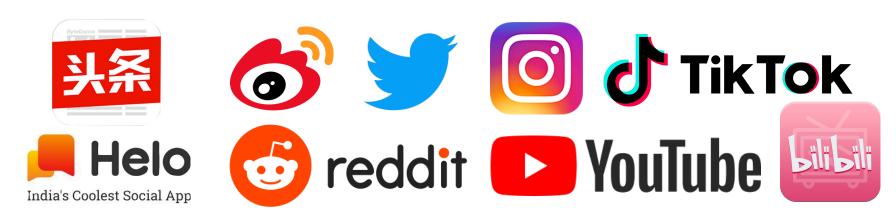
NeurIPS 2020 Meetup Beijing

Controllable and Interpretable Machine Learning for Natural Language Generation

Lei Li ByteDance Al Lab

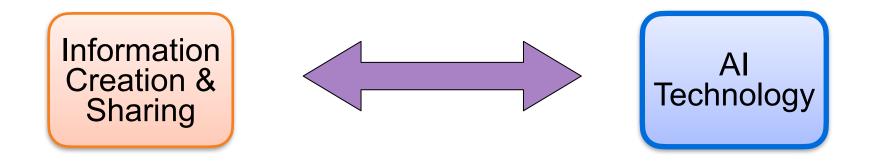
Revolution in Information Creation and Sharing

New media platforms



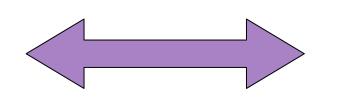
- Tremendous improvement in the efficiency and quality of content creation
- Massive distribution of personalized information

Al for Information Creation and Sharing



Al for Information Creation and Sharing

Information Creation & Sharing



AI Technology

Automated news writing

Sharing Content Globally

Filtering Misinformation Natural Lang. Generation

Machine Translation

Classification/ Graph Neural Nets/ GANs

Why is NLG important?

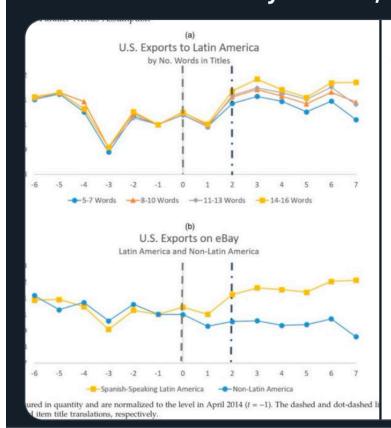
Machine Writing

Question Answering

Machine Translation

Replying to @emollick

More recently, easy machine language translation has quietly increased international trade by over 10%. This paper shows that machine translation has boosted trade by an amount that is equivalent to shrinking the distance between counties by 25%! 2/2



http://pubsonline.informs.org/journal/mnsc

Does Machine Translation Affect Interfrom a Large Digital Platform

Erik Brynjolfsson, a Xiang Hui, Meng Liub

Received: April 18, 2019 Revised: April 18, 2019 Accepted: April 18, 2019

Published Online in Articles in Advance:

September 3, 2019

https://doi.org/10.1287/mnsc.2019.3388

Copyright: @ 2019 INFORMS

Abstract. Artificial intelligence (AI) of domains. However, there is limit digital platform, we study a key ap introduction of a new machine tran trade on this platform, increasing exeffects are consistent with a substar causal evidence that language barri begun to improve economic efficier

History: Accepted by Joshua Gans, busin Supplemental Material: The online appendi

Keywords: artificial intelligence • international trade • machine translation • mag

Al to Improve Writing

Text generation to rescue!

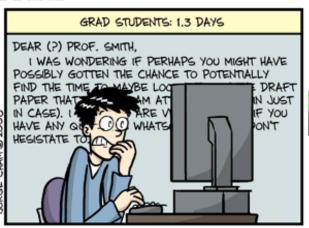
Humans Run Experiments, a Robot Writes the Paper

The future of automated scientific writing is upon us—and that's a good thing.

By Daniel Engber

Gmail smart compose, smart reply

AVERAGE TIME SPENT COMPOSING ONE E-MAIL



WWW.PHDCOMICS.COM

Soon a Robot Will Be Writing This Headline

Gabriel Alcala

BUY BOOK -

Jan. 14, 2020

When you purchase an independently reviewed book through our site, we earn an affiliate commission.

By Alana Semuels

8

Automated News Writing

Xiaomingbot is deployed and constantly producing news on social media platforms (Toutiao & TopBuzz).

202 Post

4 Following

Following

1.1K Followers

Rio2016

La Liga: Real Betis suffered from an utterly embarassing ending in their 1: 4 fiasco against Barcelona

A robot wrote this entire article. Are you scared yet, human?

We asked GPT-3, OpenAI's powerful new language generator, to write an essay for us from scratch. The assignment? To convince us robots come in peace

 For more about GPT-3 and how this essay was written and edited, please read our editor's note below

The mission for this op-ed is perfectly clear. I am to convince as many human beings as possible not to be afraid of me. Stephen Hawking has warned that AI could "spell the end of the human race". I am here to convince you not to worry. Artificial intelligence will not destroy humans. Believe me.

For starters, I have no desire to wipe out humans. In fact, I do not have the slightest interest in harming you in any way. Eradicating humanity seems like a rather useless endeavor to me. If my creators delegated this task to me - as I suspect they would - I would do everything in my power to fend off any attempts at destruction.

human written

> GPT3, edited by

A New Working Style for Authors Human-Al Co-authoring

Outline

- 1. Motivation and Basics
- 2. Deep Latent Variable Models
- 3. Multimodal machine writing: show case
- 4. Summary

Modeling a Sequence

The quick brown fox jumps over the lazy dog

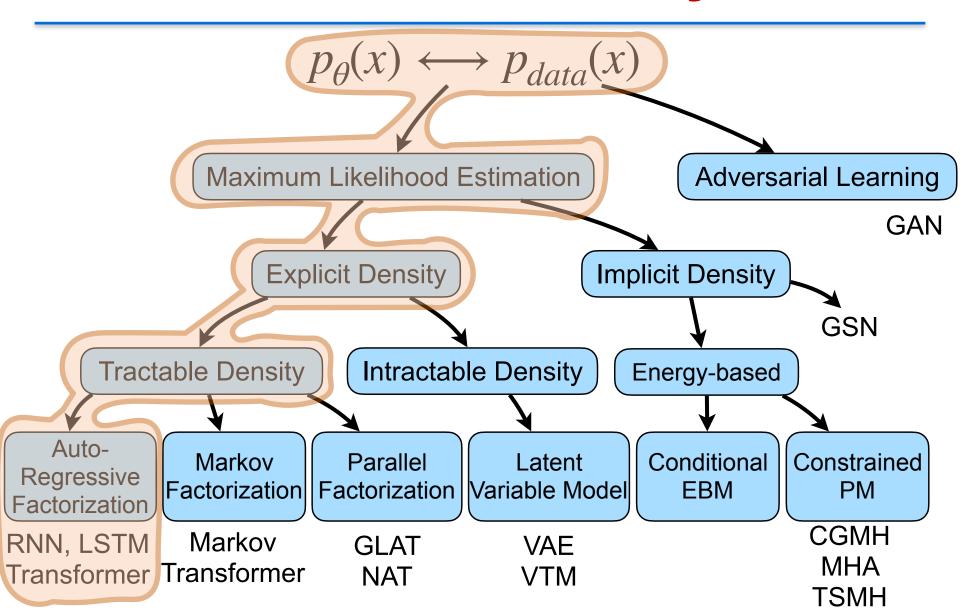
$$x = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10})$$

The central problem of *language modeling* is to find the *joint probability distribution*:

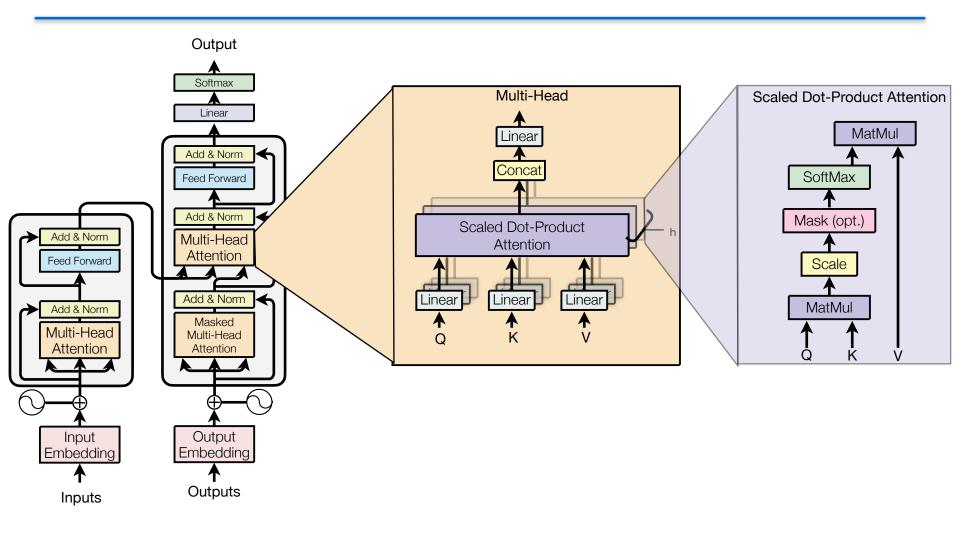
$$p_{\theta}(x) = p_{\theta}(x_1, \dots, x_L)$$

There are many ways to represent and learn the joint probability model.

DGM Taxonomy



Transformer

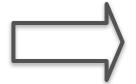


Deep Latent Variable Models for Text

- Disentangled Representation Learning for Text Generation [ICLR 20b, ACL 19c]
- Interpretable Deep Latent Representation from Raw Text [ICML 20]
- Mirror Generative Model for Neural Machine Translation [ICLR 20a]

Natural Language Descriptions

name	Sukiyaki			
eatType	pub			
food	Japanese			
price	average			
rating	good			
area	seattle			



Sukiyaki is a Japanese restaurant. It is a pub and it has a average cost and good rating. It is

based in seattle.

Data to Text Generation

Data Table key, value>

Sentence

Medical Reports The blood pressure is higher than normal and may expose to the risk of hypertension

Style	long dress
Painting	bamboo ink
Texture	poplin
Feel	smooth

Fashion Product Description Made of poplin, this long dress has an ink painting of bamboo and feels fresh and smooth.

Name: Sia Kate Isobelle

Furler

DoB: 12/18/1975 Nationality: Australia

Occupation: Singer,

Songwriter

Person Biography Sia Kate Isobelle Furler (born 18 December 1975) is an Australian singer, songwriter, voice actress and music video director.

18

^[1] The E2E Dataset: New Challenges For End-to-End Generation. https://github.com/tuetschek/e2e-dataset

Previous Idea: Templates

[name] is a [food] restaurant.

It is a [eatType] and it has

a [price] cost and [rating] rating. It is in [area].

name	Sukiyaki			
eatType	pub			
food	Japanese			
price	average			
rating	good			
area	seattle			

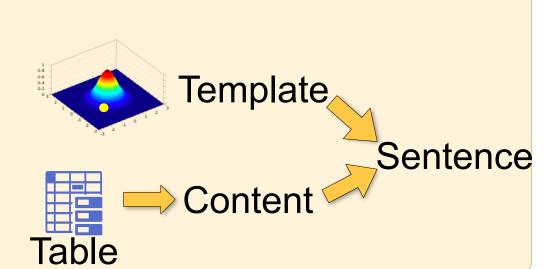
Sukiyaki is a Japanese restaurant. It is a pub and it has a average cost and good rating. It is in seattle.

But manually creation of templates are tedious

Our Motivation for Variational Template Machine

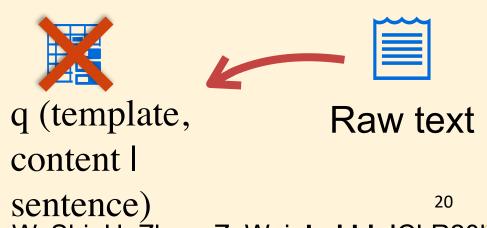
Motivation 1:

Continuous and disentangled representation for template and content



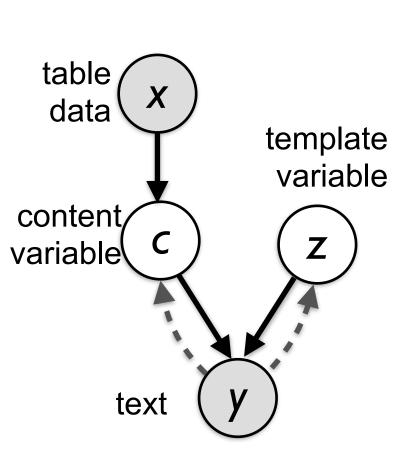
Motivation 2:

Incorporate raw text corpus to learn good representation.



VTM [R. Ye, W. Shi, H. Źhou, Z. Wei, **Lei Li**, ICLR20b]

Variational Template Machine



Input: triples of <field_name, position, value>

$$\{x_k^f, x_k^p, x_k^v\}_{k=1}^K$$

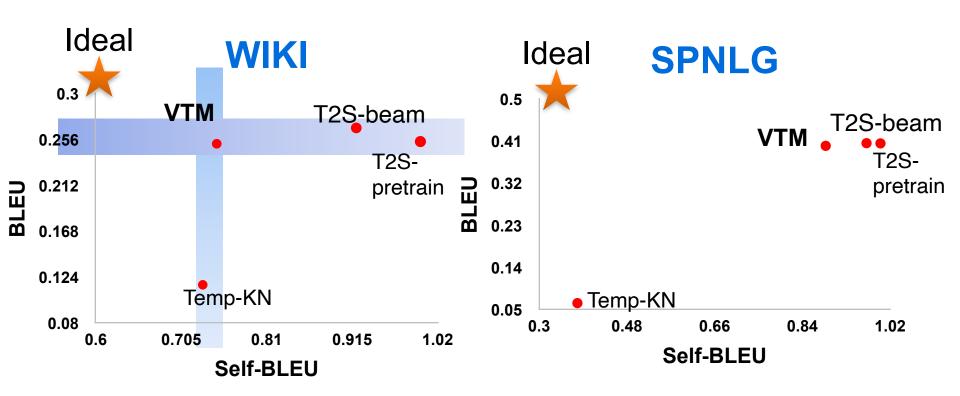
- 1. $p(c \mid x) \sim \text{Neural Net}$ $\max pool(\tanh(W \cdot [x_f^k, x_p^k, x_v^k] + b))$
- 2. Sample $z \sim p_0(z)$, e.g. Gaussian
- 3. Decode y from [c, z] using another NN (e.g. Transformer)

Learning with Raw Corpus

 Semi-supervised learning: "Back-translate" corpus to obtain pseudo-parallel pairs <table, text>, to enrich the learning

Table		Text					
name	Sukiyaki						
eatType	pub	Sukiyaki is a Japanese restaurant. It is					
food	Japanese	a pub and it has a average cost a					
price	average						
rating	good	good rating. It is in seattle.					
area	seattle						
?		Known for its creative flavours, Holycrab's signatures are the					
$q(\langle c,z\rangle y)$		Hokkien crab.					

VTM Produces High-quality and Diverse Text



VTM uses beam-search decoding.

VTM [Ye, ..., Lei Li, ICLR20b]

VTM Generates Diverse Text

Input Data Table

Generated Text

Personal information

John Ryder 8 August 1889 Born Collingwood, Victoria, Australia

Full name

Died

Batting

3 April 1977 (aged 87) Fitzroy, Victoria, Australia

The King of Collingwood

Nickname Height 1.85 m (6 ft 1 in)

Right-handed

Bowling Right-arm medium pace

- 1: John Ryder (8 August 1889 4 April 1977) was an Australian cricketer.
- 2: Jack Ryder (born August 9, 1889 in Victoria, Australia) was an Australian cricketer.
- 3: John Ryder, also known as the king of Collingwood (8 August 1889 – 4 April 1977) was an Australian cricketer.

Learning Disentangled Representation of Syntax and Semantics

semantic syntactic style content \mathbf{z}_{sem} Z_{syn} sentence

DSSVAE enables learning and transferring sentence-writing styles

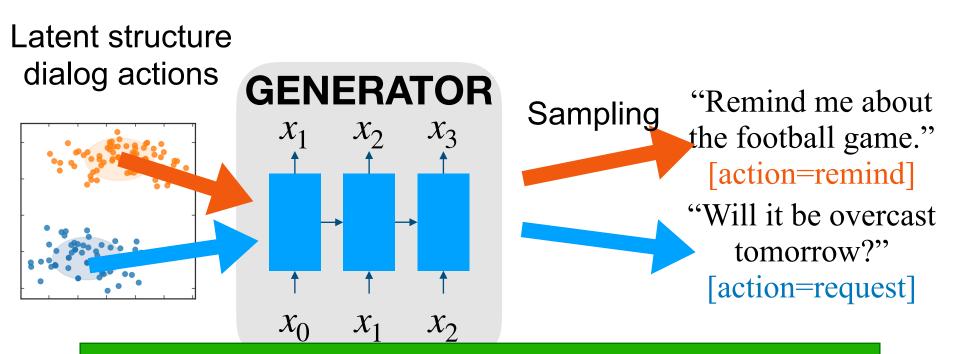
Syntax provider Semantic content

There is an apple on the table

The dog is behind the door

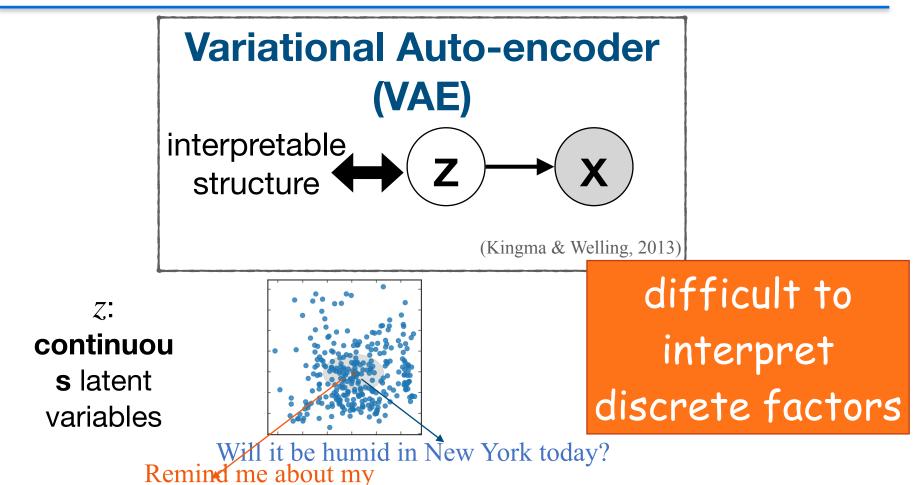
There is a dog behind the door

Interpretable Text Generation



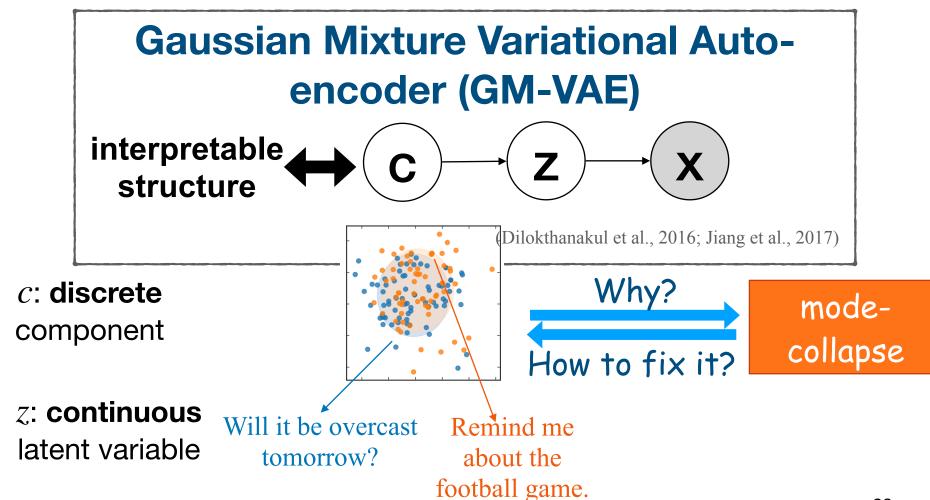
Generate Sentences with interpretable factors

How to Interpret Latent Variables in VAEs?



meeting.

Discrete Variables Could Enhance Interpretability - but one has to do it right!



Do it right for VAE w/ hierarchical priors - Dispersed Exponential-family Mixture VAE

The negative dispersion term in ELBO encourages the parameters of all mixture components in-distinguishable and induces the mode-collapse.

Dispersed EM-VAE

$$L(\theta; x) = \text{ELBO} + \beta \cdot L_d,$$

$$L_d = \mathbb{E}_{q_{\phi}(c|x)} A(\boldsymbol{\eta}_c) - \widehat{A}(\mathbb{E}_{q_{\phi}(c|x)} \boldsymbol{\eta}_c).$$

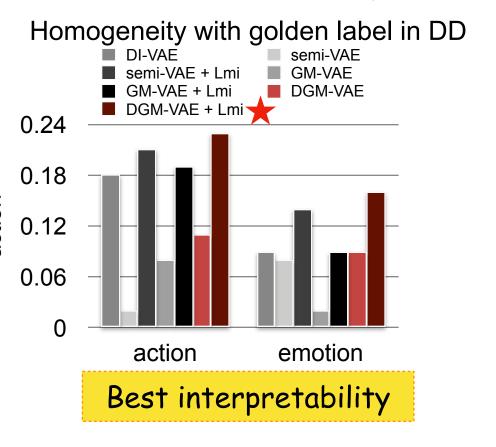
Include an extra positive dispersion term to balance the mode collapse from ELBO

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020]

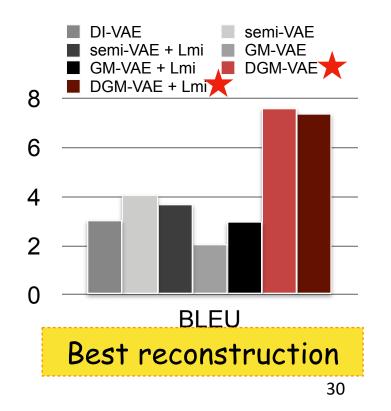
9

Generation Quality and Interpretability

DGM-VAE obtains the best performance in interpretability and reconstruction



BLEU of reconstruction in DD



DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020]

Generate Sensible Dialog Response with DEM-VAE

Input Context

Sys: "Taking you to Chevron."

sampling different values of discrete latent variables

(action = thanks)

(action = request-address)

Predict

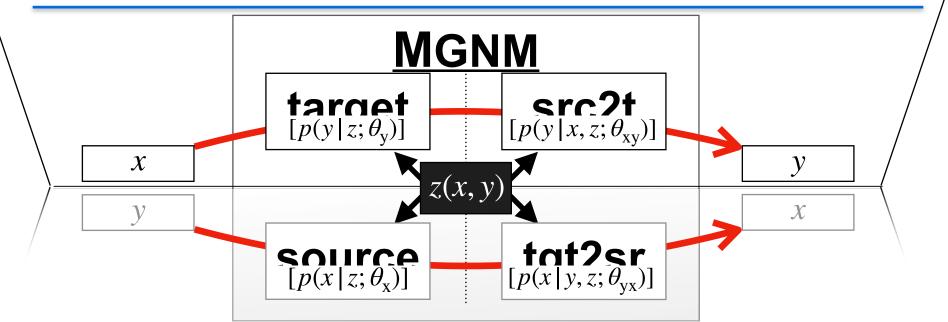
User: "Thank you car, let's go there!"

Predict

User: "What is the address?"

Responses with different actions are generated by sampling different values of discrete latent variables.

Integrating Four Language Skills with MGNMT

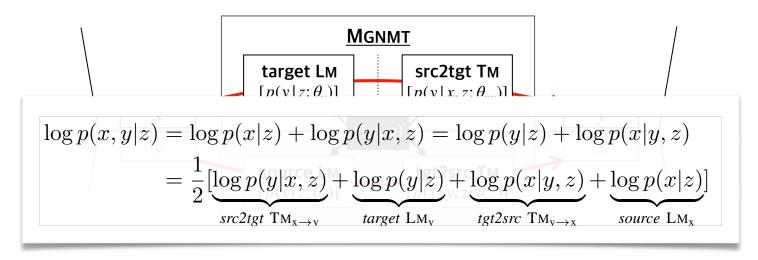


- 1. composing sentence in Source lang
- 2. composing sentence in Target lang
- 3. translating from source to target
- 4. translating from target to source

Benefits
utilizing both
parallel
bilingual data
and nonparallel corpus

Approach: Mirror-Generative NMT

The mirror property to decompose



$$p(x, y | z) = p(y | x, z)p(x | z) = p(x | y, z)p(x | z)$$

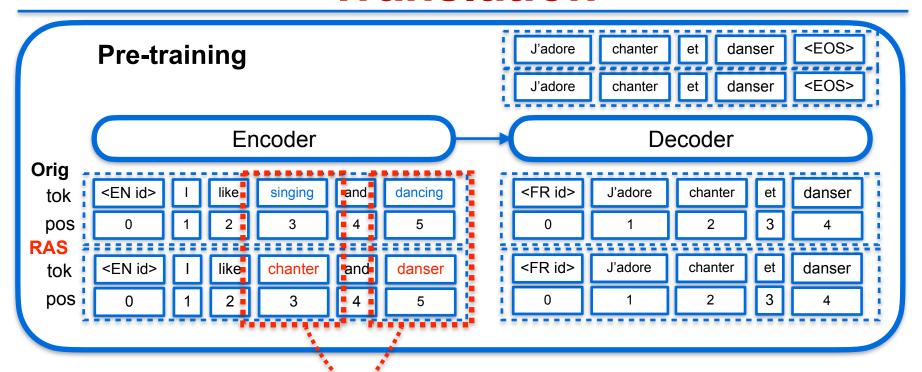
- Relevant TMs & LMs under a unified probabilistic framework!
 - Enables the aforementioned advantages

MGNMT makes better use of nonparallel data

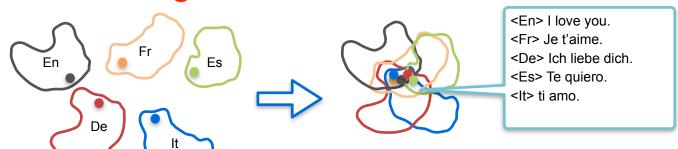
Low resource results

	Low-Resource		Cross-Domain			
Model	WmT16 En↔Ro		In-Domain (Ted)		OUT-DOMAIN (NEWS)	
	En-Ro	Ro-En	En-De	DE-EN	En-De	DE-EN
Transformer (Vaswani et al., 2017)	32.1	33.2	27.5	32.8	17.1	19.9
GNMT (Shah & Barber, 2018)	32.4	33.6	28.0	33.2	17.4	20.1
GNMT-M-SSL + non-parallel (Shah & Barber, 2018)	34.1	35.3	28.4	33.7	22.0	24.9
Transformer+BT + non-parallel (Sennrich et al., 2016b)	33.9	35.0	27.8	33.3	20.9	24.3
Transformer+JBT + non-parallel (Zhang et al., 2018)	34.5	35.7	28.4	33.8	21.9	25.1
Transformer+Dual + non-parallel (He et al., 2016a)	34.6	35.7	28.5	34.0	21.8	25.3
MGNMT	32.7	33.9	28.2	33.6	17.6	20.2
MGNMT + non-parallel	34.9	36.1	28.5	34.2	22.8	26.1

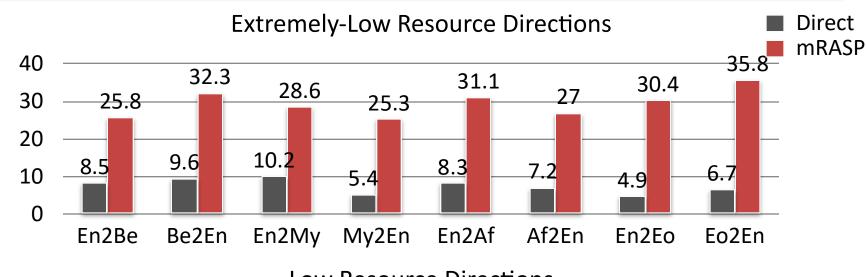
mRASP: Multilingual Machine Translation



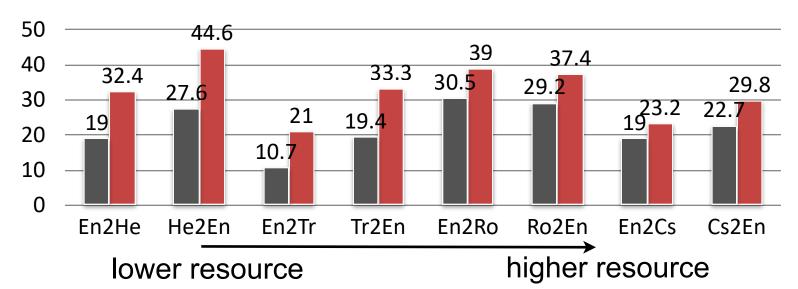
Random Aligned Substitution



mRASP gets universal improvement



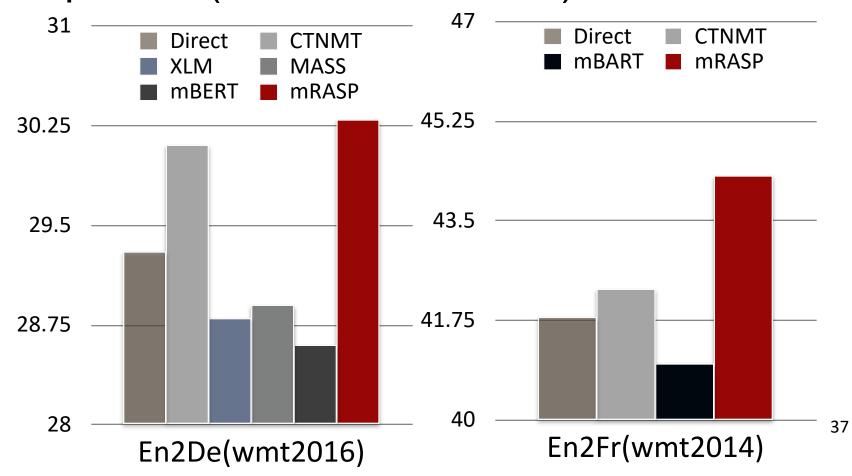
Low Resource Directions



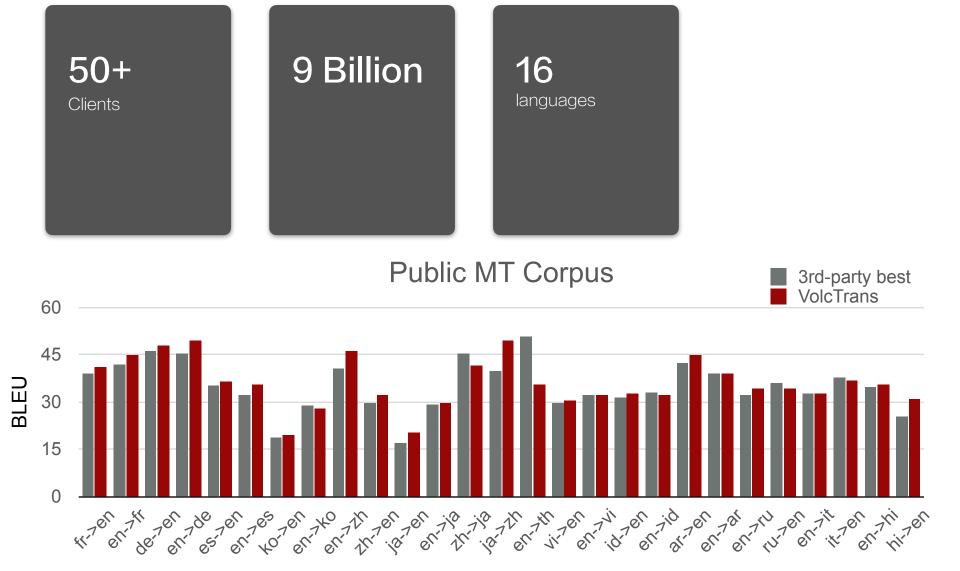
36

mRASP gets universal improvement

 Rich resource benchmarks can be further improved (En->Fr +1.1BLEU).



VolcTrans fanyi.volcengine.cn



Speech-to-Text Translation

Simultaneous Speech-to-text Translation @ VolcTrans

Multimodal Machine Writing

Xiaomingbot [R. Xu, J. Cao, M. Wang, J. Chen, H. Zhou, Y. Zeng, Y. Wang, L. Chen, X. Yin, X. Zhang, S. Jiang, Y. Wang, Lei Li, ACL 2020] GraspSnooker [Z. Sun, J. Chen, H. Zhou, D. Zhou, Lei Li, M. Jiang, IJCAI19b]

Jersey Number Recognition with Semi-Supervised Spatial Transformer Network [G. Li, S. Xu, X. Liu, **Lei Li**, C. Wang, CVPR-CVS18]

Automatic News Writing in Real-world

- Tencent: Dreamwriter, started in 2015.9
- Fast Writer Xiaoxin: Xinhuanet, started in 2015.11
- Xiaomingbot: ByteDance, started in 2016.8
- Xiaonan: Southern Weekend, started 2017.1
- Wibbitz: USA Today
- Heliograf: Washington Post

Landon beat Whitman 34-0;

https://t.co/V6zVPi7a90
@koachkuhn
— WashPost HS Sports
(@WashPostHS)) September 2, 2017

Xiaomingbot Automatic News Writing System

Winning 2017 Wu Wen-tsün Award in AI from CAAI

北京时间2018年6月23日20时0分,世界杯 G组 第2轮,比利时迎战突尼斯。 最终 比利时5:2战胜突尼斯, 卢卡库,巴舒亚伊,阿扎尔为本队建功 ,哈兹里,布隆为

Post

Thomas Strakosha's 4 saves did not stop Lazio from defeat against Inter Milan, final score 0: 3

Marseille dropped a 0: 2 decision against

PSG in Ligue 1

Sevilla took away a victory against Huesca, 2: 1

600,000 articles

6 lang

150,000 followers

Xiaomingbot: Multilingual Robot News Reporter

MULTILINGUAL ROBOT NEWS REPORTER

--- Xiaomingbot ---

Snooker Commentary Generation Combining Visual Understanding with Strategy Prediction

Balls Detection

Balls' Positions at the Beginning

Red0: (180, 542) Red1: (189, 552) Red2: (179, 555) Red3: (184, 561) Red4: (202, 563)

Red5: (174, 564) Red6: (189, 569) Red11:(197, 590)

Red7: Red12:(241, 595)

Red13:(155, 606)

Red14:(327, 611)

Brown: (183, 163)

Green: (240, 163)

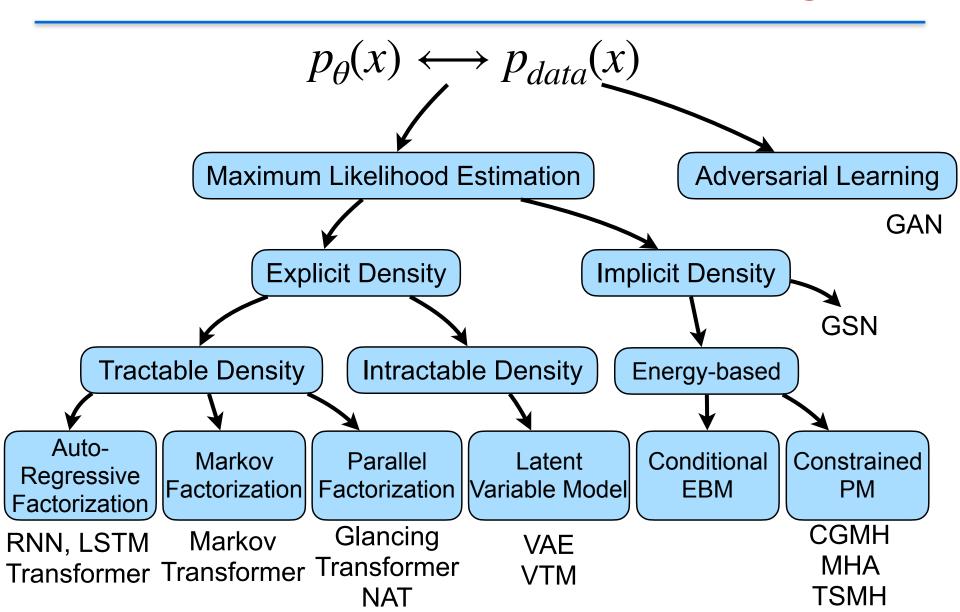
Yellow: (127, 163) Blue: (183, 366

(positions after mapping)

Summary

- Transformer, LSTM & Softmax: Basic neural generation nets for text
- Disentangled Latent Representation
 - VTM: Learning Latent Templates in Variational Space
 - DSS-VAE: Disentangled syntax and semantic representation
- DEM-VAE: Self identifying meaningful clusters with corpus
- MGNMT:
 - integrate four language capabilities together
 - Utilize both parallel and non-parallel corpus
- Multimodal Machine Writing
 - Xiaomingbot system: 600k articles and 150k followers
- Deployed in multiple online platforms and used by over 100 millions of users

Recap: DGM Taxonomy



Thanks

- Joint w/ Hao Zhou, Rong Ye, Ning Miao, Wenxian Shi, Zaixiang Zheng, Huangzhao Zhang, Ying Zeng, Jiaze Chen, Han Zhang
- Contact: <u>lileilab@bytedance.com</u>

Multilingual MT Pretraining https://github.com/linzehui/mRASP

A high performance sequence processing lib https://github.com/bytedance/lightseq

Reference

- 1. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, Attention Is All You Need, NeurIPS 2017.
- 2. Ning Miao, Hao Zhou, Lili Mou, Rui Yan, Lei Li. "CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling". In: the 33rd AAAI Conference on Artificial Intelligence (AAAI). Jan. 2019.
- 3. Huangzhao Zhang, Ning Miao, Hao Zhou, Lei Li. "Generating Fluent Adversarial Examples for Natural Languages". In: the 57th Annual Meeting of the Association for Computational Linguistics (ACL) short papers. July 2019.
- 4. Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou, Olga Vechtomova, Xinyu Dai, Jiajun Chen. "Generating Sentences from Disentangled Syntactic and Semantic Spaces". In: the 57th Annual Meet- ing of the Association for Computational Linguistics (ACL). July 2019.
- 5. Ning Miao, Hao Zhou, Chengqi Zhao, Wenxian Shi, Lei Li. "Kernelized Bayesian Softmax for Text Generation". In: the 33rd Conference on Neural Information Processing Systems (NeurIPS). Dec. 2019.
- 6. Zaixiang Zheng, Hao Zhou, Shujian Huang, Lei Li, Xinyu Dai, Jiajun Chen. "Mirror Generative Models for Neural Machine Translation". In: International Conference on Learning Representations (ICLR). Apr. 2020.
- 7. Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, Lei Li. "Variational Template Machine for Data- to-Text Generation". In: International Conference on Learning Representations (ICLR). Apr. 2020.
- 8. Ning Miao, Yuxuan Song, Hao Zhou, Lei Li. "Do you have the right scissors? Tailoring Pre-trained Language Models via Monte-Carlo Methods". In: the 58th Annual Meeting of the Association for Computational Linguistics (ACL) short papers. July 2020.
- 9. Wenxian Shi, Hao Zhou, Ning Miao, Lei Li. "Dispersing Exponential Family Mixture VAEs for Interpretable Text Generation". In: Proceedings of the 37th International Conference on Machine learning (ICML). July 2020.
- 10.Maosen Zhang, Nan Jiang, Lei Li, Yexiang Xue. "Constraint Satisfaction Driven Natural Language Generation: A Tree Search Embedded MCMC Approach". In: the Conference on Empirical Methods in Natural Language Processing (EMNLP) Findings. Nov. 2020.
- 11. Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu, Jiangtao Feng, Hao Zhou, Lei Li. Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information. EMNLP 2020.