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Part IV: Discrete Output Space
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Roadmap

e Examples of discrete output space

e Challenges and Solutions of Discrete Output Space

- From Continuous Outputs to Discrete Outputs

» Embedding Matching by Softmax

- Non-differentiable: Difficult for non-MLE training (e.g., GAN)

» RL for Generation
» Gumbel Softmax for Generation

- Exponential Search Space
» Hard for Global Inference
» Hard for Constrained Decoding

e Case Study

- Kernelized Bayesian Softmax
- SeqGAN
- Constrained Sentence Generation with CGMH
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Outputs of NLP Tasks

" Word

X neural networks> S Sentence
Tree
P(Y|X) K Graph



Outputs of NLP Tasks

g

Word

X neural networks> S Sentence
Tree
P(Y|X) K Graph

More complex discrete outputs such as sequence, tree or
graph structures exit in NLP.



Output Sentences

Question Answering
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Output Trees
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Zhou J, Zhao H. Head-driven phrase structure grammar parsing
on Penn treebank, in ACL, 2019.



Roadmap

e Challenges and Solutions of Discrete Output Space

- From Continuous Outputs to Discrete Outputs
» Embedding Matching by Softmax

- Non-differentiable: Difficult for non-MLE training (e.g., GAN)
» RL for Generation
» Gumbel Softmax for Generation

- Exponential Search Space
» Hard for Global Inference
» Hard for Constrained Decoding
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Challenges of the Discrete
Output Space

Discrete outputs, especially the discrete sequence/structure
outputs are non-trivial for handling in neural NLP.



Challenges of the Discrete
Output Space

Discrete outputs, especially the discrete sequence/structure
outputs are non-trivial for handling in neural NLP.

- From Continuous Outputs to Discrete Outputs

- Non-differentiable: fine for MLE but Non-trivial for other
Training such as GAN

- Exponential Search Space
» Hard for Global Inference

» Hard for Constrained Decoding
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Challenges of the Discrete
Output Space

Discrete outputs, especially the discrete sequence/structure
outputs are non-trivial for handling in neural NLP.

- From Continuous Outputs to Discrete Outputs

- Non-differentiable: fine for MLE but Non-trivial for other
Training such as GAN

- Exponential Search Space
» Hard for Global Inference

» Hard for Constrained Decoding

In the next part, we will explain these challenges in detail and give
some solutions.
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Roadmap

e Challenges and Solutions of Discrete Output Space

- From Continuous Outputs to Discrete Outputs
» Embedding Matching by Softmax
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From Continuous to
Discrete Outputs




From Continuous to
Discrete Outputs

How to transform continuous outputs to discrete ¥Y?
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Embedding Matching by
Softmax

A simple sentiment classification case:



Embedding Matching by
Softmax

A simple sentiment classification case:

positive
negative

P(Y|X) softmax(o X W)

16



MLE for Training

Maximum Likelihood Estimation:

mln _<X9Y>diam[_10g pé’(le)]

o(Y'| X)
Y o(Y|X)

Partition function: two possibilities,
namely, positive or negative.

poY'| X) =

17



How about Sequence

I like this tutorial




Exponential Hypothesis Space!

Maximum Likelihood Estimation:

mln _<X9Y>diam[_10g pé’(Y‘X)]

o(Y'| X)
Y o(Y]X)

Calculating partition function directly
requires |

VXY XY XY =
I like this tutorial

polY') =




Exponential Hypothesis Space!

Maximum Likelihood Estimation:

mln _<X,Y>diam[_10g pé’(Y‘X)]

o(Y'| X)
Y o(Y]X)

Calculating partition function directly
requires |

polY') =

But, under certain model structure, it is possible
to compute within tractable time

20



Locally Normalized
Factorization

® Directed, fully-observed Bayesian network:

Decompose the joint distribution as a product
of tractable conditionals:

Given Y= [)71,)72,}73---9yn]

n n
po(Y) = H Po(Yil Y1 Y25 - -5 Yie1) = HP@O’JY«')
i=1 i=1

21



Tractable for Computing by
Step by Step Factorization

G(yi,‘yk y 'yi—l’X)
Zy{ o(y;i|yi-..yi_1, X)

Vocabulary Size

Poyi |y X) =



Parameterization by Neural
Networks

G(yi,‘yl‘ “yi—l’X)

PV |ye;, X) = =——————
- 2001y, X)

Parameterization by RNN



Text Generation as an Example
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Softmax at Each Time Step

Poly; | Vi)

softmax
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Embedding Matching inside the Softmax

softmax
Word Embeddings Probv:;;ii =
apple | QOO0 |~ 05
amazon OOOO ________
rear OO0 1nner-product 0.01

_> > ........
@ softmax

Poyi | y<)) -

tiger |QOOQQ | —
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<BOS 1 Y ¥z W Y,
26




BackPropagation

apple | OOO00 | — 0s | 1
amazon |OOOO| 001
= [0000] |||

tiger |OOOO |—

Cross Entropy
Loss



Structures as Sequence Prediction

S

|
Johnhasadog. — NP /VP\ :

| e N
NNP VBZ NP
/ .
DT NN

John has a dog . — (S (NP NNP )np (VP VBZ (NP DT NN )np )ve . )s

Linearizing the tree structure as a sequence of syntax labels.

Vinyals O, Kaiser t, Koo T, et al. Grammar as a foreign language,

in NIPS, 2015. ,



Learning and Predicting Trees as

a Sequence
(S (VP XX VP : )S END

LSTM3 | —— LSTM3. .

T T T T T T T T T
LSTMZ2 | — LSTM?Z .

T T T T T T T T T
LSTM!  |—— LSTMZ

T T T T 0 0 0 0 0

: Go END (S (VP XX VP ' )S

Modeling the syntax parsing problem as a sequence to sequence
prediction.

Vinyals O, Kaiser t, Koo T, et al. Grammar as a foreign language,
in NIPS, 2015. 29



Roadmap

e Challenges and Solutions of Discrete Output Space

- Non-differentiable: Difficult for non-MLE training (e.g., GAN)
» RL for Generation
» Gumbel Softmax for Generation
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Non-Differentiable Problem

neural networks

X

P(Y|X)



Non-Differentiable

» Fine for MLE but Non-trivial for other Training such
as GAN.

neural networks

X >

P(Y|X)

32



What’s GAN ?

Generative Adversarial Networks:

chi;Il mgx L(D, G) — ":a:rvp,,.(a:) lOg D(ZU)

— 'Ea:fvpf,«(a:) :lOg D(CB)

33



Generator vs. Discriminator

Generative Adversarial Networks:

m(i;n mgx L(D,G) = Lamop, (z) log D(x)] + 'Ezrvpz(z)[log(l — D(G(2)))]
+ {":crvpg(cc) [lOg(]. _ D(CB)]

=Eyrp, (2) log D(x)

Discriminator Generator

34



Objective Revisit

Generative Adversarial Networks:

minmax L(D,G) = E

G

D

“x~p, ()

~LLI:Np,,n(:I;)

log D(x)

log D(x)

_|_
_I_

ﬂzwpz(z) [log(l — D(G(Z)))]

ﬂwwpg(x)[log(l _ D(CE)]

Discriminator

35



Objective Revisit

Generative Adversarial Networks:

mCi¥n mgx L(D, G) ﬂwNpr(m) :log D(CB)

Lonp, (z) 108 D(2)

Generator

36



BackPropagation Fails

mén mle)mx L(D,G) = Lo, () log D(z) L ~op, (2) log(1 — D(G(2)))]
-+ ﬂwrvpg(a:) [log(l - D(x)]

— ﬂwwp,,.(a:) lOg D(m)

Text is discrete, hard to propagate
gradients from D to G |

37



Using RL or Gumbel Softmax

The same techniques used in dealing with the latent
space such as RL or Gumbel softmax could also be
adopted for handling the discrete output space.

38



Roadmap

e Challenges and Solutions of Discrete Output Space

- Exponential Search Space
» Hard for Global Inference
» Hard for Constrained Decoding
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Exponential Hypothesis Space

Figure from Liang Huang’s slides



Hard for Global Inference

e |nference for decoding

- Hard to yield the best scored output in the exponential
space

e Inference in training (globally normalized model)

- Non-trivial to compute the partition function

41



Inference for Decoding

Exponential search
space

Figure from Liang Huang’s slides



Beam Search

n

arg max log p,(Y| X) = arg max Z log po(y; |y~ X)
YEBEAM YEBEAM ;_;

Heuristic search —>
{: /7

by beam search =

Figure from Liang Huang’s slides



Inference In Training

Maximum Likelihood Estimation:

min E_y ys., [—log po(Y|X)]

o(Y'| X)
YG(Y\X)

(Y') =
Po Z

Calculating partition function directly
requires exponential timel

44



Approximated Globally Normalized
Model

Maximum Likelihood Estimation:

min E_y ys., [—log po(Y|X)]

45



Inference In Training

Maximum Likelihood Estimation:

min E_y ys., [—log po(Y|X)]

Contrastive divergence using
beam search as sampling

46



Inference In Training

Global Normalized Structured Prediction:

min E_y ys., [—log po(Y|X)]

o(Y'| X)
o(Y|X)

poY ) =
ZYEBEAM

Contrastive divergence using beam search as sampling

Hao Zhou, Yue Zhang, Shujian Huang and Jiajun Chen. A neural probabilistic
structured-prediction model for transition-based dependency parsing, in ACL, 2015.

Daniel Andor, Chris Alberti, David Weiss, et al., 2016. Globally normalized transition-based

neural networks, in ACL, 2016.
Wiseman S, Rush A M. Sequence-to-sequence learning as beam-search optimization,

in EMNLP, 2016. 47



Challenges of Discrete
Output Structures

- Exponential Search Space

» Hard for Constrained Decoding

48



Constrained Decoding

Constrained Decoding:

argmax  py(Y|X),

Y
s.tl. Y satisty C = {Cl, C,, ..., Cn}

The decoding outputs should satisfy a set of constraints.

49



Constraints Definition

* Generating sentence satisfying constraints:
* Hard constrains:

—E.g. Juice -> Brand natural juice, specially made for
you

50



Constraints Definition

* Generating sentence satisfying constraints:

e Soft constrains:

—E.g. The movie is a great success -> It is one of my
favorite movies

51



Beam search over the Search Space




Vanilla Beam Search Fails

Desired outputs
satisfying constraints




Vanilla Beam Search Fails

Desired Outputs
satisfying constraints

Vanilla beam search may hardly find the
desired outputs under specific constraints.
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Advanced Approaches



Targets of Constrained
Decoding

Target Distribution of Constrained Decoding:

ﬂ(Y)—Hpg(yl\y<l) X H pc(Y)

Density of The orlglnal
model

56



No Direct Sampling Method

Target Distribution of Constrained Decoding:

ﬂ(Y)—Hpg(yl\y<,) X H pc(Y)

Density of ’rhe orlglnal
model

However, 7(Y) is quite high dimensional, and no
direct sampling method.

o7



Generation by Sampling

The constrained decoding problem turns to be sampling
instances from a high dimensional distribution.

58



Generation by Sampling

The constrained decoding problem turns to be sampling
instances from a high dimensional distribution.

Ning Miao, Hao Zhou, Lili Mou, Lei Li and Ruin Yan, CGMH: Constrained
Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

59



Main ldea of CGMH

* Instead of sampling from z(x) directly, generating
samples iteratively:

—Starting with initial keywords
—next sentence based on modification of previous
—action proposals to modify the sentences

* Metropolis-Hastings Algorithm

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.



Generation by Local Changes

e Suppose we have a blueprint

The  book iIs interesting <EOS>

61



Generation by Local Changes

e Suppose we have a blueprint

The  book iIs interesting <EOS>

“The.. book is interesting <EOS>
This
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Generation by Local Changes

e Suppose we have a blueprint

The  book iIs interesting <EOS>

“The.. book is interesting <EOS>
This A

quite
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Generation by Local Changes

e Suppose we have a blueprint

The  book iIs interesting <EOS>

fascinating

“The.. book is _intefesting <EOS>
This A

quite

64



Metropolis Hastings Sampling

Metropolis-Hastings(MH) perform sampling by first proposes a
transition, and then accepts or rejects the transition.

A(xllxt—l) State 1
. m(x") - g(xe_q]x") State 2
= mln(l’ / State 3
m(xe—1) - g(x'|xe—1)
State 4
g is proposal distribution Target 4

Distribution

65



Metropolis—Hastings Sampler

 Algorithm
- Start from an arbitrary initial state x©)

- Forevery step f

g(x'| x): arbitrary proposal distribution

Propose a new state x’ ~ g(x’| x")

1,P(X’)g(x(” | x) e,
px)g(x’| x®)

Accept X' W.p. A(x'|x) = min {

x(t+1) R

Reject x’ otherwise, i.e., x'D = x®

- Return x"¥ with a large ¢

66



CGMH

CGMH performs constrained generation by:
1. Pretrain Language Model prob;
2. Start from a initial sentence;

3. Propose a new action and /reject the action.

67



CGMH: Action Proposal

»We use MH algorithm to sample from m(x)
* From a sentence x;_,, We propose an action on one
word of x;_;.

* Actions include:
: change a word to another one

2. Insertion: add a word
: remove a word

68



CGMH: Acceptance Ratio

e Calculate the acceptance rate:

/ _ - n(x,)'g(xt—llx’)
ACbre-a) = min(h e =5 oo ey

* Accept x" with probability A(x'|x;_q1)

69

@I senten@

Select a position of sentence x¢—4

;

Select an action on x;_4

~ * = ~
~ - I = ~N
- ~ | ~
-~ b ~N
&« v ~
-
Replacement Insertion Deletion

Calculate acceptance rate A(x'|x¢—1)

A 4

(

Accept / Reject x' according to A
ACx|xg-1)

Accept: x; = x'

Reject: x¢ = Xt—q y

Generated sentences x;




Proof Sketch (Cont.)

e MH Sampler satisfies detailed balance

| p(y)gx|y) } )

- Vx,y, ifx#y, PO T =p)-g(y]x)- mm{ P08 %)

pO) - T oo = p(y) - g(x]y) - min { RASRASIED } 2)
p(y)gx|y)

- W.L.O.G., we assume p(x)g(v|x) > p(y)g(x|y)
(1) =pQ) - gx]|y)
2) =pQ) - gx]|y)

- Vx,y,ifx =y, p0)I ., =p(y)T,_, also holds

70



Case Study

e Embedding Matching by softmax
- Kernelized Bayesian Softmax
* RL for Generation
- SeqGAN
 Generation by Sampling
- Constrained Sentence Generation with CGMH

- Generating Adversarial Examples for Natural
Languages

/1



Case Study 1

* Embedding Matching by Softmax

- Kernelized Bayesian Softmax

(2



Kernelized Bayesian Softmax



Kernelized Bayesian Softmax

KerBS: Kernelized Bayesian Softmax

Px,=1) = 2 P(x, = s{)

j€0,1,....N;

eXp(‘%Qlj(hta WZJ))

where P(x, = S{) =

N, CXPp (‘%QIQ’(hta W]’g))

K oh,e)=|h||e|(aexp(=0 cos(h,e)) —a)

Here h is hidden state, e is embedding, @ is a parameter controlling the embedding
—0
variances of each sense and a = is a normalization factor.

2(exp(—0) + 0 — 1))

Ning Miao, Hao Zhou, Chengqgi Zhao, Wenxian Shi and Lei Li, Kernelized
Bayesian Softmax for Text Generatian, in NeurlPS, 2019.



Why KerBS?

Word2Vec BERT
Cateaor Context Context
gory Independent Dependent
Capacity Low High
Performance Bad Good

Motivated by BERT, we may need context dependent
embedding for text generationl

75



Text Generation as Matching

Text Generation is Embedding Matching

Word Embeddings Prob"gffl -
Context Independent amazon R
Embedding rear [OOO0O 1_rm€:l”e-9p roduct X 001

softmax 0.02

tiger | OOQO0Q | —

want to eat dan

Nottorore ol
rr 11

decoder

want to eat dn

/0



Bottleneck of Text Generation

Bottleneck of text generation is the softmax

Embedding matrix in softmax should
have larger capacity.

i’



Intuitive Motivation

Multi-Sense & Varying Variances




Visualization of BERT

Multi-Sense & Varying Variances

’c.o.. ve *° "“ . -
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IR I L -\ A S o o A% ok
. v . X 4 ¢ F vy A‘
.‘.. e o g0 LPse o °
2 ‘e M'. AL % ™ . A
" ..‘.‘c oo ..‘g..‘.' " .
TR S 4
e .'..c:.' o.: s e "R
. g o." ... S A
* ., ...o A
e’ A
M

(a) computer (b) monitor (¢) car and

Softmax can handle this situation
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Visualization of BERT

Multi-Sense & Varying Variances
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M

(a) computer (b) monitor (¢) car and

Softmax can’t handle multisense.
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Visualization of BERT

Multi-Sense & Varying Variances

XTI o7
u Y U -
TR NPT ‘--1.. wig it "’
FORRRE Zov. b
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) e o0 ',"' 27,0 A
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(a) computer (b) monitor (¢) car and

Softmax can’t handle multisense and varying variances.
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KerBS - Multisense

Each word may have several senses. KerBS
allocates a vector for each sense.

3
Ol =
O

apple 05 0.6 |apple

@,
@,
O
O

softmax |_0_|aggregate
—»|0.01] —»|0.02| amazon

amazon

OI10
OI10
OO
OO
OO0 OO =

O
- Q
O
O

tiger | OOQOQ0O O] 0 0 [tiger
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KerBS - Multisense

After getting the probabilities of each sense,
KerBS sums up all sense probabilities of same
word.

Px,=1) = Z P(x, = Slj)

jeo,1,....N,

83



KerBS - Varying Variances



KerBS - Varying Variances

The distribution of each word's output vectors have different variances.
We use a variable kernel to represent varying variances.

CXP (% Qg(hp W{))
Zk Zreo,l N, eXp(‘%QI’g(hta W]lé))

K oh,e)=|h||e|(aexp(—0 cos(h,e)) —a)

P(x, = S{) =

ooooo

Note that when 8 — 0, % 4(h,e) — |h||e| cos(h, e), which is regular
Euclidean norm!

85



KerBS - Varying Variances

The distribution of each word's output vectors have different
variances. We use a variable kernel to represent varying variances.

I‘ 1.75

alue

S o
203
Kernel v

(=]
o
o

-1.00
-0.50

El’nbeddp.oo

0.50
ng SpaCe 1.00-1.00

(b6 =2

Figure 2: Kernel shapes of different 6.
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How to decide the sense
number of each word?

Dynamically change each word's sense number while training.
Delete senses that are less used. senses to words which
are not well fitted.

87




Dynamic Allocation

KerBS
Kernel p p
— OOWOO g ) word
0.1
apple 00001 O 05 0.6 |apple
copy |
Decoder OOOO| O Tsoftmax [Lo_|aggregate
t \ amazon [QQQO] O w122 =t o
OOOO O | : amazon
| {want] a |red] MASK :
T mask : : :
L Lwant redfappid tiger OOOO O:l 0 0 |tiger
query embedding get “apple” embedding

QOO0 O ]

PPle [BO00
weighted sum
to eat

an A\ m‘/




Theoretical Guarantee

Lannml

‘ji KerBS has the ability to learn the multi-sense property. If the real ,
¥ distribution of context vectors consists of several disconnected |
¢ clusters, KerBS will learn fo represent as many as these clusters

l Lemma 2 ;

' KerBS has the ability to learn model variances. For distributions
| with larger variances, KerBS learns larger 6.

89



Experiments-Setting

We test KerBS on 3 fext generation tasks:

1. Machine Translation (MT) is conducted on IWSLT 16 De-En,
which contains 196k pairs of sentences for training.

2. Language modeling (LM) is included. Following previous work,
we use a 300K, 10k and 30k subset of One-Billion-Word
Corpus for training, validating and tfesting.

3. Dialog generation (Dialog) is also included. We employ the
DailyDialog dataset for experiment.

90



Main Results

Table 1: Performance of KerBS on Seq2Seq.

Tasks Metrics Seq2Seq Seq2Seq+ MoS [Yang et al.; 2018] SeqSeq + KerBS
MT BLEU-4 25.91 26.45 ) 27.28

LM PPL 103.12 102.72 102.17
Dialog BLEU-1 16.56 13.73 17.85

Human Eval. 1.24 1.04 1.40
Table 2: Performance of KerBS on Transformer.

Tasks Metrics Transformer | Transformer + MoS [Yang et al.|[2018]] | Transformer + KerBS
MT BLEU-4 29.61 28.54 ) 30.90

Dialog BLEU-1 10.61 9.81 10.90

91



Case Study 2

e RL for Generation

- SeqGAN



SeqGAN

G Next MC D

. ©-0-0-0-0 action  search

«m, True data: 00000 ! )

’9 >0-0-0-0-0 : Reward
- O~-O0-0-0-0 ! . State

Real World . 00000 | T, V —— Reward

; ! raln> D :
E.'...E E Reward

G Generate : 0—0—0—0—0: '
»>0-0-0-0-0 . :
. 0-0-0-0-0 : Reward
. 0-0-0-0-0 : |

Policy Gradient

Directly applying RL to use Discriminator outputs
as reward for updating Generator.
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BackPropagation Fails

* Sentence is discrete, BP fails in such case
e RL
e Gumbel Softmax

Variance of gradient is very large! |
\Hard for training :( |

94



RL for Text Generation

GANSs for text
generation

Strategies to deal
with discontinuity

Policy Gradient

Gumbel Softmax

AAE (Adversarial
Autoencoder)

GAN models

SeaGAN: First GAN on discrete sentence space.
v
RankGAN: Use rank information to mitigate gradient vanishing.

v
LeakGAN: Use feature extracted by D to guide G.

GumbelGAN: Use Gumbel-trick to handle discontinuity.
v

TextGAN: Use feature matching for training.

v
ReIC;SAN: Build stronger D and G. The first practical Gumbel GAN.
LATEXT-GAN: Combines Gumbel GAN and AAE

ARAE: Perform GAN on embedding space.
v
LATEXT-GAN : Combines Gumbel GAN and AAE

95



MLE Outperforms different
GAN Variants

Model NLL,,qcle 12 cor
SeqGAN (Yu et al., 2017) 8.74 » SeqGAN ——
RankGAN (Lin et al., 2017) 825 e
LeakGAN (Guo et al., 2017) 7.04 310 MLE —
IRL (Shi et al., 2018) 6.91 g
MLE (o = 1.0) 9.40 9
MLE (o = 0.4) 5.50
MLE (o = 0.001) 4.58 °
6 7 8 9 10 11
Table 2: NLL,,,ce measured on the synthetic task NLL oracle

(lower is better). All results are taken from their re-
spective papers. An MLE-trained model with reduced ) , ;
o . metrics (lower is better for both metrics) for the syn-
temperature easily improves upon these GAN variants, : : )
. o the hi . thetic task. The GAN cross-validated on quality only
producing the highest quality sample. lies outside the figure because of severe mode collapse.

Figure 3: Effect of temperature tuning on the global

Caccia M, Caccia L, Fedus W, et al. Language gans falling short[J].
arXiv preprint arXiv:1811.02549, 2018.
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Case Study 3

 Generation by Sampling
- Constrained Sentence Generation with CGMH

- Generating Adversarial Examples for Natural
Languages
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Advertisement Slogan by
Constrained Generation

Keywords from Advertiser Advertisement Slogan

Rin clothes bright »
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Sampling in Sentence Space

CGMH performs Metropolis-Hastings sampling directly in sentence space:
Step |Action Acc/Rej |Sentences

0 Input] BMW sports

1 nsert Accept  |BMW sports car

2 nsert Accept  |BMW the sports car

6 Insert Accept |BMW, the sports car of daily life

7/ Accept  |BMW , the sports car of future life

8 nsert Accept  |BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept |BMW, the sports car of the future life
11 Output] BMW , the sports car of the future

Miao et al., CGMH: Constrained Sentence Generatn by Metropolis-Hastings Sampling, in AAAI, 2019.
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Cases of Keyword to
Sentences

Keyword(s) Generated Sentences

friends My good friends were in danger .
project The first project of the scheme .
have, trip But many people have never

made the trip .

lottery, scholarships

But the lottery has provided

scholarships .
decision, build, The decision 1s to build a new
home home .

attempt, copy,
painting, denounced

The first attempt to copy the
painting was denounced .
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Paraphrase Generation

Model BLEU-ref | BLEU-ori | NLL
Origin Sentence 30.49 100.00 7.73
VAE-SVG (100k) 22.50 - -
VAE-SVG-eq (100k) 22.90 - -
VAE-SVG (50k) 17.10 - -
VAE-SVG-eq (50k) 17.40 - -
Seq2seq (100k) 22.79 33.83 6.37
Seq2seq (50k) 20.18 27.59 6.71
Seq2seq (20k) 16.77 22.44 6.67
VAE (unsupervised) 9.25 27.23 1.74
CGMH w/o matching 18.85 50.28 7.52
w/ KW 20.17 53.15 7.57
w/ KW + WVA 20.41 53.64 7.57
w/ KW + WVM 20.89 54.96 7.46
w/ KW + ST 20.70 54.50 7.78

Type | Examples
Ori | what ’s the best plan to lose weight
Ref | whatis a good diet to lose weight
Gen | what ’s the best way to slim down quickly

Ori | how should i control my emotion
Ref | how do 1 control anger and impulsive emotions
Gen | how do i control my anger

Or1 | why do my dogs love to eat tuna fish
Ref | why do my dogs love eating tuna fish
Gen | why do some dogs like to eat raw tuna and raw fish
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Adversarial Example for Text

Genem‘rmg adversarial example for text is hard! i
|Because the text space is discrete, which is non- | |
Trlvual Yo apply adversarial gradients! |

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.
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CGMH for Generating Fluent
Adversarial Examples

i reglly like this movie —| b 99% Positive &
i truely like tl;is movie — —» 82% Positive (&
I truely like the movie — Se”""T‘?”t —»76% Positive (&
Y Classifier

we truely like the mo'vie — —» 68% Positive (&
we truely like the show — —#59% Negative (**

Huangzhao Zhang, Hao Zhou, Ning Miao and Lei Li. Generating
Fluent Adversarial Examples for Natural Languages, in ACL, 2019..
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CGMH for Generating Fluent
Adversarial Examples

1.0 R R e Teree 1.0-
'/"",‘ CMeeresenszat
S eSS
0.8 :' ./' 0.8 ...."/.4"
F A e
Q s Q Ay
w061 |/ S 061 I
= | = 2!
O i O -]
5 0.41 ;/ 5041 ij
b i Genetic D Genetic
0.2{ :f —— b-MHA 0.2 —— b-MHA
L w-MHA I w-MHA
0.011 | | | 0.0 ! | | |
0 2000 4000 6000 0 2000 4000 6000
Invocation # Invocation #
(a) IMDB (b) SNLI

Huangzhao Zhang, Hao Zhou, Ning Miao and Lei Li. Generating
Fluent Adversarial Examples for Natural Languages, in ACL, 2019.. 114



CGMH for Generating Fluent
Adversarial Examples

Task  Approach Succ(%) Invok# PPL (%)

Genetic 08.7 1427.5 421.1 —
b-MHA 08.7 1372.1 3856 179
w-MHA 99.9 748.2 375.3 344
Genetic 76.8 971.9 834.1 —
b-MHA 86.6 681.7 358.8 9.7
w-MHA 88.6 525.0 3324 13.3

SNLI | IMDB

Huangzhao Zhang, Hao Zhou, Ning Miao and Lei Li. Generating
Fluent Adversarial Examples for Natural Languages, in ACL, 2019..
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Conclusion of the Tutorial
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Conclusion of the Tutorial

 Neural networks are good

e Natural language is discrete (Input, latent, output
spaces)

- Representation learning
- Non-differentiability

- Exponential search space
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Thank You



