ByteDance

F TIHEC]]

| UNIVERSITY OF I ~

ALBERTA

Discreteness
(n
Neural Natural Language Processing
Lili Moua  Hao Zhout Lei Lib

aAlberta Machine Intelligence Institute (Amii), University of Alberta

bByteDance Al Lab
doublepower . .mou@gmail.com

{zhouhao.nlp,lileilab}@bytedance.com

amit '

EMNLP-IJCNLP 2019 Tutorial




Slides available at the instructors’ homepage

https://lili-mou.github.10/



https://lili-mou.github.io/

1. Why do we need this tutorial?

2. What can you learn from this tutorial?



Why this tutorial?

 Deep learning has almost dominated NLP these years.



Why this tutorial?

» Different from speech and images, natural language units
(word, sentence, paragraph, etc.) are discrete

* May cause problems in neural NLP



What could we learn from
this tutorial?

e We will give examples of discreteness in neural NLP,
including input, latent and output spaces.



What could we learn from
this tutorial?

e \We will introduce advanced techniques to address the
discreteness problem.



What could we learn from
this tutorial?

e Cases will be finally studied to show how we can use
these techniques to solve practical problems.



Outline

Tutorial Introduction

- Ubiquitous discreteness in natural language processing
- Challenges of dealing with discreteness in neural NLP
Discrete Input Space

- Mapping discrete symbols to distributed representation
Discrete Latent Space

- Addressing the non-differential problem in back-propagation of
discrete variables

Discrete Output Space
- Learning and inference in exponential hypothesis space
- Training without maximum likelihood estimation

Take Away
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Roadmap

 The role of distributed representation in deep learning

e Ubiquitous discreteness in natural language processing

e Challenges of dealing with discreteness in deep learning-
based NLP

- Continuous/distributed representation
- Non-differentiability

- Exponential search space
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Neural Networks

Hidden

Output layers give task

Input layers take data signals oriented predictions

Hidden layers perform non-linear transformation



Obtaining predictions by forward propagation



Backward

Updating parameters by backward propagation



DL i1s suitable for continuous variables

- For speech and images, the input and output spaces
are always continuous, which are straightforward for

forward and backward propagations in neural
networks.




Ubiquitous Discreteness in NLP

 Natural Language is discrete
- Input space, latent space, output space
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From Input to Output




From Input to Output

neural networks

X



From Input to Output
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P(Y | X) with Latent Variable Z
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P(Y | X) with Latent Variable Z

Topic
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Non-Trivial to Deal with
Discreteness in Neural Networks

Input, latent and output of NLP tasks are oftentimes
discrete symbols or structures.



Challenges of Discreteness

* |nput Space
- How to get good distributed representation?



Challenges of Discreteness

e |atent Space
- Difficult for Backpropagation



Challenges of Discreteness

e QOutput Space
- Exponential Search Space, hard for learning and inference.
- Besides MLE, hard for training.



Challenges of Discreteness

* |nput Space
- How to get good distributed representation?
e |atent Space
- Hard for Backpropagation
e QOutput Space
- Exponential Search Space, hard for learning and inference.
- Besides MLE, hard for training.

More challenges will be introduced in following parts.



What’s Next?

In following parts, we will introduce techniques to alleviate above
problems for input, latent and output spaces, respectively.



Outline

Discrete Input Space

- Mapping discrete symbols to distributed representation

Discrete Latent Space

- Addressing the non-differential problems in BP for discrete variables
Discrete Output Space

- Learning and inference in exponential hypothesis space

- Training without maximum likelihood estimation

Take Away
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Outline

* Discrete Input Space

- Mapping discrete symbols to distributed representation



Roadmap

e Examples of discrete input space
- Sentence, graph, tree, relation, etc.

e Embedding discrete input as distributed vectors
- From one-hot to distributed representations

- From context-independent to context dependent
representations

e |Incorporating discrete structures into neural architectures.



Image as Inputs

ddddd

Images are continuous signals which can be fed into
neural networks directly as distributed representations.



How about Text ?

Word \
Sentence neural networks

Tree >

Graph > X
Relation

”~



Dealing with Discrete Input

e For example, for sentence classification task, we can
input the sentences, syntax tree of the sentence or
even extra knowledge graph into neural networks to get

final predictions.

* |nputs can be discrete symbols/structures, which can
not be fed to neural networks directly.
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ID/One-Hot Rerepresentation

Index representation One-hot representation

0 Hong
|  am visiting Hong Kong

1 |

0 0 0 1 0

Y = 2 visiting I (o] |of o] [o
3 0 0 1 0 0

am of |1 0 0 0

4 Kong 0) \0 0 0 1

Issue with the two representations:
closeness In values does not reflect the semantic relevance



Embeddings

* Map a word to a low-dimensional space

- Not as low as one-dimensional ID representation

- Not as high as | 7" | -dimensional one-hot representation

 Word vector representation (a.k.a., word embeddings)

- Mapping a word to a vector - N (00
- Equivalent to linear tranformation ° |1
of one-hot vector _ y
Embedding of word i
retrieved by matrix-vector
multiplication
0

. J

One-hot representation of
word i (sparse)



Embedding by Table Lookup

Transforming discrete symbols to distributed
representations by table lookup.



Embedding by Table Lookup

The embedding matrix will be updating during the whole
neural network training.



Question

Is the learned embedding in a specific task generalizable to other tasks?



Pretraining Embedding

Pretraining word embedding in large-scale corpora, and then fine
tuning in downstream tasks.



Word2Vec

INPUT PROJECTION OUTPUT INPUT  PROJECTION OUTPUT
w(t-2) 4 Wt2)
w(t-1) > 4 w(t-1)

SUM
A
: B w(t) w(t) [
X |
wi(t+1) 4 w(t+1)
w(t+2) 4 w(t+2)
CBOW Skip-gram

distributed semantics: similar context leads to similar semantics.

Mikolov T, Sutskever |, Chen K, et al. Distributed representations
of words and phrases and their compositionality. In NIPS, 2013.



Word2Vec

INPUT  PROJECTION  OUTPUT INPUT  PROJECTION OUTPUT
w(t-2) 4 WV2)
w(t-1) ¢  Wwt-1)

SUM
A
: [ w(t) w(t) Ihe-
4
w(t+1) 4 w(t+1)
w(t+2) 4 w(t+2)
CBOW Skip-gram

distributed semantics: similar context leads to similar semantics.

Context Independent!




Context Dependent
Representation

BERT (Ours) OpenAl GPT

Peters M E, Neumann M, lyyer M, et al. Deep contextualized word representations, in
NAACL, 2018.

Radford A, Wu J, Child R, et al., Language models are unsupervised multitask learners.
In ICML, 2019.

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language
understanding, in NAACL, 2019.



https://www.techbooky.com/wp-content/uploads/2019/02/Better-Language-Models-and-Their-Implications.pdf

Context Dependent
Representation

BERT (Ours) OpenAl GPT

Word Embedding are related fo its context of observed sentences.

One word has different embeddings

Peters M E, Neumann M, lyyer M, et al. Deep contextualized word representations, In
NAACL, 2018.




2.
3.

Key Ildeas
Transformer block
(multi-head attention,
positional embedding,
layer norm)
Masked Language Model
Next sentence prediction

BERT
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Context Dependent VS. Context
Independent Embeddings

Word2Vec BERT
Cateaor Context Context
9oy Independent  Dependent
Capacity Low High
Performance Bad Good




Advanced Representations

e |nput

e rich and rightful feature (context, order, etc.) [Roberta, XLNet,
K-Bert]

* Model
* feature aggregation
e utilize more context [XLNet]
* Pre-training Objective [MASS, ERINE,SpanBert, T5, etc.]

* Bert style, Mass style, ...



Rich context

e The context of a word can be viewed as the feature for
the word In concern.

e The more the valid context/feature, the better it can
represent the word in concern.



Rich context

In pre-training, we need sufficient number of masks to be
computationally efficient.

The mask in Bert is actually the introduced noise feature
for representing a real word.

There is a trade-off between Quantity and Quality.

Recent papers Roberta, XLNet and K-Bert can be thought
of as having enriched context and getting rid of noise.



Roberta

e Change wrt. Bert
O Removed NSP task, (SpanBert did the same thing)

O two segment from different document is noise feature to each
other

O All words in a training example came from the same document

 Dynamic masking with large batch (up to 8K) and some Ir
increment and momentum change(beta_2: 0.999 —> 0.98)

* More training data (up to 160G, 10 times compared to data used
in Bert)

[Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V.
Stoyanov. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: arXiv:1907.11692
(2019)]



XLNet

e Change wrt. Bert

e two-stream self-attention, latter words will have more
words to observe.

Jeert = log p(New | is a city) + log p(York | is a city),
JxiNet = log p(New | is a city) + log p(York | New, is a city).

 Caching mechanism, extend observable sequence up
to 512+384, means even more feature.

[Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. “XLNet: Generalized
Autoregressive Pretraining for Language Understanding”. In: arXiv:1906.08237 (2019)]



Model

XLNet tries to utilize more context by devising a two-
stream attention mechanism.

XLNet also devised caching mechanism to utilizing even
more context.

Not much work on feature aggregation.



Pre-training objective:
MASS

e Mass:
E3E3ENES
r T 1T 1
Encoder Attention Decoder
t 1t t t t 1 1 r ¢+ 1 1T 1T T T 1
. e EEE)E] el G (| NS )| E70 (£ e

Kaitao S, Xu T, Tao Q, Jianfeng L, and Tie-Yan L. MASS: Masked sequence to sequence pre-
training for language generation. arXiv preprint arXiv:1905.02450, 2019.



Pre-training objective: TS

e T5: Text-To-Text Transfer Transformer

Original text

Thank you fef inviting me to your party [ast week.

- T

Thank you <x> me to your party <Y> week.

Targets
<X> for inviting <Y> last <7>

[Raffel, C and Shazeer, Noam and Roberts, Adam and Lee, Katherine and Narang, Sharan and
Matena, Michael and Zhou, Yanqi and Li, Wei and Liu, Peter J. arXiv preprint arXiv:1910.10683,
2019.]



Pre-training objective:
SpanBert

e SpanBert:

E(f()otball) — El\--‘ILl\-‘I(X?) + LsBo (X47 X9, p7)

an American football game

tot ot

X1 X9 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Transformer Encoder

Position . , , ) _ _ ._

Embeddings P1 P2 P3 P4 Ps5 Pé6 P7 P8 P9 P10 P11 P12
i+ - 1 4 + b + + + - i+ +

éﬁfﬁ;’ddmgs Super| | Bowl || 50 was | |[MASK]| |[MASK]| [[MASK]| |[MASK]| | to | |determine|| the | |champion

Figure 1: An illustration of SpanBERT. In this example, the span an American football game 1s masked. The span
° boundary objective then uses the boundary tokens was and fo to predict each token in the masked span.

[Mandar J, Danqi C, Yinhan L, Daniel S, Luke Z, and Omer L. SpanBERT: Improving pre-
training by representing and predicting spans. arXiv preprint arXiv:1907.10529, 2019]



Pre-training objective:
ERNIE

o =N

Transformer

Potter is a series fantasy novel by 1} Rowling

ERNIE
N =3 KR

Transformer

Figure 1: The different masking strategy between BERT and ERNIE

[Yu S, Shuohuan W, Yukun L, Shikun F, Xuyi C, Han Z, Xinlun T, Danxiang Z, Hao T, and
HuaWu. ERNIE: En- hanced representation through knowledge integra- tion. arXiv preprint
arXiv:1904.09223, 2019]



Besides Sentences
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Tree

e Syntax tree structures are widely used in NLP, offering
informative syntax information inside the tree structure,
which is helpful to downstream task performance.

e Many related works study how to encode such tree
structures.



Recursive NNs

Recursive Matrix-Vector Model Neural Tensor Layer
- vector Slices of Standard
@ Tensor Layer Layer
© © . matrix (o \
2] 1 SDCD [geee (9!
| 9333 &, 5555
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[ 0000 |
<, ) : 0000 :
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Recursive NNs like tree (instead of sequential) structure Recurrent
NNS.

From leafs to root, encoding the whole ftree from bottom to up.

Socher, Richard, et al. Parsing natural scenes and natural language with
recursive neural networks, in ICML, 2011.



Tree LSTM

L bR AL L ~R R
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Tree LSTM likes tree (instead of sequential) structure LSTM.

Zhu X, Sobihani P, Guo H. Long short-term memory over recursive structures, in
ICML, 2015.

Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. Improved semantic
representations from tree-structured long short-term memory networks, in ACL, 2015.



On Tree Based Neural
Sentence Modeling

However, tree structured NNs have been less useful in
recent days.

ﬂmmm

[ love my pet cat . I love my pet cat . I love my pet cat. I love my pet cat. [ Jove my pet cat .

(a) Parsing tree. (b) Balanced tree. (¢) Gumbel tree. (d) Left-branching tree. (e) Right-branching tree.

Haoyue Shi, Hao Zhou, Jiaze Chen, Lei Li. On Tree-Based Neural Sentence
Modeling, in EMNLP, 2018.



On Tree Based Neural
Sentence Modeling

However, tree structured NNs have been less useful in
recent days.

* This paper studies to which extend tree-based encoders
help downstream tasks.

ﬁmmm

[ love my pet cat . I love my pet cat . I love my pet cat. I love my pet cat. [ Jove my pet cat .

(a) Parsing tree. (b) Balanced tree. (¢) Gumbel tree. (d) Left-branching tree. (e) Right-branching tree.



Candidates include 2 Trivial
Trees without Syntax

[ love my pet cat . | Ilove my pet cat. | I love my pet cat . |1 love my pet cat. | love my pet cat .

(a) Parsing tree. (b) Balanced tree. (¢) Gumbel tree. (d) Left-branching tree. (e) Right-branching tree.

Trivial Trees



Input Tree Representations
Into Different Tasks

I love my pet cat .

i

I Iove my pet cat .

Ilove my pet cat .

23skas

I Iove my pet dog

LSTM/Tree LSTM LSTM/Tree LSTM} ‘ LSTM/Tree LSTM | LSTM/Tree LSTM
0000 0000 0000 j....
<S> I love cats. ‘ \
¥oyoy i * Multi-Layer Multi- Layer
0O b
Perceptron erceptron
0000 e
se0ee !
T IR SR Softmax
I lovecats. </S>
(a) Encoder-decoder  (b) Encoder-classifier (c) Siamese encoder-classifier framework for

framework for sentence sentence relation classification.

classification.

framework for sentence
generation.



Experimental Results

‘ Sentence Classification

Sentence Relation Sentence Generation

Model AGN ARP ARF DBpedia WSR | NLI Conj | Para MT AE

Latent Trees

Gumbel 91.8 87.1 484 98.6 66.7 | 80.4 512 | 204 174 395
+bi-leaf-RNN | 91.8 88.1 49.7 98.7 69.2 | 82.9 537 | 20.5 223 753

(Constituency) Parsing Trees

Parsing 919 875 494 988 66.6 | 81.3 524 | 199 19.1 443
+bi-leaf-RNN | 92.0 88.0 49.6 98.8 68.6 | 82.8 534 | 204 222 729

Trivial Trees

Balanced 92.0 87.7 49.1 98.7 66.2 | 81.1 52.1 | 19.7 19.0 494
+bi-leaf-RNN | 92.1 87.8 49.7 988 69.6 | 82.6 54.0 | 205 223 76.0

Left-branching 919 87.6 485 98.7 67.8 | 81.3 50.9 | 199 19.2 48.0
+bi-leaf-RNN | 91.2 87.6 489 98.6 67.7 | 82.8 533 | 20.6 21.6 729

Right-branching | 91.9 87.7 49.0 98.8 68.6 | 81.0 513 | 204 19.7 54.7
+bi-leaf-RNN | 919 879 494 98.7 68.7 | 82.8 535 209 231 80.4

Linear Structures

LSTM 91.7 &87.8 48.8 98.6 66.1 | 82.6 52.8 | 20.3 19.1 46.9
+bidirectional | 91.77 87.8 49.2 98.7 674 | 82.8 533 | 202 213 67.0

Avg. Length 31.5 33.7 338 20.1 23.1 | 11.2 23.3 | 10.2 34.1 34.1




Experimental Results

Sentence Classification

Sentence Relation

Sentence Generation

Model AGN ARP ARF DBpedia WSR | NLI Conj | Para MT AE
Latent Trees
Gumbel 91.8 87.1 484 98.6 66.7 | 80.4 512 | 204 174 395
+bi-leaf-RNN | 91.8 88.1 49.7 98.7 69.2 | 82.9 53.7 | 20.5 223 753
(Constituency) Parsing Trees
Parsing 919 875 494 988 66.6 | 81.3 524 | 199 19.1 443
+bi-leaf-RNN | 92.0 88.0 49.6 988 68.6 | 82.8 534 | 204 222 729
Trivial Trees Trivial trees
Balanced 92.0 87.7 49.1 98.7 66.2 | 81.1 52.1 | 19.7 19.0 494 "
+bi-leaf-RNN | 92.1 87.8 49.7 98.8  69.6 | 82.6 540 | 205 223 760 WoOTK better!!!
Left-branching 919 87.6 485 98.7 67.8 | 81.3 509 | 199 19.2 48.0
+bi-leaf-RNN | 91.2 87.6 48.9 98.6 67.7 | 82.8 533 | 206 21.6 729
Right-branching | 91.9 877 49.0 988 68.6 | 81.0 513 | 204 19.7 54.7
+bi-leaf-RNN | 919 879 494 98.7 68.7 | 82.8 5351 209 23.1 804
Linear Structures
LSTM 91.7 87.8 48.8 98.6 66.1 | 82.6 52.8 | 20.3 19.1 46.9
+bidirectional | 91.7 87.8 49.2 98.7 674 | 82.8 533 | 202 213 67.0
Avg. Length 31.5 33.7 338 20.1  23.1 | 11.2 233 | 102 34.1 34.1

All experiments are conducted 5 times to get average results.



training work and informati
onization work has also been strengthened in varying
degrees .

ERtEIRIRGHRE overall situation of stability , taking th
e improvement of people 's standard of living as the
basic starting point , and allowing people to continuo
usly reapthe benefits of reform and development --
these are the cornerstones of lasting peace and stab
ility in the nation and an inexhaustible motive force fo
r reform andopening up .

(a) Balanced tree, MT.

work and informati
onization work has also been strengthened in varying
degrees .

stability , taking th
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basic starting point , and allowing people to continuo
usly reapthe benefits of reform and development --
these are the cornerstones of lasting peace and stab
ility in the nation and an inexhaustible motive force fo
r reform andopening up .

(e) Balanced tree, AE.

Visualization

the standing'€ommittée 's training work and informati

onization work has also been strengthened in varying

ERtEIRIAGHRE overall situation of stability , taking th
e improvement of people 's standard of living as the
basic starting point , and allowing people to continuo
usly reapthe benefits of reform and development —
these are the cornerstones of lasting peace and stabi
lity in the nation and an inexhaustible motive force for
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(b) Left-branching tree, MT.

IR8ISIaRGIRG committee 's training work and informati
onization work has also been strengthened in varying

stability , taking th
e improvement of people 's standard of living as the
basic starting point , and allowing people to continuo
usly reapthe benefits of reform and development --
these are the cornerstones of lasting peace and stab
ility in the nation and an inexhaustible motive force fo
r reform andopening up™

(f) Left-branching tree, AE.
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degrees .
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(¢) Right-branching, MT.
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(g) Right-branching, AE.

IREISIEREIRG committee 's training work and informati
onization work has also been strengthened in varying

[EIRERAGHRE overall situation of stability , taking th
e improvement of people 's standard of living as the
basic starting point , and allowing people to continuo
usly reapthe benefits of reform and development --
these are the cornerstones of lasting peace and stab
ility in the nation and an inexhaustible motive force fo
r reform andopening uph

(d) Bi-LSTM, MT.

IRISTERGIRG committee 's training work and informati
onization work has also been strengthened in varying

MEIRERIRGHHE overall situation of stability , taking th
e improvement of people 's standard of living as the
basic starting point , and allowing people to continuo
usly reapthe benefits of reform and development --
these are the cornerstones of lasting peace and stab
ility in the nation and an inexhaustible motive force fo
r reform andopening upll

\ (h) Bi-LSTM, AE.

Figure 7: Saliency visualization of words in learned MT and AE models. Darker means more important

to the sentence encoding.

Left-branching trees pay more attention to left words, but balanced
trees treat all words fairly, and learns the weights by model.




Shallow Trees work Better

Avg. Node Depth Acc. (%)
15 71
10 |
B 68 /
s o
0 65

0 0040608 1 P

(a) p-depth line for WSR.

0 010205 1 P

(b) p-Acc. line for WSR.

Avg. Node Depth BLEU
20 \ 23
10 | o 2 | -
0 21

0 02040608 1 P
(¢) p-depth line for MT.

0 010205 1 p

(d) p-BLEU line for MT.

Avg. Node Depth BLEU
20 \ 78
10 | e 74 - d
T~ /
0 70

0 02040608 1 p
(e) p-depth line for AE.

0 010205 1 p

(f) p-BLEU line for AE.

Figure 5: p-depth and p-performance lines for
three tasks. There 1s a trend that the depth drops
and the performance raises with the growth of p.

Constructing balanced frees
with varying depth.

Shallow frees leads to
better performances.



Tree-Based Convolution
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Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, Zhi Jin. Discriminative
neural sentence modeling by tree-based convolution. In EMNLP, 2015.



Graph Network

Spectral convolution
[Kipf & Welling, 2016]

Spatial convolution

[Duvenaud et al., 2015]

Other graph operations
E.g., attention

[Velickovic et al., 2018]

Graph convolution neural networks can encode the

Hidden layer Hidden layer
\ /
o °® @ °
[s] ® (o]
o (¢]
® ® o

o RelLU o &

) ? _’9_’ ) ’

graph structures as distributed representations.




Summary for Discrete Input Space

e Representing discrete tokens
- Pretrained word embeddings by table lookup
- Pretrained word embeddings within context
e Representing discrete structures
- Trees, graphs, etc.

- Structured CNN, RNN, attention, etc.
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