some parts may be shared across multiple assemblies wihdemirts may belong to a single
assembly. This is unlike atomic parts that are never shareduitiple composite parts.
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number of child assemblies per complex assembly. Sinceutmdar of children nodes
(child assemblies or composite parts) per assembly hasaaigrpact on the degree of
data contention, we varied it in our experiments while tHesotwo parameters were
fixed. Table 5 summarizes the values of these parameters¢atused in the experi-
ments.

Table 5.007 database configuration

# composite parts per module 500
# composite parts per base assenbip

# levels in the hierarchy 3
# assemblies per complex assempl§—5|

Each object in the database has a number of attributes dinguhe integer at-
tributesid andbuildDate .id is a distinct identifier assigned to each entity to dis-
tinguish it from other entities whilbuildDate  specifies the last time when this part
or assembly was modified.

Benchmark Operations and Their Concurrency Patterns The designers of the OO7
benchmarks provided a rich set of operations to maniputetedaitabase. However,
many of these operations are equivalent as far as concyrggres. For example, a
search for a composite part by any of two different attribuédes about the same time
and requires the same locks. In fact, concurrency was nofothes of the OO7 de-
sign: each operation as a whole was considered a sepanasadton while all lock
assignments were handled by the underlying OODBMS. On th&raxy, we need to
consider the details of lock assignment by the concurrerayager, even if it is trans-
parent for the application. In our experiments, we used tfieviing three operations
that represent different operation classes from concayrstandpoint:

— Querying an arbitrary composite part:
The operation selects a random base assembly and a randguositerpart which
is contained in this assembly. Thus, it needs to acquire @ lezk for the base
assembly and then a read lock for the part. If the base asgésraaicessed directly
using some index structure, then no other locks are requinesther way to reach
the assembly is to traverse the assembly hierarchy fromathiechoosing a child
assembly at each node by some arbitrary criteria. In this,dhg operation also
requires read locks for all assemblies on the path from tbhetodhe base assembly
of interest.

— Reorganizing an arbitrary composite part:

Like the previous operation, this operation selects a rantase assembly and
a random composite part which is contained in this asserilblgn, it obtains a

write lock for the part and performs a long update which imeslrecreation and
reorganization of all atomic parts within this compositetpa
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— Updating an attribute of several related objects:

As a typical representative of this class, we took an opamathat updates the
buildDate  of a composite part and its parent base assembly. The opestdirts
with obtaining a read lock for an arbitrary assembly, che@searbitrary part of this
assembly, obtains a write lock for the assembly and updiatasd finally acquires
a write lock for the part and performs an update on it.

The submission rate for the query, reorganization, and teptfansactions was
10, 600, and 3 transactions per minute, respectively. Tlewton times were 2ms,
2000ms, and 2ms as shown in Table 6.

Table 6. Comparison of transaction execution times for differemhiestlers

Time |S2PL{Early releasg Adaptive |Both preclaimingj;

preclaiming and early release
buildDate update| 2ms | 92 48 116 58
Query composite part 2ms | 15 9 5 5
Reorganization 2000ms$2041 2018 2010 2010

Performance of Locking Schedulersin Table 6 we compare the average transaction
time in milliseconds for strict 2-phase locking (S2PL) and predictive scheduler.
Furthermore, in order to understand the contribution oheadividual mechanism,
we ran the predictor with only early release activated, tidajpreclaiming activated,
and both. As it can be seen, early release of read locks iredrthe average times
of all transactions. In contrast, adaptive preclaiminghigantly reduced the times
for the query transaction but slightly increased the tinesliebuildDate  update
transaction which required two locks. This tradeoff is dasie for the OO7 application
because short queries are more common than longer updat#seadifference in their
times is immediately perceived by the user.

Perhaps even more important than the difference in aveimgs is the difference
in the standard deviation. Figure 8 shows the times for tloet sfuery transaction in a
section of a typical execution using a pessimistic strichage-lock scheduler. We can
clearly see sharp peaks when the reorganization tranaduticked thebuildDate
update transaction, which in turn blocked the query tranmacFigure 9 presents exe-
cution times of the predictive scheduler for the same sedtithe same workload. Not
only has the overall mean transaction time been signifigaatiuced but there are also
fewer peaks and those peaks are not as high.

Execution Time Prediction In Section 4.4 we outlined our method for determining
the expected execution time of a transaction. The preci@stimation is important
for the adaptive preclaiming mechanism used in the expetisnéhat we described
above. However, the standard OO7 benchmark does not cngffitdent diversity in
the duration of transactions of the same type. To createtarlaiversity, we modified
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Fig. 8. A typical execution section for the S2PLFig. 9. A typical execution section for the pre-
scheduler dictive scheduler

the OO7 benchmark to create randomly sized composite pavtadibetween 20 and
1000 atomic parts. We then executed 2187 random searchamigal queries on the
databasé.The traversal query transaction visited a section of thelzkte in order to
perform maintenance on a set of atomic parts.

In this experiment, we compared the accuracy of our predliitees to the actual
runtime of the transaction. As the predicted times were déget on the actual hard-
ware used, we were mostly interested in the relationshiwdot the predicted values
and the actual execution times.

10000 Legend
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Actual
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Fig. 10. Predicted time compared to actual execution times

Figure 10 shows our results for the OO7 traversal transaclibe results were
sorted by transaction size and the overall times were aedrager 3 runs. In almost all
cases the predicted time matches the actual time very gld$alvever, in two circum-
stances (300, 500) the times diverged. On closer inspect@eral transactions took

“ Based on the number of Base Assemblies in the benchmarkdirfigaration.
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over 10 times the median. We believe this to be due to outgdeating system issues
and beyond our control.

Table 7 summarizes our results. We found a relatively stammgelation (0.64) be-
tween the predicted times and the actual run times. Thishbeiltrue whenever the
runtime of the transaction is dependent on navigation dosteodata structure. Again
it should be noted that the transaction cost will usuallyibd to the number of the
objects used by the transaction code and not the numbereétshin the database.

Table 7. Predicted time compared to actual execution times

Source |Sample Sizameanmedian
Predicte 2187 4945 4800
Actual 2187 5214 4677

Our initial results show this technique to be promising. ldger, two caveats must
be pointed out. First, since the shape graph contains dlsghat a program may take,
the analysis maybe overly conservative in estimating tted &xpected time. Secondly,
if the majority of the transaction’s total work is navigagithe structure, the prediction
time will be on the order of the execution time. Since our preed effectively visits the
data structure elements in a similar way to the originaldaation.

7 Conclusions

We have presented several novel techniques for automgiivadeasing concurrency in
object oriented database systems. In this paper, we hapeged using shape analysis
for database programs. Using program analysis we can mravaliccinct representa-
tion of the future accesses of a program fragment even adisgatched method calls
in object oriented programs. Knowledge of the future aceepermits the simpler al-
gorithms for early-lock release, data contention, and lbe&dvoidance/detection. We
have demonstrated our technique using our own car-resamginulation and the OO7
benchmark adapted to use multiple clients in order exetbisecurrency scheduler.
Our techniques increased concurrency and have lowereddha time to complete the
workloads.

While we showed that our predictive scheduler is beneficiatlie above applica-
tions, the power of prediction is bound to be inherently tedi Identifying individual
cases when performance can be hurt because of the poortgediccuracy is part of
our future research. In particular, it would be desirablddwise a heuristics that would
determine online whether the predictive scheduler meshamshould be used.

In the future, we plan to investigate execution time prédicand lease scheduling.
As the gap between traditional programming languages atadhdse programming lan-
guages continues to diminish, applying program analysiiatabase problems will be
a fruitful area of research.
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