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Part IV: Discrete Output Space
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• Examples of discrete output space


• Challenges and Solutions of Discrete Output Space

- From Continuous Outputs to Discrete Outputs

‣ Embedding Matching by Softmax


- Non-differentiable: Difficult for non-MLE training (e.g., GAN)

‣ RL for Generation

‣ Gumbel Softmax for Generation


- Exponential Search Space

‣ Hard for Global Inference

‣ Hard for Constrained Decoding


• Case Study

- Kernelized Bayesian Softmax

- SeqGAN

- Constrained Sentence Generation with CGMH

Roadmap



Outputs of NLP Tasks

X Y
neural networks

P(Y |X)
`

Word 
Sentence 
Tree  
Graph 

…
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Outputs of NLP Tasks

X Y
neural networks

P(Y |X)
`

Word 
Sentence 
Tree  
Graph 

…

More complex discrete outputs such as sequence, tree or 
graph structures exit in NLP.
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Output Sentences

Machine Translation ChatBOT 

Question Answering
Machine Writing
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Output Trees

Zhou J, Zhao H. Head-driven phrase structure grammar parsing 
on Penn treebank, in ACL, 2019.7
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Challenges of the Discrete  
Output Space

Discrete outputs, especially the discrete sequence/structure 
outputs are non-trivial for handling in neural NLP. 
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Challenges of the Discrete  
Output Space

- From Continuous Outputs to Discrete Outputs


- Non-differentiable: fine for MLE but Non-trivial for other 
Training such as GAN


- Exponential Search Space


‣ Hard for Global Inference


‣ Hard for Constrained Decoding

Discrete outputs, especially the discrete sequence/structure 
outputs are non-trivial for handling in neural NLP. 
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Challenges of the Discrete  
Output Space

- From Continuous Outputs to Discrete Outputs


- Non-differentiable: fine for MLE but Non-trivial for other 
Training such as GAN


- Exponential Search Space


‣ Hard for Global Inference


‣ Hard for Constrained Decoding
In the next part, we will explain these challenges in detail and give 
some solutions.

Discrete outputs, especially the discrete sequence/structure 
outputs are non-trivial for handling in neural NLP. 
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• Examples of discrete output space


• Challenges and Solutions of Discrete Output Space

- From Continuous Outputs to Discrete Outputs
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12



From Continuous to 
Discrete Outputs

X Y

P(Y |X)
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From Continuous to 
Discrete Outputs

X Y

P(Y |X)

How to transform continuous outputs to discrete Y?
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Embedding Matching by 
Softmax

A simple sentiment classification case:
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Embedding Matching by 
Softmax

P(Y |X) softmax(o × W )

positive
negativeX Y =

A simple sentiment classification case:
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MLE for Training

   

pθ(Y′�|X) =
σ(Y′�|X)

∑Y σ(Y |X)

min 𝔼<X,Y>∼pdata
[−log pθ(Y |X)]

Maximum Likelihood Estimation:

Partition function: two possibilities, 
namely, positive or negative. 
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How about Sequence

P(Y |X)

X Y = I   like  this  tutorial 
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Exponential Hypothesis Space!

   

Calculating partition function directly 
requires exponential time! 

I       like    this   tutorial 
𝒱 𝒱 𝒱 𝒱× × × = 𝒱4

pθ(Y′�) =
σ(Y′�|X)

∑Y σ(Y |X)

min 𝔼<X,Y>∼pdata
[−log pθ(Y |X)]

Maximum Likelihood Estimation:
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Exponential Hypothesis Space!

Calculating partition function directly 
requires exponential time! 

pθ(Y′�) =
σ(Y′�|X)

∑Y σ(Y |X)

min 𝔼<X,Y>∼pdata
[−log pθ(Y |X)]

Maximum Likelihood Estimation:

But, under certain model structure, it is possible 
to compute within tractable time
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Decompose the joint distribution as a product 
of tractable conditionals:

Given Y = [y1, y2, y3 . . . , yn]

• Directed, fully-observed Bayesian network:

pθ(Y ) =
n

∏
i=1

pθ(yi |y1, y2, . . . , yi−1) =
n

∏
i=1

pθ(yi |y<i)

Locally Normalized 
Factorization

y1 y2 y2…
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Tractable for Computing by  
Step by Step Factorization

pθ(y′ �i |y<i, X) =
σ(y′�i |y1…yi−1, X)

∑y′�i
σ(yi |y1…yi−1, X)
Vocabulary Size

Tractable for computing 
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Parameterization by Neural 
Networks

pθ(y′ �i |y<i, X) =
σ(y′�i |y1…yi−1, X)

∑y′�i
σ(yi |y1…yi−1, X)

Parameterization by RNN 
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pθ(yi |y<i)

<BOS>

…

y1 y2 y3

y2 y3

y4 yn

<EOS>y1 y4 y5

Text Generation as an Example
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Softmax at Each Time Step

softmax

<BOS>

…

y1 y2 y3

y2 y3

y4 yn

<EOS>y1 y4 y5

pθ(yi |y<i)
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Embedding Matching inside the Softmax

apple

amazon

pear

…
…

Word Embeddings

inner-product

0.8

0.01

0.02

…

Word  
Probability

tiger

softmax

softmax

pθ(yi |y<i)

<BOS

…

y1 y2 y3

y2 y3

y4 yn

<EOSy1 y4 y5
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BackPropagation

<BOS>

…

y1 y2 y3

y2 y3

y4 yn

<EOS>y1 y4 y5

apple

amazon

pear

…
…

0.8

0.01

0.02

…
tiger

1

0

0

…

Cross Entropy 
Loss
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Structures as Sequence Prediction

Linearizing the tree structure as a sequence of syntax labels.

Vinyals O, Kaiser Ł, Koo T, et al. Grammar as a foreign language, 
in NIPS, 2015. 28



Learning and Predicting Trees as 
a Sequence

Modeling the syntax parsing problem as a sequence to sequence 
prediction.

Vinyals O, Kaiser Ł, Koo T, et al. Grammar as a foreign language, 
in NIPS, 2015. 29



• Examples of discrete output space


• Challenges and Solutions of Discrete Output Space

- From Continuous Outputs to Discrete Outputs

‣ Embedding Matching by Softmax
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Non-Differentiable Problem

X Y
neural networks

P(Y |X)
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Discriminator

Non-Differentiable

‣ Fine for MLE but Non-trivial for other Training such 
as GAN.

X Y
neural networks

P(Y |X)
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What’s GAN ？

Generative Adversarial Networks:

z

x
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Generator vs. Discriminator 

Generative Adversarial Networks:

z

x

Generator Discriminator 34



Objective Revisit

Generative Adversarial Networks:

Discriminator 
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Objective Revisit

Generative Adversarial Networks:

Generator 
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BackPropagation Fails

Text is discrete, hard to propagate 
gradients from D to G ! 
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Using RL or Gumbel Softmax

The same techniques used in dealing with the latent 
space such as RL or Gumbel softmax could also be 
adopted for handling the discrete  output space.
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• Examples of discrete output space


• Challenges and Solutions of Discrete Output Space

- From Continuous Outputs to Discrete Outputs

‣ Embedding Matching by Softmax
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Exponential Hypothesis Space

Figure from Liang Huang’s slides



Hard for Global Inference

• Inference for decoding


- Hard to yield the best scored output in the exponential 
space


• Inference in training (globally normalized model) 


- Non-trivial to compute the partition function
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Inference for Decoding
arg max

Y
log pθ(Y |X) = arg max

Y

n

∑
i=1

log pθ(yi |y1, y2, . . . , yi−1, X) = arg max
Y

n

∑
i=1

log pθ(yi |y<i, X)

Exponential search 
space 

Figure from Liang Huang’s slides



Beam Search

Heuristic search 
by beam search 

Figure from Liang Huang’s slides

arg max
Y∈BEAM

log pθ(Y |X) = arg max
Y∈BEAM

n

∑
i=1

log pθ(yi |y<i, X)



pθ(Y′�) =
σ(Y′�|X)

∑Y σ(Y |X)

min 𝔼<X,Y>∼pdata
[−log pθ(Y |X)]

Maximum Likelihood Estimation:

Inference in Training

Calculating partition function directly 
requires exponential time! 
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pθ(Y′�) =
σ(Y′�|X)

∑Y σ(Y |X)

min 𝔼<X,Y>∼pdata
[−log pθ(Y |X)]

Maximum Likelihood Estimation:

∑
Y∈BEAM

σ(Y |X)

Approximated Globally  Normalized 
Model 
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pθ(Y′�) =
σ(Y′�|X)

∑Y σ(Y |X)

min 𝔼<X,Y>∼pdata
[−log pθ(Y |X)]

Maximum Likelihood Estimation:

∑
Y∈BEAM

σ(Y |X)Contrastive divergence using 
beam search as sampling 

Inference in Training
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pθ(Y′�) =
σ(Y′�|X)

∑Y∈BEAM σ(Y |X)

min 𝔼<X,Y>∼pdata
[−log pθ(Y |X)]

Global Normalized Structured Prediction:

Contrastive divergence using beam search as sampling 

Daniel Andor, Chris Alberti, David Weiss, et al., 2016. Globally normalized transition-based 
neural networks, in ACL, 2016.

Hao Zhou, Yue Zhang, Shujian Huang and Jiajun Chen. A neural probabilistic 
structured-prediction model for transition-based dependency parsing, in ACL, 2015.

Wiseman S, Rush A M. Sequence-to-sequence learning as beam-search optimization, 
in EMNLP, 2016.

Inference in Training

47



Challenges of Discrete 
Output Structures

- From Continuous Outputs to Discrete Outputs


- Non-differentiable: fine for MLE but Non-trivial for other 
Training such as GAN


- Exponential Search Space


‣ Hard for Global Inference


‣ Hard for Constrained Decoding
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Constrained Decoding

arg max
Y

pθ(Y |X),

Constrained Decoding:

s.t. Y C = {C1, C2, …, Cn}

The decoding outputs should satisfy a set of constraints.

satisfy

49



Constraints Definition
• Generating sentence satisfying constraints:

• Hard constrains: Keyword must occur in sentences
–E.g. Juice -> Brand natural juice, specially made for 

you
• Soft constrains: Semantically similar to a given 

sentence (paraphrase)
–E.g. The movie is a great success -> It is one of my 

favorite movies
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Constraints Definition
• Generating sentence satisfying constraints:

• Hard constrains: Keyword must occur in sentences
–E.g. Juice -> Brand natural juice, specially made for 

you
• Soft constrains: Semantically similar to a given 

sentence (paraphrase)
–E.g. The movie is a great success -> It is one of my 

favorite movies
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Beam search over the Search Space

52



Vanilla Beam Search Fails

Desired outputs 
satisfying constraints  
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Vanilla Beam Search Fails

Desired Outputs 
satisfying constraints  

Vanilla beam search may hardly find the 
desired outputs under specific constraints.
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Advanced Approaches
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Targets of Constrained 
Decoding

π(Y) = Π
i

pθ(yi |y<i) × Π
C∈C

pC(Y)

Target Distribution of Constrained Decoding:

Density of the original 
model

Indicator functions 
for constraints
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No Direct Sampling Method  

π(Y) = Π
i

pθ(yi |y<i) × Π
C∈C

pC(Y)

Target Distribution of Constrained Decoding:

Density of the original 
model

Indicator functions 
for constraints

However,  is quite high dimensional, and no 
direct sampling method.

π(Y)
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Generation by Sampling

The constrained decoding problem turns to be sampling 
instances from a high dimensional distribution. 
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Generation by Sampling

The constrained decoding problem turns to be sampling 
instances from a high dimensional distribution. 

Ning Miao, Hao Zhou, Lili Mou, Lei Li and Ruin Yan, CGMH: Constrained 
Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.
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Main Idea of CGMH
• Instead of sampling from  directly, generating 

samples iteratively: 
–Starting with initial keywords
–next sentence based on modification of previous
–action proposals to modify the sentences

• Metropolis-Hastings Algorithm

 𝜋(𝑥)

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.60



Generation by Local Changes

• Suppose we have a blueprint

The book is <EOS>interesting
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Generation by Local Changes

The book is <EOS>interesting

• Suppose we have a blueprint

This

The book is <EOS>interesting
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Generation by Local Changes

The book is <EOS>interesting

• Suppose we have a blueprint

This

quite

The book is <EOS>interesting
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Generation by Local Changes

The book is <EOS>interesting

• Suppose we have a blueprint

This

quite

fascinating

The book is <EOS>interesting

64



Metropolis Hastings Sampling

Metropolis-Hastings(MH) perform sampling by first proposes a 
transition, and then accepts or rejects the transition.  

! "# "$%&
= min	(1, / "# · 1 "$%& "#

/ "$%& · 1 "# "$%&
)

g is proposal distribution


State 1

State 4

State 3

State 2

Target 
Distribution
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• Algorithm 

- Start from an arbitrary initial state 


- For every step 


 Propose a new state 


 Accept  w.p.  , i.e., 




 Reject  otherwise, i.e., 


- Return  with a large 

x(0)

t
x′� ∼ g(x′ �|x(t))

x′� A(x′�|x) = min {1,
p(x′�)g(x(t) |x′ �)
p(x)g(x′�|x(t)) }

x(t+1) = x′�
x′� x(t+1) = x(t)

x(t) t

Metropolis—Hastings Sampler

: arbitrary proposal distributiong(x′�|x)
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CGMH

CGMH performs constrained generation by:

1. Pretrain Language Model prob;


2. Start from a initial sentence; 


3. Propose a new action and accept/reject the action.
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CGMH:  Action Proposal

ØWe use MH algorithm to sample from	" #
• From a sentence #$%&, we propose an action on one 

word of #$%&.
• Actions include:

1. Replacement: change a word to another one
2. Insertion: add a word
3. Deletion: remove a word 
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CGMH:  Acceptance Ratio

• Calculate the acceptance rate:
! "# "$%& = min	(1, / 01 ·3 "$%& "#

/ 0456 ·3 "# "$%& )

• Accept "# with probability ! "# "$%&
Replacement Insertion Deletion

Generated sentences !"

Initial sentence !#

Select  a position of sentence !"$%

Select an action on !"$%

Accept / Reject !& according to 
'(!&|!"$%)
Accept: !" = !&
Reject: !" = !"$%

Calculate acceptance rate '(!&|!"$%)
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• MH Sampler satisfies detailed balance


- 


- W.L.O.G., we assume    


 


 


- , if ,  also holds

∀x, y,  if x ≠ y,

p(x)g(y |x) ≥ p(y)g(x |y)

(1) = p(y) ⋅ g(x |y)

(2) = p(y) ⋅ g(x |y)

∀x, y x = y p(x)𝒯x→y = p(y)𝒯y→x

Proof Sketch (Cont.)

p(y) ⋅ 𝒯y→x = p(y) ⋅ g(x |y) ⋅ min {1,
p(x)g(y |x)
p(y)g(x |y) }

p(x) ⋅ 𝒯x→y = p(x) ⋅ g(y |x) ⋅ min {1,
p(y)g(x |y)
p(x)g(y |x) } (1)

(2)
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Case Study
• Embedding Matching by softmax


- Kernelized Bayesian Softmax


• RL for Generation


- SeqGAN


• Generation by Sampling


- Constrained Sentence Generation with CGMH


- Generating Adversarial Examples for Natural 
Languages
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Case Study 1
• Embedding Matching by Softmax


- Kernelized Bayesian Softmax


• RL for Generation


- SeqGAN


• Generation by Sampling


- Constrained Sentence Generation with CGMH


- Generating Adversarial Examples for Natural 
Languages

72
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Kernelized Bayesian Softmax



Kernelized Bayesian Softmax

P(xt = sj
i ) =

exp(𝒦θ j
i
(ht, wj

i))

∑k ∑r∈0,1,...,Nk
exp(𝒦θr

k
(ht, wr

k))

KerBS: Kernelized Bayesian Softmax

P(xt = i) = ∑
j∈0,1,...,Ni

P(xt = sj
i )

𝒦θ(h, e) = |h | |e | (a exp(−θ cos(h, e)) − a)

Here  is hidden state,   is embedding,  is a parameter controlling the embedding 

variances of each sense and  is a normalization factor.

h e θ

a =
−θ

2(exp(−θ) + θ − 1))

where

Ning Miao, Hao Zhou, Chengqi Zhao, Wenxian Shi and Lei Li, Kernelized 
Bayesian Softmax for Text Generation, in NeurIPS, 2019.74



Why KerBS?

Model capacity of softmax is not OK  

Motivated by BERT, we may need context dependent 
embedding for text generation! 

Word2Vec BERT

Category Context 
Independent 

Context 
Dependent

Capacity Low High

Performance Bad Good
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Text Generation as Matching
Text Generation is Embedding Matching 

apple

amazon

pear

…
…

Word Embeddings

inner-product

0.8

0.01

0.02

…

Word  
Probability

tiger

want to eat an

want to eat an

softmax

RNN  
decoder

Context Independent  
Embedding

Context Dependent  
Embedding
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Bottleneck of Text Generation

Bottleneck of text generation is the softmax 

Embedding matrix in softmax should 
have larger capacity.  
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Intuitive Motivation

•Multi-Sense & Varying Variances 
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Visualization of BERT

•Multi-Sense & Varying Variances 

Softmax can handle this situation
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Visualization of BERT

•Multi-Sense & Varying Variances 

Softmax can’t handle multisense.
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Visualization of BERT

•Multi-Sense & Varying Variances 

Softmax can’t handle multisense and varying variances.
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KerBS - Multisense
Each word may have several senses. KerBS 
allocates a vector for each sense. 

0.1
0.5

W

apple

amazon

…
…

tiger

θ Psense

…
…

softmax aggregate0
0.01
0.01

0

0.6

0.02

…
…

0

apple

amazon

tiger

Pword

82



KerBS - Multisense

After getting the probabilities of each sense, 
KerBS sums up all sense probabilities of same 
word. 

P(xt = i) = ∑
j∈0,1,...,Ni

P(xt = sj
i )
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KerBS - Varying Variances
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KerBS - Varying Variances
The distribution of each word’s output vectors have different variances. 
We use a variable kernel to represent varying variances. 

P(xt = sj
i ) =

exp(𝒦θ j
i
(ht, wj

i))

∑k ∑r∈0,1,...,Nk
exp(𝒦θr

k
(ht, wr

k))

𝒦θ(h, e) = |h | |e | (a exp(−θ cos(h, e)) − a)

Note that when , which is regular 
Euclidean norm! 

θ → 0,𝒦θ(h, e) → |h | |e | cos(h, e)
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KerBS - Varying Variances
The distribution of each word’s output vectors have different 
variances. We use a variable kernel to represent varying variances. 
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How to decide the sense 
number of each word?

Dynamically change each word’s sense number while training. 
Delete senses that are less used. Add senses to words which 
are not well fitted.

87



Dynamic Allocation

0.1
0.5

eat an

to eat an

… …

W

apple

amazon

…
…

tiger

θ Psense

…
…

softmax aggregate

KerBS

I want a red apple

MASK

Decoder

mask

0
0.01
0.01

0

0.6

0.02

…
…

0

apple

amazon

tiger

Pword

apple

Kernel

0.1
0.5

weighted sum

get   ‘’apple’’   embedding

apple

query embedding

copy

…

Distillation 

Tuning 

I want a red
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Theoretical Guarantee

KerBS has the ability to learn the multi-sense property. If the real 
distribution of context vectors consists of several disconnected 
clusters, KerBS will learn to represent as many as these clusters

Lemma 1

KerBS has the ability to learn model variances. For distributions 
with larger variances, KerBS learns larger .θ

Lemma 2

KerBS can capture the multi-sense property.  

KerBS can learn varying variances.
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Experiments-Setting

We test KerBS on 3 text generation tasks:

1. Machine Translation (MT) is conducted on IWSLT’16 De-En, 

which contains 196k pairs of sentences for training.

2. Language modeling (LM) is included. Following previous work, 

we use a 300k, 10k and 30k subset of One-Billion-Word 
Corpus for training, validating and testing.


3. Dialog generation (Dialog) is also included. We employ the 
DailyDialog dataset for experiment. 
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Main Results
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Case Study 2
• Greedy Embedding Matching


- Kernelized Bayesian Softmax


• RL for Generation


- SeqGAN


• Generation by Sampling


- Constrained Sentence Generation with CGMH


- Generating Adversarial Examples for Natural 
Languages
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SeqGAN

Directly applying RL to use Discriminator outputs 
as reward for updating Generator.
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BackPropagation Fails
• Sentence is discrete, BP fails in such case

• RL
• Gumbel Softmax

Variance of gradient is very large! 
Hard for training :(

94



RL for Text Generation
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MLE Outperforms different 
GAN Variants 

• S

Caccia M, Caccia L, Fedus W, et al. Language gans falling short[J]. 
arXiv preprint arXiv:1811.02549, 2018.
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Case Study 3
• Greedy Embedding Matching


- Kernelized Bayesian Softmax


• RL for Generation


- SeqGAN


• Generation by Sampling


- Constrained Sentence Generation with CGMH


- Generating Adversarial Examples for Natural 
Languages
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Advertisement Slogan by 
Constrained Generation

Rin clothes bright

Keywords from Advertiser Advertisement Slogan
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept BMW , the sports car of the future life
11 [Output] BMW , the sports car of the future
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
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Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept BMW , the sports car of the future life



Sampling in Sentence Space

Miao et al., CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling, in AAAI, 2019.

CGMH performs Metropolis-Hastings sampling directly in sentence space:

Step Action Acc/Rej Sentences
0 [Input] BMW sports
1 Insert Accept BMW sports car
2 Insert Accept BMW the sports car
… … … …
6 Insert Accept BMW , the sports car of daily life
7 Replace Accept BMW , the sports car of future life
8 Insert Accept BMW , the sports car of the future life
9 Delete Reject BMW , the sports car of the future life
10 Delete Accept BMW , the sports car of the future life
11 [Output] BMW , the sports car of the future



Cases of Keyword to 
Sentences
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Paraphrase Generation
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Adversarial Example for Text

Zhang et al., Generating Fluent Adversarial Examples for Natural Languages, in ACL, 2019, short paper.

Generating adversarial example for text is hard! 
Because the text space is discrete, which is non-
trivial to apply adversarial gradients!
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CGMH for Generating Fluent  
Adversarial Examples

Huangzhao Zhang, Hao Zhou, Ning Miao and Lei Li. Generating 
Fluent Adversarial Examples for Natural Languages, in ACL, 2019..
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CGMH for Generating Fluent  
Adversarial Examples

Huangzhao Zhang, Hao Zhou, Ning Miao and Lei Li. Generating 
Fluent Adversarial Examples for Natural Languages, in ACL, 2019.. 114



CGMH for Generating Fluent  
Adversarial Examples

Huangzhao Zhang, Hao Zhou, Ning Miao and Lei Li. Generating 
Fluent Adversarial Examples for Natural Languages, in ACL, 2019..
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Conclusion of the Tutorial
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• Neural networks are good


• Natural language is discrete (Input, latent, output 
spaces)


- Representation learning


- Non-differentiability


- Exponential search space

Conclusion of the Tutorial
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Thank You
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