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1. Why do we need this tutorial?


2. What can you learn from this tutorial?



Why this tutorial?
• Deep learning has almost dominated NLP these years.


• Different to speech and images, natural languages could 
be discrete, thus we can encounter many problems in 
applying deep learning for NLP.



Why this tutorial?
• Deep learning has almost dominated NLP these years


• Different from speech and images, natural language units 
(word, sentence, paragraph, etc.) are discrete


• May cause problems in neural NLP



What could we learn from 
this tutorial?

• We will give examples of discreteness in neural NLP, 
including input, latent and output spaces.


• We will introduce advanced techniques to address the 
discreteness problem. 


• Cases will be finally studied to show how we can use 
these techniques to solve practical problems. 
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• Tutorial Introduction


- Ubiquitous discreteness in natural language processing


- Challenges of dealing with discreteness in neural NLP


• Discrete Input Space


- Mapping discrete symbols to distributed representation


• Discrete Latent Space


- Addressing the non-differential problem in back-propagation of 
discrete variables 


• Discrete Output Space


- Learning and inference in exponential hypothesis space


- Training without maximum likelihood estimation


• Take Away

Outline



Part I: Introduction



• The role of distributed representation in deep learning


• Ubiquitous discreteness in natural language processing


• Challenges of dealing with discreteness in deep learning-
based NLP


- Continuous/distributed representation


- Non-differentiability


- Exponential search space

Roadmap



Neural Networks

Input layers take data signals

Hidden layers perform non-linear transformation

Output layers give task  
oriented predictions



Forward

Obtaining predictions by forward propagation



Backward

Updating parameters by backward propagation



- For speech and images, the input and output spaces 
are always continuous, which are straightforward for 
forward and backward propagations in neural 
networks.

DL is suitable for continuous variables 



Ubiquitous Discreteness in NLP 

• Natural Language is discrete

- input space, latent space, output space

I like this tutorial 

sentence parse tree



From Input to Output

X Y



From Input to Output
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neural networks
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From Input to Output
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Latent space may also be discrete in NLP�



Non-Trivial to Deal with 
Discreteness in Neural Networks 

Input, latent and output of NLP tasks are oftentimes 
discrete symbols or structures.




Challenges of Discreteness
• Input Space


- How to get good distributed representation?

• Latent Space


- Difficult for Backpropagation

• Output Space


- Exponential Search Space, hard for learning and inference.

- Besides MLE, hard for training.
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Challenges of Discreteness
• Input Space


- How to get good distributed representation?

• Latent Space


- Hard for Backpropagation

• Output Space


- Exponential Search Space, hard for learning and inference.

- Besides MLE, hard for training.

More challenges will be introduced in following parts.




What’s Next?

In following parts, we will introduce techniques to alleviate above 
problems for input, latent and output spaces, respectively.



• Tutorial Introduction


- Ubiquitous discreteness in natural language processing


- Challenges of dealing with discreteness in neural NLP


• Discrete Input Space


- Mapping discrete symbols to distributed representation


• Discrete Latent Space


- Addressing the non-differential problems in BP for discrete variables 


• Discrete Output Space


- Learning and inference in exponential hypothesis space


- Training without maximum likelihood estimation
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Part II: Discrete Input Space



• Tutorial Introduction


- Ubiquitous discreteness in natural language processing


- Challenges of dealing with discreteness in neural NLP


• Discrete Input Space


- Mapping discrete symbols to distributed representation


• Discrete Latent Space


- Addressing the non-differential problems in BP for discrete variables 


• Discrete Output Space


- Learning and inference in exponential hypothesis space


- Training without maximum likelihood estimation


• Take Away

Outline



• Examples of discrete input space


- Sentence, graph, tree, relation, etc.


• Embedding discrete input as distributed vectors


- From one-hot to distributed representations


- From context-independent to context dependent 
representations


• Incorporating discrete structures into neural architectures.

Roadmap



Image as Inputs

Images are continuous signals which can be fed into 
neural networks directly as distributed representations.




How about Text Ҙ
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Dealing with Discrete Input

• For example, for sentence classification task, we can 
input the sentences, syntax tree of the sentence or 
even extra knowledge graph into neural networks to get 
final predictions.


• Inputs can be discrete symbols/structures, which can 
not be fed to neural networks directly.

“I am visiting Hong Kong”
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Issue with the two representations:  
closeness in values does not reflect the semantic relevance 



Embeddings
• Map a word to a low-dimensional space


- Not as low as one-dimensional ID representation


- Not as high as -dimensional one-hot representation


• Word vector representation (a.k.a., word embeddings)


- Mapping a word to a vector


- Equivalent to linear tranformation

  of one-hot vector

|! |



Embedding by Table Lookup

X Y

Transforming discrete symbols to distributed 
representations by table lookup.




Embedding by Table Lookup

X Y

The embedding matrix will be updating during the whole 
neural network training.




Question

Is the learned embedding in a specific task generalizable to other tasks?



Pretraining Embedding

Pretraining word embedding in large-scale corpora, and then fine 
tuning in downstream tasks.



Word2Vec

distributed semantics: similar context leads to similar semantics.
Mikolov T, Sutskever I, Chen K, et al. Distributed representations 
of words and phrases and their compositionality. In NIPS, 2013.



Word2Vec

distributed semantics: similar context leads to similar semantics.

Context Independent!



Context Dependent 
Representation

Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations, in 
NAACL, 2018.
Radford A, Wu J, Child R, et al., Language models are unsupervised multitask learners. 
In ICML, 2019.
Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language 
understanding, in NAACL, 2019.

https://www.techbooky.com/wp-content/uploads/2019/02/Better-Language-Models-and-Their-Implications.pdf


Context Dependent 
Representation

Word Embedding are related to its context of observed sentences.


One word has different embeddings
Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations, In 
NAACL, 2018.



BERT

E

I    have a   dog   . [SEP] He likes  [X]  -ing . [SEP]

E E E E E E E E E E E

Epos Epos Epos Epos Epos Epos Epos Epos Epos Epos Epos Epos

Multi-Head 
Attention

Add & Norm

Feed Forward

Add & Norm

Softmax

I    have a   dog   . [SEP] He likes play -ing . [SEP]
Key Ideas 

1. Transformer block  
(multi-head attention,  
positional embedding,  

layer norm) 
2. Masked Language Model 
3. Next sentence prediction



Context Dependent VS. Context 
Independent Embeddings

Word2Vec BERT

Category Context 
Independent 

Context 
Dependent

Capacity Low High

Performance Bad Good



Advanced Representations
• Input


• rich and rightful feature (context, order, etc.) [Roberta, XLNet, 
K-Bert]


• Model


• feature aggregation 


• utilize more context [XLNet]


• Pre-training Objective [MASS, ERINE,SpanBert, T5, etc.]


• Bert style, Mass style, …



Rich context

• The context of a word can be viewed as the feature for 
the word in concern.


• The more the valid context/feature, the better it can 
represent the word in concern.



Rich context

• In pre-training, we need sufficient number of masks to be 
computationally efficient.


• The mask in Bert is actually the introduced noise feature 
for representing a real word.


• There is a trade-off between Quantity and Quality.


• Recent papers Roberta, XLNet and K-Bert can be thought 
of as having enriched context and getting rid of noise.



Roberta
• Change wrt. Bert


Removed NSP task, (SpanBert did the same thing) 


two segment from different document is noise feature to each 
other


All words in a training example came from the same document


• Dynamic masking with large batch (up to 8K) and some lr 
increment and momentum change(beta_2: 0.999 —> 0.98)


• More training data (up to 160G, 10 times compared to data used 
in Bert)

[Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. 
Stoyanov. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: arXiv:1907.11692 

(2019)]



XLNet
• Change wrt. Bert


• two-stream self-attention, latter words will have more 
words to observe.


• 


• Caching mechanism, extend observable sequence up 
to 512+384, means even more feature.

[Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. “XLNet: Generalized 
Autoregressive Pretraining for Language Understanding”. In: arXiv:1906.08237 (2019)]



Model

• XLNet tries to utilize more context by devising a two-
stream attention mechanism.


• XLNet also devised caching mechanism to utilizing even 
more context.


• Not much work on feature aggregation.



Pre-training objective: 
MASS

• Mass:


•

Kaitao S, Xu T, Tao Q, Jianfeng L, and Tie-Yan L. MASS: Masked sequence to sequence pre-
training for language generation. arXiv preprint arXiv:1905.02450, 2019.



Pre-training objective: T5

• T5: Text-To-Text Transfer Transformer


•
[Raffel, C and Shazeer, Noam and Roberts, Adam and Lee, Katherine and Narang, Sharan and 
Matena, Michael and Zhou, Yanqi and Li, Wei and Liu, Peter J. arXiv preprint arXiv:1910.10683, 

2019.]



Pre-training objective: 
SpanBert

• SpanBert:


•
[Mandar J, Danqi C, Yinhan L, Daniel S, Luke Z, and Omer L. SpanBERT: Improving pre-

training by representing and predicting spans. arXiv preprint arXiv:1907.10529, 2019]



Pre-training objective: 
ERNIE

[Yu S, Shuohuan W, Yukun L, Shikun F, Xuyi C, Han Z, Xinlun T, Danxiang Z, Hao T, and 
HuaWu. ERNIE: En- hanced representation through knowledge integra- tion. arXiv preprint 

arXiv:1904.09223, 2019]



Besides Sentences



Tree

• Syntax tree structures are widely used in NLP, offering 
informative syntax information inside the tree structure, 
which is helpful to downstream task performance.


• Many related works study how to encode such tree 
structures. 



Recursive NNs

Recursive NNs like tree (instead of sequential) structure Recurrent 
NNs. 


From leafs to root, encoding the whole tree from bottom to up.
Socher, Richard, et al. Parsing natural scenes and natural language with 
recursive neural networks, in ICML, 2011.



Tree LSTM

Tree LSTM likes tree (instead of sequential) structure LSTM. 

Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. Improved semantic 
representations from tree-structured long short-term memory networks, in ACL, 2015.

Zhu X, Sobihani P, Guo H. Long short-term memory over recursive structures, in 
ICML, 2015.



On Tree Based Neural 
Sentence Modeling

• This paper studies to which extend tree-based encoders 
help downstream tasks.

However, tree structured NNs have been less useful in 
recent days.

Haoyue Shi, Hao Zhou, Jiaze Chen, Lei Li. On Tree-Based Neural Sentence 
Modeling, in EMNLP, 2018.



On Tree Based Neural 
Sentence Modeling

• This paper studies to which extend tree-based encoders 
help downstream tasks.

However, tree structured NNs have been less useful in 
recent days.



Candidates include 2 Trivial 
Trees without Syntax



Input Tree Representations 
into Different Tasks



Experimental Results



Experimental Results

All experiments are conducted 5 times to get average results.

Trivial trees 
work better!!!



Visualization

Left-branching trees pay more attention to left words, but balanced 
trees treat all words fairly, and learns the weights by model.



Shallow Trees work Better

Constructing balanced trees 
with varying depth. 


Shallow trees leads to 
better performances.



Tree-Based Convolution

Constituency tree Dependency tree

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, Zhi Jin. Discriminative 
neural sentence modeling by tree-based convolution. In EMNLP, 2015.



Graph Network

Graph convolution neural networks can encode the 
graph structures as distributed representations.

Spatial convolution

Spectral convolution

 [Kipf & Welling, 2016]

 [Duvenaud et al., 2015]

Other graph operations 
E.g., attention
 [Veličković et al., 2018]



• Representing discrete tokens


- Pretrained word embeddings by table lookup


- Pretrained word embeddings within context


• Representing discrete structures


- Trees, graphs, etc.


- Structured CNN, RNN, attention, etc.

Summary for Discrete Input Space
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