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Abstract. Programmers have come to expect better integration betweendatabases
and the programming languages they use. While this trend continues unabated,
database concurrency scheduling has remained blind to the programs. We propose
that the database client programs provide a large untapped information resource
for increasing database throughput.
Given this increase in expressive power between programmers and databases,
we investigate how program analysis can increase database concurrency. In this
paper, we demonstrate a predictive locking scheduler for object databases. In par-
ticular we examine the possibility to predict the client’s use of locks. Given ac-
curate predictions, we can increase concurrency through early lock release, per-
form deadlock detection and prevention, and determine whether locks should be
granted before or during a transaction. Furthermore, we demonstrate our tech-
niques on the OO7 and other benchmarks.

1 Introduction

The problem of transaction and lock scheduling is the most fundamental problem in
concurrency control in databases. Finding the optimal schedule is known to be an NP-
hard even for the offline version of the problem when all events (i.e., transactions) in
the system are known in advance [16]. Furthermore, there is no general-case online
algorithm that would approximate the optimal offline solution within some small bound.
Yet, in many specific cases of the systems that exist in practice, it is possible to design a
scheduler that takes advantage of the information about future transactions, producing
a more efficient (even though non-optimal) schedule.

Knowledge of the future is the key to efficient scheduling of resources. This knowl-
edge of future events can come from diverse sources, but has been traditionally in the
form of programmer annotations. Programmer annotations, though used, are in general
difficult for the programmers to construct and are likely to be error prone. Therefore,
most systems have adopted an overly conservative view and assume no knowledge of
future requests.

However, the knowledge of future access patterns is presentin the client programs
that use the database system. In recent years, there has beenan increasing interest in
object database languages with the acceptance of object-oriented and object-relational
database systems. These systems already reduce the “impedance-mismatch” between
the program code and data storage often experienced in traditional SQL environments.
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With the emergence of complex database interface languagessuch as JDO [13],
OQL [15], and the use of complex types in databases that bridge the gap between pro-
gramming languages and data modelling languages, we explore the benefits that this
tighter integration brings. Our work takes a new approach combining program analysis
and object databases in order to extract information that will be useful to the database
system. In this paper, we present new techniques for scheduling transactions in object-
oriented database (OODB) management systems. The technique is also applicable to
Object-Relational databases provided that the query language is rich enough to warrant
analysis.

This paper’s main contributions are: deadlock handling methods based on the types
manipulated by the program, a technique that allows early lock release in order to in-
crease concurrency, and a method to determine whether transaction locks should be
preclaimed, e.g., before the transaction begins, or taken gradually during the transac-
tion.

In detail, we investigate the use of program analysis to extract interesting properties
of programs that can be used by a database system. Our technique is based on shape
analysis, a whole-program analysis that has previously used in the compiler research
community to determine certain static program properties.The output of shape analysis
is a set of graphs representing the way a portion of a program navigates and manipu-
lates its data structures. These structures allow the database system to determine what
the client will do as it continues to execute thereby capturing future knowledge of the
client’s object use.

In order to test our ideas, we constructed a benchmark testbed and ran experiments
with the standard OO7 benchmark set and with the prototype ofa car reservation system
that we have developed. The paper shows the gain obtained from using each proposed
scheduling enhancement in terms of the average execution time of a transaction and its
standard deviation.

2 Related Work

There has been a tremendous amount of work dealing with transaction concurrency and
scheduling [3, 19]. However, schedulers in most database systems that exist in practice
do not attempt to predict. The main reason for this is twofold: a) Eliciting and collect-
ing information about future transactions is a non-trivialtask, and b) Such predictive
schedulers would be highly specialized and tailored to a particular application.

Some database systems that attempt to predict based on the history of previous
executions, which is collected with profiling. In particular, this technique is commonly
used for query optimization in relational databases. However, history-based prediction
is different from prediction that relies on program analysis: while the former predicts
solely based on past workloads, the latter gives more precise information about the
future execution of the currently running transactions.

Many predictors have been demonstrated in practice. Most ofthese are based on
simplifying assumptions about how a program will access data. For example, programs
often perform sequential reads from the disk. i.e. while reading a very large array.
For this reason, many disk drives automatically perform k-block read-ahead. However,
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when data is complex and accessed in a scattered way, sequential lookahead not be
appropriate behavior as we may read many unused pages.

Object-oriented programs can and usually do have complex object structures. These
pointer-based structures make it especially difficult to predict what object(s) the system
will be using in the future. Though an important problem, little work has been car-
ried out for predicting access patterns in complex pointer-based structures. Knafla [10]
demonstrates prefetching for OODBs using history-based techniques. Cahoon and
McKinly [5] have examined a dataflow analysis for prefetching object structures in
Java. In contrast, our approach constructs a succinct representation of the program’s
access pattern and uses it to drive the prediction process. Combining the program rep-
resentation with real data allows the predictive schedulerto infer the most likely objects
to be used by the program in the future.

3 Model

Our model encompasses the design of most existing middleware systems for object
management. Clients may send requests to a server which may act over a set of ob-
jects that reside solely on the servers. An object server holds multiple objects and the
database on a server consists of a set of root objects such that all other objects accessible
from these root objects.

Multiple clients are allowed to access the server concurrently invoking server-side
transactions. During each transaction, the client may reference multiple objects on the
server. The database at the server includes a scheduler module which is responsible
for maintaining the consistency of the transactions and theobjects. In this work, we
consider both pessimistic and optimistic concurrency control models.

4 Predicting Object Accesses and Execution Times based on Shape
Graphs

4.1 Background

Shape analysisis a program analysis technique based on an abstract interpretation of
a program to determine the “shape” of possible runtime data structures. Shape anal-
ysis produces ashape graphfor a program point, representing the way the program
traverses program data structures from that particular point. A shape graph is a directed
graph with nodes representing symbolic abstract runtime program values and edges rep-
resenting program field references from those values. The shape graph is generated by
symbolically executing the program code and adding edges for each access.

In order to provide intuition, we present a typical program fragment of integrated
databases in Figure 1. The shape graph shown on the right of the figure is derived from
the code lines on the left.1

1 The code is taken from the OO7 database [6]; it navigates the database of machine parts in
order to weigh the elements. However, the code semantics arenot important for this example.
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c l a s s Connector{
P a r t par tA , Par tB ; . . .}

c l a s s P a r t {
Connector l e f t , r i g h t , up , down ;
M a t e r i a l m a t e r i a l ;
S u p p l i e r s u p p l i e r ;
Cost c o s t ;
. . .
i n t volume ( ) ; }

1 : we ight = 0
2 : whi le ( p a r t ! = n u l l )
3 : we ight + = p a r t . m a t e r i a l . d e n s i t y
4 : ∗ p a r t . volume ( ) ;
5 : c o n n e c t o r = p a r t . r i g h t ;
6 : p a r t = n u l l ;
7 : i f ( c o n n e c t o r ! = n u l l )
8 : p a r t = c o n n e c t o r . pa r tB ;

AL

material

partB

right
part connector

Fig. 1. Code fragment and its shape graph: only items used in the code(part andmaterial )
are in the graph.

The example code uses only thematerial andright fields of eachpart in the
database ignoring thecost andsupplier among other fields. This is quite typical
for database programs: while the database may be large and have a very rich object
structure, many programs may use only part of that structure. The access pattern is
also revealed in the fact that the code fragment iterates through a list ofpart using
the right field. In the graph, the node (part ) is used to represent the values of the
variablepart which accessconnector through the fieldright . The runtime value
part.material is shown in the shape graph asAL. The cyclepart through the
field right to connector throughpartB and back topart contains the needed
loop information from the original code. Note that thevolume function may access
additional objects that are not presented in the shape graph.

Shape graphs have previously been used to determine static properties of programs
and for many compile time optimizations including removingsynchronization primi-
tives [4, 17], parallelization of codes [8], and type safety. Other uses include null anal-
ysis, pointer aliasing, cyclicity detection, reachability, and typing [9, 14, 20]. Use of
shape graphs for prefetching has been explored in our previous work [11]. This work
adopts the shape graph structure and its construction algorithm that are similar to the ex-
isting implementations. Yet, this is the first time to the best of our knowledge that shape
graphs are exploited for improving lock schedulers in integrated database systems.

4.2 Overview of the Approach

Our lock scheduling techniques that we introduce later in Section 5 rely on the esti-
mation of a) the set of objects to be accessed by a transactionand the order of those
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accesses, b) whether the access is read or write, and c) the execution time of a trans-
action during which a given object is accessed. In this section, we describe how this
information is obtained by using shape analysis.

Shape graphs that capture the way in which the program’s codeaccesses data, allow
us to follow the same datapaths that the original program would take in order to access
the data effectively predicting its future access pattern.We cannot follow the exact path,
as the code surely has data-dependent branches. However, wecapture a unified view
of all program paths in the program’s shape graph. While thisresults in a necessarily
conservative estimation (a superset which may be several times larger than the actual
set of accessed objects), it is incomparably smaller than the entire database, which can
be exploited to devise efficient lock schedulers.

Our implementation of shape analysis consists of two components: compile-time
construction of a shape graph and runtime prediction, whichuses the program’s access
pattern represented by the shape graph and the actual objectgraph contained in the
OODB to generate the estimated set of future accesses and other required information.
It is important to emphasize that deployment of these components does not require
rewriting the existing database programs: the construction process can be coupled with
the standard compilation process whereas the runtime predictor can be integrated with
the scheduler of existing OODB systems in a way that is transparent for the application.
Since shape graphs are small even for large programs, their storage does not require a
lot of resources and their runtime traversal is computationally effective. Sections 4.3
and 4.4 provide further information about the shape analysis implementation.

In this paper, we also define the type–shape graph which is thereduction of the
shape graph to track the types and the access order of the types that are manipulated
by the program. The type–shape graph is used to determine static type properties of a
transaction. The type–shape graph reduction is one-way in that given a shape-graph, we
can construct a type–shape graph.

4.3 Compile-time Construction

The variant of shape analysis we are using is a whole-program, flow-insensitive, context
sensitive data flow analysis and is similar in design to thosepresented in [4, 17, 11].
Previously shape analysis has been used to determine staticproperties of programs that
manipulate heap data structures. In this paper, we take a novel approach examining
how the results of program analysis can be combined with an active runtime to increase
runtime efficiency.

Shape graphs are created and extended by simulating the actions of the program
through abstract interpretation, which creates and connects abstract heap tuples. Sim-
ple program actions, such as a field access instruction, create heap tuples. When two
variables are determined to point to the same abstract location, we unify their heap rep-
resentations. Unification is a recursive operation that begins with unifying the abstract
locations and continues by unifying the compatible heap tuples that stem from the orig-
inally unified location. Heap tuples are compatible when twoabstract locations have
similarly labelled incoming shape edges. Given two abstract locations, that are to be
unified, we first unify their abstract locations and then recursively unify their compati-
ble tuples in the heap.
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The construction of the shape graph in Figure 1 begins as follows. The reference
to thepart in line 2 creates an abstract variable in the symbolic interpretation of the
program. Line 3 creates the link from thepart abstract location to some unspecified
location (AL) when the fieldmaterial is accessed. Similarly, line 5 creates both the
abstract locationconnector and the edgeright between them when interpreted.
Finally, in line 7 the edgepartB is created due to the field access and the resulting
abstract location is unified to the originalpart because of the assignment. Line 4
contains a call to a sub-method. The analysis of the sub-method would be similar to
the one described above. After both methods have been analyzed, the local parameters
passed to the method are unified with the formal parameters bythe process described
below. Program actions causing unification are summarized in Table 1.

Method calls are combined in a bottom-to-top fashion. The static call-graph is used
to drive the entire interprocedural analysis. The call-graph is partitioned into strongly
connected components (SCC), then topologically sorted. The method contexts (locals,
globals, return value, and exceptions) for each method are propagated bottom-up through
all possible call sites. The shape graphs are propagated from callee to caller during this
phase through the unification of shape graphs. This allows the analysis to be context-
sensitive as the caller’s shape information is not mixed into callee. We lose this sensitiv-
ity for methods belonging to the same SCC (mutually recursive methods) as all methods
will share a single shape context [17]. In many cases the actual method receiver cannot
be determined at compile time and this is a cause of uncertainty in the graph. Rapid
Type Analysis [2] is applied to each call site in order to reduce the number of possible
targets for each call site. For each target, the actual parameters are unified with a copy
of callee method context in the caller’s method context. As an example, the method call
part.volume() in line 4 of Figure 1 generates a sub-shape graph based on the type
of part at runtime. This sub-shape graph is merged into the caller’scontext at the call
point. Since we cannot determine at compile time which runtime typepart will have,
we must unify all shape graphs from the target set.

Table 1.Statements causing unification of shape graphs and their effect. The fieldsarray, formal
andreturnare special fields for array reference, method local and return values respectively.

Statement Abstract Location Description
x = y unify(AL(x), AL(y)) Assignment
x. field=y , y=x. field unify(AL(x).field, AL(y)) Field assignment
x = a[i], a[i] = x unify(AL(x), AL(a).array) Array assignment
return x unify(AL(x), AL(m).return) Function return
v = f( a1, ..., an) ∀t∈target(f)unify(AL(ai), AL(t).formal(i)) Invocation

∀t∈target(f)unify(AL(v), AL(t).return)
x = new T AL(x) = ∅ Allocation

During shape analysis, we decorate the shape graph with attributes depending upon
how the shape graph will be used. For example, a simple extension to the basic shape
analysis described above labels each edge withr/w value depending if the resulting
abstract location is the result a field read or field write operation respectively. During
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unification, a read operation unified with a write results in awrite otherwise the attribute
remains the same. This information can be used to staticallydetermine whether the
element could ever be the target of a write operation.

We also label each shape edge with the count of the first and last access instruction.
This value is calculated by examining the basic blocks of thetransaction and finding the
minimum/maximum number of the instructions over all paths needed to access some
abstract location. This value will be used to determine the object access order and assist
in determining the expected execution time as explained in the following section.

Type-shape graphs are constructed by merging edges of a shape graph. Edges on
which the end points have compatible types may be merged. During the analysis, ab-
stract location (shape edge endpoints) are labelled with the set of types that they refer
to in the actual program source. Compatible abstract locations are those that have a
common super type in the class hierarchy.

The analysis must create shape graphs for the entire programas described above.
However, we need to store only those shapes that will be useful at runtime. At a min-
imum, we must store an entire graph for each top-level variable in the transaction, in
which case the predictor will run once before the beginning of the transaction. Further
graphs may be stored depending on how often the predictive process will be used during
the transaction. Each additional run will refine the prediction results but impose certain
runtime overhead.

The shape graphs themselves may be stored either on the client or on the database
server. The shape graphs are quite small (usually no more than several hundred nodes
per transaction) and need to be communicated at most once during the entire client
session.

4.4 Runtime Use

The runtime system can be triggered in a variety of ways to perform the actual pre-
diction: either through programmer annotations or throughautomatic identification and
instrumentation of transaction routines.

Upon entrance, the runtime interprets the shape graph over the actual program data
generating the set of objects used by program. The runtime algorithm produces the
future accessed objects based on the shapes extracted from the program. Along with
each object to be accessed it also produces whether the object can be the target of a
write operation, the expected order in which the objects will be accessed and finally the
time the algorithm needs to compute while accessing the objects.

Before a transaction starts, we can follow the associated shape graph to generate an
unordered set of the possibly accessed objects in the database. Given a transaction root
object and the program point’s associated shape graph, we generate all actual objects
that might be accessed during the transaction. Each shape graph represents how the
transaction will manipulate structures referred to in the future by its visible references
(the object, arguments, globals) in the transaction body.

In our system, the database is responsible for interpretingthe shape graphs of the
client. Upon receiving a transaction request, the server will walk the shape graph with a
real object database object. This effectively simulates all possible program paths taken
during the transaction over the database.
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/ / I n p u t : An i n i t i a l o b j e c t o
/ / A shape graph sg )
/ / Return : A s e t o f accessed o b j e c t s
L i s t De te rm ineOb jec t s ( Ob jec t o , ShapeGraph sg )
Queue s e a r c h / / T up les o f form ( o b j e c t , a b s t r a c t node )
S et o b j e c t s / / S e t o f o b j e c t s found
S et seen / / T up les ( o b j e c t , a b s t r a c t node ) a l r e a d y v i s i t e d
push ( o , r o o t ( sg ) ) on s e a r c h ;
whi le no t empty s e a r c h

( o , rv ) = pop s e a r c h ;
i f ( o , rv ) no t i n seen

seen = seen∪ ( o , rv ) ;
f o r each edge e i n a d j a c e n t edges of rv

nex t = read f i e l d e . toNode of o b j e c t o ;
push ( next , rv . e . toNode ) on s e a r c h ;
o b j e c t s = o b j e c t s∪ nex t ;

re tu rn o b j e c t s ;

Fig. 2. Algorithm to determine objects using shape graph and objectgraph

G:5 K:10

F:10
J:10

N:5
a1

a2

a3

a4

a5

N N

F J J

K

o1:0 o6:10

o2:10 o5:15

o4:5

o3:20

Fig. 3. Shape graph and object graph: Objects are linked through fields and have been labelled
with expected access time using shape graph.

Our pseudo-code for walking the object graph is shown in Figure 2. The algorithm
traverses the object graph based on program’s field accessesrepresented by the shape
graph. We search through the object graph in a breadth-first manner based on earliest
expected access through the field. Thus, the runtime cost of prediction equals the cost
of interpreting the shape graph over the input object graph.

The prediction walk is usually only done at the beginning of the transaction. How-
ever, the runtime system is capable of re-running the walk iffurther precision is desired
and the associated shape graphs are available as discussed in Section 4.3.

The basic algorithm outlined above returns a unordered set of possibly accessed
objects. We have extended the above algorithm in several ways to:

Determine R/W attributes As described in the Section 4.3, a read/write attribute was
added to each shape edge depending on whether the edge was created by a read/write
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operation in the source text. The runtime algorithm was modified to track these edges
and return whether, during the transaction, an objectmight incur a write.

While visiting a shape node-object pair, the algorithm is allowed to visit all outgoing
shape edges. If any edge had a write attribute, then the object was the target of a possible
write and was labelled as such.

Determine access orderWe modified the basic shape graph construction algorithm
to label each shape edge with a minimum number of basic instructions passed through
while reaching the shape node. During unification, we found the minimum of instruc-
tions over all paths before reaching a particular node.

While collecting the accessed objects at runtime, we maintain the number of in-
structions the code would take to reach the object. Each edgetaken increases the total
number of instructions needed to reach the object. The runtime algorithm was also
modified to use a priority queue in order to maintain a sorted list of objects in expected
access order.

For example, Figure 3 has a shape graph with each abstract location node labelled
with the count of the earliest access instruction. On the right, we show a database object
graph. The database objects (o1 ..o6) have been labelled with their expected first access
time. In the example, Objecto5 was reachable both throughNNJ with an instruction
count of 20, or simplyNJ with a count of 15. Note that it is possible that two objects
may have the same first access time. This occurs when a data dependent branch in the
program code is merged together in the shape graph.

Determine expected execution timeWe measure the instructions contained in the
basic-blocks creating the longest path between field accesses. By estimating the in-
struction time for these instruction sequences, we can arrive at an expected time of
computation between accesses.

The object finding algorithm is modified again to keep track ofthe maximum num-
ber of instructions to be executed during the navigation of the data structure. After visit-
ing the data structure guided by the shape graph, we estimatethe number of instructions
to completely execute the transaction. This technique gives a conservative measure of
the total time needed to execute the transaction by summing over all program paths.
Currently we model only execution time and do not take into account I/O costs. We
believe this is not too strict a limitation, as in this case our target platform will have
gathered the expected objects into local memory.

In each case the graph generated at compile time will be used during the runtimeon
the actual datato providing the runtime with knowledge of how the program will act in
the future. The shape graph was annotated with aspects of theanalyzed program which
would be useful to the runtime system. In our next section we discuss these methods in
detail.

5 Predictive Schedulers

The problem of transaction and lock scheduling is the most fundamental problem in
concurrency control in databases that attracted a vast amount of research [3, 16, 19].
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Yet, little work has been done on predictive schedulers. This is mainly due to the fact
that eliciting and collecting information about future transactions is a non-trivial task,
especially if this has to be done in a generic way that is not tailored to any specific
application.

Shape analysis is of great aid here as it can provide information about the future ex-
ecution and needs of the currently running transactions. Yet, exploiting this information
is far from trivial. This is because finding the optimal schedule is known to be NP-hard
even for the offline version of the problem when all events (i.e., transactions) in the sys-
tem are known in advance [16]. Additionally, there is no general-case online algorithm
that would approximate the optimal offline solution within some constant bound.

In this paper, we seek not to devise a completely new scheduler but rather to en-
hance commonly used schedulers, such as 2PL [3] by taking advantage of the partial
future information that is provided by the shape analysis. Our approach is to augment
existing OODBs with the prediction mechanisms of Section 4 and the scheduler ex-
tensions presented below. Specifically, we propose three separate enhancements of the
the 2PL scheduler: deadlock handling, early lock release, and adaptive preclaiming. It
is important to emphasize that while presented separately in this paper for the sake of
clarity, in practice they are integrated into the same scheduler.

These techniques are particularly effective when locks arecoarse-grain because for
fine-grain locking, the runtime overhead of bookkeeping is high and only a small frac-
tion of the database is locked, problems such as data contention are rare, which does
not leave much to improve upon. However, fine-grain locks areunusual in practice be-
cause most object-oriented database systems group objectsinto pages and assign locks
on per-page rather than per-object basis. In the presentation, we assume for the sake of
clarity that each object has an associated lock. Yet, all thetechniques that we discuss at
the level of individual objects can be applied at the level ofobject pages.

5.1 Interaction between the Program, Scheduler, and Shape Analysis

Transparency is an important goal in the design of integrated database systems as the
programmer would rather avoid learning a new programming model and rewriting ex-
isting database programs. In the method we propose the programmer only has to anno-
tate the program with statements indicating the beginning and end of each transaction.
Typically, such statements already exist in an OODB programso that no programmer’s
effort is required at all. This information is used by both the shape analysis, as described
in Section 4.3, and the scheduler.

All other information about the objects, transactions, andlocks can be derived from
the program automatically. In particular, there is no special program interface for re-
leasing locks. This is important because database systems that are enforcing some level
of transaction isolation, do not trust applications to release locks. Yet, some additional
annotations may turn useful, e.g., to indicate that there isno need to acquire a lock for
a particular object and to account for this object in shape analysis. Since such (possibly
useful) optimizations are not essential for the methodology we have developed, we do
not consider them in this paper.

The interaction between the scheduler and shape analysis issomewhat more com-
plicated even though this complexity is hidden from the programmer. To start with, they
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need to agree about unique identifiers for transactions and transaction types. Essentially,
the runtime shape analysis has to convey the information about future object accesses of
a transaction to the scheduler. This is done by invoking theFUTUREACCESSESmethod
provided by the scheduler’s API at least once for each transaction, when the transaction
begins. It is possible that as the transaction proceeds, theshape analysis will have more
precise information about future accesses and it will notify the scheduler by invoking
theFUTUREACCESSESmethod again. The number of such invocations depends on the
granularity of shape analysis as discussed in Section 4.3.

5.2 Deadlock Handling

In two-phase locking and other similar locking protocols, transactions need to wait
when requested locks cannot be granted immediately. Thus, aset of transactions, each
holding some locks and requesting an additional one, may endup being mutually
blocked. Such cyclic wait situations are commonly known asdeadlocks. There are sev-
eral extensions of the basic two-phase locking protocol forhandling deadlocks; those
can be broadly divided into two categories: deadlock detection and deadlock prevention
techniques. We now briefly describe the techniques and show how program analysis can
be used to enhance them.

Deadlock detection approaches attempt to detect the deadlock situation if it occurs
and then to break the cycle by aborting one or more transactions. The detection algo-
rithms are generally based on the notion of awaits-for graph(WFG), which is a graph
G = (V, E) whose nodes are the active transactions, and in which an edgeof the form
(ti, tj) indicates thatti waits for tj to release a lock that it needs. There is a deadlock
in the execution if and only if there is a cycle in WFG.

Maintaining WFG throughout the execution is considered expensive, which was the
motivation for alternative deadlock prevention methods. These methods do not explic-
itly maintain WFG but rather detect “dangerous” situationsthat can possibly lead to
a future deadlock and abort at least one of the conflicting transactions based on some
heuristics, such aswait-die or wound-wait. Situations are identified as dangerous in
an efficient but simple-minded way: for example, if there is aconflict between a pair
of transactions and one transaction has a smaller identifierthan the second one. Such
deadlock prevention strategies impose a smaller overhead of additional testing opera-
tions compared with deadlock detection but may cause significantly more transaction
aborts, many of which are in states that do not lead to deadlock.

If all locks that are needed for a transaction are known in advance when the trans-
action starts, it is possible to achieve almost “perfect deadlock prevention” that avoids
aborts altogether without sacrificing concurrency. One such method is based on the no-
tion of resource-allocationgraph, in which both currently executing transactions and
currently assigned locks are vertices. A directed edge fromtransactionTi to lock Li

implies that eitherTi waits forLi or Ti will requestLi in the future. A directed edge
from lock Li to transactionTi implies thatLi is being held byTi. The lock scheduler
maintains this graph and uses it as follows: a transactionTi that requestsLi waits as
long as grantingLi to Ti would create a cycle in the resource-allocation graph.

It should be noted that while this method is considered important from theoretical
point of view, it is never used in practice, mainly because itis difficult to elicit informa-
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tion about the locks that a given transaction is going to request in the future. Another
reason is that resource-allocation graph can have several times as many nodes as WFG
and significantly more edges due to accounting for future lock requests. Thus, main-
taining this graph and detecting cycles in it is considered too expensive.
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Fig. 4. Transaction object lock order and type graph.

Information obtained from program analysis as described inSection 4, can be used
to facilitate deadlock handling in several ways. First of all, when constructing WFG,
we can efficiently identify and prune dependencies that cannot be part of the deadlock
cycle based on the type information. In this way, we reduce the size of WFG and make
cycle detection faster, thereby eliminating the major deficiency of deadlock detection
approaches. To illustrate how our technique works, let us consider the following exam-
ple: transaction of typeTT1 first locks an object of typeOT1, then an object of type
OT2, an object of typeOT3 and finally an object of typeOT4. Transaction of typeTT2

locks objects of typeOT5 andOT1 in this order. Transaction of typeTT3 locks objects
of typeOT3, OT2, andOT4 (see Fig. 4). Observe that a cycle in WFG can be created
only by transactions of typesTT1 andTT3, and only due to waits on objects of types
OT2 andOT3. Thus, transactions of typeTT2 and dependencies between transactions
of TT1 andTT3 due to objects of typeOT4 do not need to be inserted into WFG.

To capture this intuition, we make use of the type shape graphs described in Sec-
tion 4.2. Section 4.3 explains how to construct a type shape graph for each transaction
type. In order to facilitate deadlock detection, graphs from different transaction types
are merged into a single graph in the following way: all nodesin the graphs that corre-
spond to the same object type are combined into a single node.For example, Figure 4
shows the merged graph for the example above.

Our methodology for pruning WFG nodes and edges is based on the following
theorem:

Theorem 1. If transactionsT1, T2, . . . , Tn create a cycle in WFG at runtime, then the
static object types that belong to the type shape graphs of transaction typesType(T1),
Type(T2), . . . ,Type(Tn) create a cycle in the merged type shape graph. Furthermore,
every edge that is part in the WFG cycle is due to wait on the object whose type is a
node in the type shape graph cycle.
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It should be emphasized that while this technique is very general, it is inherently
conservative due to being based on purely static compile-time program analysis. In
other words, more scrupulous and dynamic analysis could prune more parts of WFG.
We can lose precision at several stages: when the function that represents the transaction
has many branches (as explained in Section 4.3) and when reducing an object shape
graph to a type shape graph. Yet, this methodology can significantly decrease the size
of WFG in many existing applications because most transactions traverse objects in
the same order of types. For example, in the OO7 application described in Section 6,
a transaction never accesses a low level construct called atomic part before accessing a
higher level composite part which contains the same atomic part. Yet, we improve this
methodology further by complementing it with runtime analysis that takes into account
the dynamic information about the execution.

Program analysis not only facilitates deadlock detection but it also makes perfect
deadlock prevention feasible. Specifically, having the information about future object
accesses as described in Section 4.4 allows us to set up the edges in the resource-
allocation graph that represent future lock requests. Admittedly, this method may some-
times yield a conservative estimate because shape analysiscan deduce only a superset
of the actual objects to be accessed. However, once created at the beginning of a trans-
action, future request edges can be incrementally removed as transaction proceeds and
more precise knowledge about transaction execution is gained. The interaction between
the lock scheduler and shape analysis as described in Section 5.1, allows such incre-
mental updates.

Program analysis can also make algorithms based on the resource-allocation graph
more efficient: similarly to WFG, we can reduce the size of theresource-allocation
graph by using the information extracted from type shape graphs. Finally, we can use
hybrid deadlock detection-prevention schemes. For example, we can use deadlock de-
tection as long as the deadlock rate is low and switch to deadlock prevention if the
deadlock rate exceeds a predefined threshold.

5.3 Early Lock Release

All of the existing variations of the classical two-phase commit protocol can be classi-
fied as strict or non-strict. In strict protocols, all locks are held until the end of trans-
action, while in non-strict protocols, locks can be released if the transaction no longer
needs to access the object [3]. It is generally considered that an early release of a write
lock may pose a problem because other transactions may obtain such a lock and read
the new object value that has not been committed yet and may never be committed in
the case of an aborted or failed transaction. However, earlyrelease of a read lock is
highly desirable as it makes the object accessible to other transactions and improves the
concurrency of the execution.

Yet, most practical systems are using strict protocols because implementing an early
release of read locks is far from straightforward. The main reason for this is the chal-
lenge in detecting that the transaction has finished accessing the object. In order to
perform such a detection without requiring the programmer to add annotations, the
scheduler has to predict future object accesses by the transaction. Note that this is ex-
actly where the shape analysis proves useful as we discussedin Section 4.4.
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Another problem may arise if a transactionT1 unlocks an objectO1 and then ac-
quires a lock for another objectO2: if another transaction acquires write locks for both
O1 andO2 and commits between the two operations ofT1, the two transactions cannot
be serialized. To address this issue, the classical non-strict two-phase locking acquires
all locks that the transaction requires prior to releasing the locks that are no longer
needed. Again, this might require the scheduler to predict the future accesses of a trans-
action. Furthermore, preclaiming of locks (i.e., acquiring all the locks up front at the
beginning of a transaction) can hurt the concurrency, especially if the transaction is
long (see Section 5.4 for a discussion of preclaiming).

To eliminate the need of preclaiming,altruistic locking has been proposed [18].
Informally speaking, the general idea behind altruistic locking is that if a transaction
T1 releases a lock forO1, then any other transactionT2 that acquires a lock forO1

beforeT1 terminates, can acquire only locks released byT1.2 The rationale here is to
preventT2 from accessing an object that may be required byT1 in the future. However,
altruistic locking is still conservative because an accessof T2 to an object that has not
been released byT1 does not necessarily lead to a problem.

It may appear that simply disallowingT2 to access any object that may be required
by T1 in the future will solve the problem. Unfortunately, this isnot the case: ifT2

modifiesO2 and then another transactionT3 accesses firstO2 and then another object
that is required byT1 in the future, the execution is not serializable.

In this work, we propose a solution based on the notion ofcausal dependency[12]:

transactionT1 causally precedes transactionT2 (denoted asT1

hb
→ T2 if either a)T2 is

initiated afterT1 by the same client, or b)T2 acquires a lock thatT1 has released, or

c) there is another transactionT3 such thatT1

hb
→ T2. Our causality-awarescheduler

is the standard non-strict two-phase locking with the following extension: it precludes

the situation when there are two transactionsT1 andT2 such thatT1

hb
→ T2 andT2

holds a lock forO1 that may be requested byT1 in the future. If a transaction requests
a lock and granting the lock may lead to such a situation, the request is blocked untilT1

acquires a lock onO1 or terminates.

Theorem 2. Causality-aware scheduler generates only executions thatare one-copy
serializable.

Techniques for tracking causality, such as assigning increasing logical timestamps
to transactions, are well known and have been extensively studied through the literature.
However, the application of the knowledge of causal dependencies for locking sched-
ulers appears to be new. Furthermore, by using type shape graphs we can exclude from
our consideration some transaction types like we did for deadlock handling as presented
in Section 5.2. We discuss the performance of the proposed scheme in Section 6.2.

2 More precisely, altruistic locking extends the scheduler interface by adding a “donate” opera-
tion. This operation signifies that the transaction does notneed the object any longer while the
actual unlocking is done at the end of the transaction.
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5.4 Adaptive Lock Preclaiming

While the standard two-phase locking protocol acquires a lock when the object is ac-
cessed for the first time, there is a group of schedulers called conservativetwo-phase
locking [3, 19] thatpreclaimall potentially required locks up front when the execu-
tion of a transaction begins. [3] explores the tradeoff between the two approaches. In
summary, gradual lock acquisition works better when data contention is low and trans-
actions are long whereas preclaiming is more suitable for the applications with high
data contention and short transactions.

Note that preclaiming requires the knowledge of future accesses which can be ob-
tained only by programmer annotations or tools like shape analysis. Furthermore, ad-
vanced knowledge of future accesses allows us to devise adaptive hybrid schemes. By
using shape analysis we can estimate the future data contention level across the trans-
actions that have already started and decide whether to use conservative or standard
two-phase locking. Furthermore, predicting execution times makes it possible to pre-
claim locks for short transactions but assign locks gradually to longer ones.

Finally, by using shape analysis combined with the information about the execution
history, we can sort objects by their popularity, i.e., the degree of concurrency in access-
ing the object. Observe that popular objects are typically accessed for a shorter time.
This provides the rationale for preclaiming: If a transaction first accesses a popular ob-
jectO1, and then a less popular objectO2, it will be more efficient to acquire locks on
the both objects simultaneously. The full algorithm is presented in Figure 5.

Upon starting a transaction
S = set of all objects that will be locked with probability> α

sort S by object popularity in the ascending order

Upon requesting a lock for objectS[i]
verify that preclaiming will not create a possibility for aninduced deadlock
acquire locks for all objectsS[1], . . . , S[i] that have not been acquired yet

Upon raising the probability of a lockL not inS

recalculateS and acquireL if necessary and does not create a possibility for a deadlock

Fig. 5. Adaptive lock preclaiming based on object popularities

6 Experiments

We have developed a simulation test-bed in order to test the performance of the tech-
niques described in Section 5 and their effect on data contention. Using the same sim-
ulation technique, we ran experiments with two different applications: a prototype of
a car reservation system that we developed, and the standardOO7 benchmark [6] for
object-oriented databases. In order to perform tests for varying data contention condi-
tions, we have designed a synthetic workload generator thatproduces a sequence of
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operations to be invoked at certain times along with the parameters to be passed to
those operations. We have also implemented an artificial client that replays a previously
generated sequence of operations. The main venue of our experiments was to com-
pare the predictive lock scheduler with the standard schedulers. To this end, we have
implemented a strict two-phase locking (S2PL) and optimistic schedulers. The overall
test-bed architecture is depicted in Figure 6.
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Fig. 6. The testbed implementation

6.1 Prototype of a Car Reservation System

Consider a database system for online car reservations thatcan be placed through Web
requests. For the sake of an example, assume that the database contains three different
parts: a large partition of reservations (A), a large partition of available cars (B), and the
rest of data that contains, e.g., rental rules and terms (C). There are three different types
of transactions: Frequent user transactions update already existing individual reserva-
tions and place new ones. To this end, they need to lockA. There are also infrequent
traversing and maintenance transactions. A maintenance transaction updates the main-
tenance information for the fleet of cars owned by the company, thereby lockingB for
a very long time. A traversing transaction computes a tentative assignment of available
cars to existing reservations. This transaction locksC, thenA, and finallyB. The fol-
lowing problem can occur if the scheduler incrementally assigns locks by only looking
at the currently granted ones: A traversing transaction obtains locks forC andA. Then
a maintenance transaction starts and it is granted a lock forB. The traversing transac-
tion now cannot obtain a lock forB and it has to wait until the maintenance transaction
terminates. Meanwhile, many user transactions are blockedbecause they cannot access
A. If the scheduler knew to take future events into account, itwould delay the mainte-
nance transaction access toB in order to let the traversing transaction finish and release
the lock it holds onA.

We defined three different sets of parameters for the purposeof testing. These pa-
rameters determine the frequency and the duration of locks for each transaction. The
values of these parameters for each of the configurations aregiven in Table 2.

We repeatedly ran a simulation of our prototype 100 times foreach configuration.
Tables 3 and 4 summarize the results of our experiments. Table 3 shows execution times
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Table 2.Parameters used in different experiments

Configuration 1Configuration 2Configuration 3
User transaction rate 300/sec 30/sec 30/sec
User transaction duration 30ms 30ms 30ms
Mainten. transaction duration 60000ms 2000ms 2000ms
Traversing transaction inA 30ms 30ms 200ms
Traversing transaction inB 30ms 30ms 500ms
Traversing transaction inC 500ms 500ms 500ms
Traversing transaction period 1min 1min 1min
Mainten. transaction period 6min 2min 2min

in milliseconds for the S2PL, predictive, and optimistic schedulers as well as the proper
execution time of the transactions. The predictive scheduler significantly outperforms
the S2PL scheduler for the first configuration while being slightly better for the second
and third configuration. This improvement is solely due to the adaptive preclaiming
technique described in Section 5.4 because no lock can be released early in this appli-
cation. The optimistic scheduler did not perform well in ourexperiments because of the
high number of conflicts. For all configurations, the traversing transaction was either
completely starved or took a very long time to complete. Furthermore, the abort rate
was high for the optimistic scheduler as shown in Table 4.

Table 3. Comparison of transaction execution times in various configurations and for different
schedulers

Configuration 1 Configuration 2 Configuration 3
TraversalUser Mainten.TraversalUser Mainten.TraversalUser Mainten.

Execution 560 30 60000 560 30 2000 1200 30 2000
S2PL 7577 3423 60024 860 43 2010 1241 43 2010
Predictive 6829 43 60024 876 40 2010 1242 43 2010
Optimistic starved 54 60024 4327 40 2010 starved 40 2010

Table 4.Comparison of transaction abort rates in various configurations and for different sched-
ulers

Configuration 1 Configuration 2 Configuration 3
TraversalUser Mainten.TraversalUserMainten.TraversalUser Mainten.

Optimistic many 15 0 6.33 0.07 0 many 0.07 0

6.2 The OO7 Benchmarks

Several standard benchmark sets for object-oriented databases, such as OO1 [7], and
OO7 [6], have been designed to facilitate the testing of experimental database design
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techniques in realistic settings. We opted to conduct our experiments with the OO7
benchmark since it is the most complex in terms of the database structure and supported
operation set. Additionally, the OO7 benchmark exhibits a rich object structure that
lends itself well to program shape analysis. Since the original OO7 benchmark were
written in C++ while our shape analysis implementation works for Java, we extended a
Java port of the OO7 benchmarks [1].

The OO7 Database In this section, we summarize those details of the OO7 database
description in [6] that are relevant to our experiments. Thebenchmark models a database
for CAD/CAM/CASE applications. A key component of the database is a set ofcom-
posite parts. Each composite part corresponds to a design primitive suchas a register
cell in a VLSI CAD application.

At a lower level, each composite part has an associated graphof atomic parts. Intu-
itively, the atomic parts within a composite part are the units out of which the composite
part is constructed. For example, if a composite part corresponds to a procedure in a
CASE application, each of the atomic parts in its associatedgraph might correspond to
a variable, statement, or expression in the procedure. One atomic part in each composite
part’s graph is designated as the “root part.”

Composite parts are grouped intobase assemblies.3 For example, in a VLSI CAD
application, an assembly might correspond to the design fora register file or an ALU.
Base assemblies are further grouped intocomplex assemblies, which can be part of up-
per level complex assemblies. Cycles between assemblies are not allowed. Therefore,
the overall organization can be visualized as a set of assembly hierarchies, each hierar-
chy being called amodule.

Fig. 7. OO7 module structure

Figure 7 depicts the full structure of an OO7 module. The hierarchy scale is config-
urable with respect to several parameters. In our experiments, we worked with a single
module because all operations provided by the benchmarks act on a single module so
that having multiple modules does not create any interesting concurrency issues. Other
relevant parameters are the number of composite parts per module, the number of com-
posite parts per base assembly, the number of levels in the assembly hierarchy, and the

3 Some parts may be shared across multiple assemblies while other parts may belong to a single
assembly. This is unlike atomic parts that are never shared by multiple composite parts.
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number of child assemblies per complex assembly. Since the number of children nodes
(child assemblies or composite parts) per assembly has a great impact on the degree of
data contention, we varied it in our experiments while the other two parameters were
fixed. Table 5 summarizes the values of these parameters thatwere used in the experi-
ments.

Table 5.OO7 database configuration

# composite parts per module 500
# composite parts per base assembly3–27
# levels in the hierarchy 3
# assemblies per complex assembly1–5

Each object in the database has a number of attributes, including the integer at-
tributesid andbuildDate . id is a distinct identifier assigned to each entity to dis-
tinguish it from other entities whilebuildDate specifies the last time when this part
or assembly was modified.

Benchmark Operations and Their Concurrency Patterns The designers of the OO7
benchmarks provided a rich set of operations to manipulate the database. However,
many of these operations are equivalent as far as concurrency goes. For example, a
search for a composite part by any of two different attributes takes about the same time
and requires the same locks. In fact, concurrency was not thefocus of the OO7 de-
sign: each operation as a whole was considered a separate transaction while all lock
assignments were handled by the underlying OODBMS. On the contrary, we need to
consider the details of lock assignment by the concurrency manager, even if it is trans-
parent for the application. In our experiments, we used the following three operations
that represent different operation classes from concurrency standpoint:

– Querying an arbitrary composite part:

The operation selects a random base assembly and a random composite part which
is contained in this assembly. Thus, it needs to acquire a read lock for the base
assembly and then a read lock for the part. If the base assembly is accessed directly
using some index structure, then no other locks are required. Another way to reach
the assembly is to traverse the assembly hierarchy from the root choosing a child
assembly at each node by some arbitrary criteria. In this case, the operation also
requires read locks for all assemblies on the path from the root to the base assembly
of interest.

– Reorganizing an arbitrary composite part:

Like the previous operation, this operation selects a random base assembly and
a random composite part which is contained in this assembly.Then, it obtains a
write lock for the part and performs a long update which involves recreation and
reorganization of all atomic parts within this composite part.
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– Updating an attribute of several related objects:
As a typical representative of this class, we took an operation that updates the
buildDate of a composite part and its parent base assembly. The operation starts
with obtaining a read lock for an arbitrary assembly, chooses an arbitrary part of this
assembly, obtains a write lock for the assembly and updates it, and finally acquires
a write lock for the part and performs an update on it.

The submission rate for the query, reorganization, and update transactions was
10, 600, and 3 transactions per minute, respectively. The execution times were 2ms,
2000ms, and 2ms as shown in Table 6.

Table 6.Comparison of transaction execution times for different schedulers

Time S2PLEarly release Adaptive Both preclaiming
preclaiming and early release

buildDate update 2ms 92 48 116 58
Query composite part 2ms 15 9 5 5
Reorganization 2000ms2041 2018 2010 2010

Performance of Locking Schedulers In Table 6 we compare the average transaction
time in milliseconds for strict 2-phase locking (S2PL) and our predictive scheduler.
Furthermore, in order to understand the contribution of each individual mechanism,
we ran the predictor with only early release activated, adaptive preclaiming activated,
and both. As it can be seen, early release of read locks improved the average times
of all transactions. In contrast, adaptive preclaiming significantly reduced the times
for the query transaction but slightly increased the times for thebuildDate update
transaction which required two locks. This tradeoff is desirable for the OO7 application
because short queries are more common than longer updates and the difference in their
times is immediately perceived by the user.

Perhaps even more important than the difference in average times is the difference
in the standard deviation. Figure 8 shows the times for the short query transaction in a
section of a typical execution using a pessimistic strict 2 phase-lock scheduler. We can
clearly see sharp peaks when the reorganization transaction blocked thebuildDate
update transaction, which in turn blocked the query transaction. Figure 9 presents exe-
cution times of the predictive scheduler for the same section in the same workload. Not
only has the overall mean transaction time been significantly reduced but there are also
fewer peaks and those peaks are not as high.

Execution Time Prediction In Section 4.4 we outlined our method for determining
the expected execution time of a transaction. The precisionof estimation is important
for the adaptive preclaiming mechanism used in the experiments that we described
above. However, the standard OO7 benchmark does not create sufficient diversity in
the duration of transactions of the same type. To create a better diversity, we modified
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Fig. 9. A typical execution section for the pre-
dictive scheduler

the OO7 benchmark to create randomly sized composite parts having between 20 and
1000 atomic parts. We then executed 2187 random search and traversal queries on the
database.4 The traversal query transaction visited a section of the database in order to
perform maintenance on a set of atomic parts.

In this experiment, we compared the accuracy of our predicted times to the actual
runtime of the transaction. As the predicted times were dependent on the actual hard-
ware used, we were mostly interested in the relationship between the predicted values
and the actual execution times.
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Fig. 10.Predicted time compared to actual execution times

Figure 10 shows our results for the OO7 traversal transaction. The results were
sorted by transaction size and the overall times were averaged over 3 runs. In almost all
cases the predicted time matches the actual time very closely. However, in two circum-
stances (300, 500) the times diverged. On closer inspection, several transactions took

4 Based on the number of Base Assemblies in the benchmark tiny configuration.
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over 10 times the median. We believe this to be due to outside operating system issues
and beyond our control.

Table 7 summarizes our results. We found a relatively strongcorrelation (0.64) be-
tween the predicted times and the actual run times. This willbe true whenever the
runtime of the transaction is dependent on navigation cost of the data structure. Again
it should be noted that the transaction cost will usually be tied to the number of the
objects used by the transaction code and not the number of objects in the database.

Table 7.Predicted time compared to actual execution times

Source Sample Sizemeanmedian
Predicted 2187 4945 4800
Actual 2187 5214 4677

Our initial results show this technique to be promising. However, two caveats must
be pointed out. First, since the shape graph contains all paths that a program may take,
the analysis maybe overly conservative in estimating the total expected time. Secondly,
if the majority of the transaction’s total work is navigating the structure, the prediction
time will be on the order of the execution time. Since our predictor effectively visits the
data structure elements in a similar way to the original transaction.

7 Conclusions

We have presented several novel techniques for automatically increasing concurrency in
object oriented database systems. In this paper, we have proposed using shape analysis
for database programs. Using program analysis we can provide a succinct representa-
tion of the future accesses of a program fragment even acrossdispatched method calls
in object oriented programs. Knowledge of the future accesses permits the simpler al-
gorithms for early-lock release, data contention, and deadlock avoidance/detection. We
have demonstrated our technique using our own car-reservation simulation and the OO7
benchmark adapted to use multiple clients in order exercisethe currency scheduler.
Our techniques increased concurrency and have lowered the mean time to complete the
workloads.

While we showed that our predictive scheduler is beneficial for the above applica-
tions, the power of prediction is bound to be inherently limited. Identifying individual
cases when performance can be hurt because of the poor prediction accuracy is part of
our future research. In particular, it would be desirable todevise a heuristics that would
determine online whether the predictive scheduler mechanisms should be used.

In the future, we plan to investigate execution time prediction and lease scheduling.
As the gap between traditional programming languages and database programming lan-
guages continues to diminish, applying program analysis todatabase problems will be
a fruitful area of research.
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