

Learning Deep Latent Models for Text Sequences

Lei Li ByteDance Al Lab

4/29/2020

The Rise of New Media Platforms

Toutiao

Helo

्ञ) 🔾 म	हिं 🔾 HandSandPainting		P+		
फॉलो	पॉ	पुलर	आसपास		
फीचर्ड टॉपिक्स			अधिक 🕽	,	
कोरोना वायरस	DivyankaTri	ShehnaazG	सिता स्रता ये रिश्ता क्या	c	
से जंग	pathi	illBB13	कहलाता है	tiı	
Boss #StudentVsL	Boss Charlie's Jokes फॉलो करें ••• #StudentVsLockdownMemes #LockdownWithF				
unnyKing #H es #viral #Bo	eloFunnyQ pssCharlie's	uotes #Held sJokes	FunnyQuot		
केजी के छात्र को पेपर में o नंबर मिले।					
	a (

Douyin/Tiktok

Huge Demand for Automatic Content Generation Technologies

- Automatic News Writing
- Author writing assist tools
 Title generation and text summarization
- Automatic Creative Advertisement Design
- Dialog Robots w/ response generation
- Translation of content across multiple languages
- Story Generation

The New York Times

Soon a Robot Will Be Writing This Headline

Gabriel Alcala

BUY BOOK -

When you purchase an independently reviewed book through our site, we earn an affiliate commission.

By Alana Semuels

Automated News Writing

Xiaomingbot is deployed and constantly producing news on social media platforms (TopBuzz & Toutiao).

La Liga: Real Betis suffered from an utterly embarassing ending in their 1: 4 fiasco against Barcelona

Al to Improve Writing

Text generation to rescue!

Humans Run Experiments, a Robot Writes the Paper

The future of automated scientific writing is upon us—and that's a good thing.

() 💟 🔘

By Daniel Engber

AVERAGE TIME SPENT COMPOSING ONE E-MAIL

WWW. PHDCOMICS. COM

Outline

- 1. Overview
- 2. Learning disentangled latent representation for text
- 3. Mirror-Generative NMT
- 4. Multimodal machine writing
- 5. Summary

Disentangled Latent Representation for Text

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, ICLR20b] DSS-VAE [Y. Bao, H. Zhou, S. Huang, Lei Li, L. Mou, O. Vechtomova, X. Dai, J. Chen, ACL19c]

Natural Language Descriptions

name	Sukiyaki	
eatType	pub	
food	Japanese	
price	average	
rating	good	
area	seattle	

Sukiyaki is a Japanese restaurant. It is a pub and it has a average cost and good rating. It is based in seattle.

Data to Text Generation

[1] The E2E Dataset: New Challenges For End-to-End Generation. <u>https://github.com/tuetschek/e2e-dataset</u>
 [2] Can Neural Generators for Dialogue Learn Sentence Planning and Discourse Structuring?. <u>https://nlds.soe.ucsc.edu/sentence-planning-</u>

Problem Setup

- Inference:
 - Given: table data x, as key-position-value triples.
 - e.g. Name: Jim Green => (Name, 0, Jim), (Name, 1, Green)
 - Output: fluent, accurate and diverse text sequences y
- Training:
 - $\{\langle x_i, y_i \rangle\}_{i=1}^N$: pairs of table data and text.

−
$$\{y_j\}_{j=1}^M$$
: raw text corpus. $M \gg N$

Why is Data-to-Text Hard?

- Desired Properties:
 - Accuracy: semantically consistent with the content in the table
 - Diversity: Ability to generate infinite varying utterances
- Scalability: real-time generation, latency, throughput (QPS)
- Training: limited table-text pairs

Previous Idea: Templates

[name] is a [food] restaurant. It is a [eatType] and it has a [price] cost and [rating] rating. It is in [area].

name	Sukiyaki	
eatType	pub	
food	Japanese	
price	average	
rating	good	
area	seattle	

Sukiyaki is a Japanese restaurant. It is a pub and it has a average cost and good rating. It is in seattle.

But manually creation of templates are tedious

Our Motivation for Variational Template Machine

Motivation 1:

Continuous and disentangled representation for template and content

Motivation 2:

Incorporate raw text corpus to learn good representation.

VTM [R. Y

q (template,	Raw text
content	
sentence)	14
e, W. Shi, H. Źhou, Z	. Wei, Lei Li , ICLR20b

Variational Template Machine

Input: triples of <field name, position, value> $\{x_{k}^{f}, x_{k}^{p}, x_{k}^{v}\}_{k=1}^{K}$ 1. $p(c | x) \sim \text{Neural Net}$ maxpool(tanh($W \cdot [x_f^k, x_p^k, x_v^k] + b$)) 2. Sample $z \sim p_0(z)$, e.g. Gaussian 3. Decode y from [c, z] using another NN (e.g. Transformer)

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, ICLR20b]

15

Training VTM

Variational Inference

Preserving Content & Template

1. Content preserving loss $l_{cp} = \mathbb{E}_{q(c|y)} |c - f(x)|^2 + D_{KL} (q(c|y) || p(c))$ 2. Template preserving loss of pairs $l_{tp} = -\mathbb{E}_{q(z|y)} \left| \log p(\tilde{y} | z, x) \right|$ \tilde{y} is the text sketch by removing table entry i.e. cross entropy of variational prediction from templates

Preserving Template

Ensure the template variable could recover the text sketch

Table data *x*:

{name[Loch Fyne], eatType[restaurant], food[French] price[below \$20]}

Text y:

Loch Fyne is a French restaurant catering to a budget of below \$20. Text Sketch \tilde{y} :

<ent> is a *<ent>* catering to a budget of *<ent>*. 19

Learning with Raw Corpus

 Semi-supervised learning: "Back-translate" corpus to obtain pseudo-parallel pairs <table, text>, to enrich the learning

Table		Text	
name	Sukiyaki		
eatType	pub	Sukivaki is a Japanese restaurant. It is	
food	Japanese	a pub and it has a average cost and	
price	average	a pub and it has a average cost and	
rating	good	good rating. It is in seattle.	
area	seattle		
? q(<c,z> y)</c,z>		Known for its creative flavours, Holycrab's signatures are the Hokkien crab.	

Evaluation Setup

- Tasks
 - WIKI: generating short-bio from person profile.
 - SPNLG: generating restaurant description from attributes

	Train		Valid		Test
Dataset	table-text	row toxt	table-text	row toxt	table-text
	pairs		pairs		pairs
WIKI	84k	842k	73k	43k	73k
SPNLG	14k	150k	21k	/	21k

- Evaluation Metric:
 - Quality (Accuracy): BLEU score to ground-truth
 - Diversity: self-BLEU (lower is better)

VTM Produces High-quality and Diverse Text

VTM uses beam-search decoding.

VTM [Ye, ..., Lei Li, ICLR20b]

Raw data and loss terms are necessary

Interpreting VTM

VTM Generates Diverse Text

Input Data Table

Jack Ryder

Ryder in about 1930

I	Personal information			
Full name	John Ryder			
Born	8 August 1889 Collingwood, Victoria, Australia			
Died	3 April 1977 (aged 87) Fitzroy, Victoria, Australia			
Nickname	The King of Collingwood			
Height	1.85 m (6 ft 1 in)			
Batting	Right-handed			
Bowling	Right-arm medium pace			
Role	All-rounder			

Generated Text

- 1: John Ryder (8 August 1889 4 April 1977) was an Australian cricketer.
- 2: Jack Ryder (born August 9, 1889 in Victoria, Australia) was an Australian cricketer.
- 3: John Ryder, also known as the king of Collingwood (8 August 1889 – 4 April 1977) was an Australian cricketer.

Learning Disentangled Representation of Syntax and Semantics

DSS-VAE [Y. Bao, H. Zhou, S. Huang, Lei Li, L. Mou, O. Vechtomova, X. Dai, J. Chen, ACL19c]

Impact

- VTM and its extensions have been applied to multiple online systems on Toutiao including query suggestion generation, ads bid-word generation, etc.
- Serving over 100million active users.
- 10% of query suggestion phrases from the generation algorithm.

Part I Takeaway

Outline

- 1. Overview of Intelligent Information Assistant
- 2. Learning disentangled latent representation for text
- 3. Mirror-Generative NMT
- 4. Multimodal machine writing
- 5. Summary and Future Directions

Neural Machine Translation

 Neural machine translation (NMT) systems are super good when you have large amount of parallel bilingual data

- BUT, very expensive/non-trivial to obtain
 - Low resource language pairs (e.g., English-to-Tamil)
 - Low resource domains (*e.g.*, social network)
- Large-scale mono-lingual data are not fully utilized

Existing approaches to exploit nonparallel data

- There are two categories of methods using non-parallel data
 - Training
 - Back-translation, Joint Back-translation, dual learning...
 - Decoding
 - Interpolation w/ external LM ...
- Still not the best

 A pair of <u>relevant</u> TMs so that they can directly boost each other in <u>training</u>

Integrating Four Language Skills with MGNMT

- 1. composing sentence in Source lang
- 2. composing sentence in Target lang
- 3. translating from source to target
- 4. translating from target to source

Benefits utilizing both parallel bilingual data and nonparallel corpus

33

MGNMT [Z. Zheng, H. Zhou, S. Huang, L. Li, X. Dai, J. Chen, ICLR 2020a]

Approach: Mirror-Generative NMT

• The mirror property to decompose

p(x, y | z) = p(y | x, z)p(x | z) = p(x | y, z)p(x | z)

- Relevant TMs & LMs under a unified probabilistic framework!
 - Enables the aforementioned advantages

Training w/ parallel data

- Given: a parallel bilingual sentence pair $\langle x, y \rangle$
- Goal: maximize the ELBO of the joint dist.

Training w/ non-parallel data

- Given: monolingual source sentence $x^{(s)}$ and target sentence $y^{(t)}$
- Goal: maximize the lower-bounds of source & target marginals

 $\log p(x^{(s)}) + \log p(y^{(t)}) \ge \mathcal{L}(x^{(s)}; \theta_{\mathbf{x}}, \theta_{\mathbf{yx}}, \phi) + \mathcal{L}(y^{(t)}; \theta_{\mathbf{y}}, \theta_{\mathbf{xy}}, \phi)$

$$\mathcal{L}(y^{(t)};\theta_{y},\theta_{xy},\phi) = \mathbb{E}_{p(x|y^{(t)})} \left[\mathbb{E}_{q(z|x,y^{(t)};\phi)} \left[\frac{1}{2} \{ \log p(y^{(t)}|z;\theta_{y}) + \log p(y^{(t)}|x,z;\theta_{xy}) \} \right] - D_{\mathrm{KL}} [q(z|x,y^{(t)};\phi)||p(z)] \right]$$
$$\mathcal{L}(x^{(s)};\theta_{x},\theta_{yx},\phi) = \mathbb{E}_{p(y|x^{(s)})} \left[\mathbb{E}_{q(z|x^{(s)},y;\phi)} \left[\frac{1}{2} \{ \log p(x^{(s)}|z;\theta_{x}) + \log p(x^{(s)}|y,z;\theta_{yx}) \} \right] - D_{\mathrm{KL}} [q(z|x^{(s)},y;\phi)||p(z)] \right]$$

Decoding: TM&LM work as a whole

- Iterative EM decoding
 - Given source sentence x, find a translation

 $y = \operatorname{argmax}_{y} p(y|x) = \operatorname{argmax}_{y} p(x, y) \approx \operatorname{argmax}_{y} \mathcal{L}(x, y; \theta, \phi)$

- Initialization: get a draft translation
- Iterative refinement: resampling *z* from inference model and redecoding by maximizing ELBO

 $\tilde{y} \leftarrow \operatorname{argmax}_{y} \mathcal{L}(x, \tilde{y}; \boldsymbol{\theta}, \phi)$

 $= \operatorname{argmax}_{y} \mathbb{E}_{q(z|x,\tilde{y};\phi)}[\log p(y|x,z) + \log p(y|z) + \log p(x|z) + \log p(x|y,z)]$

 $= \operatorname{argmax}_{y} \mathbb{E}_{q(z|x,\tilde{y};\phi)} \Big[\sum_{i} [\underbrace{\log p(y_{i}|y_{\leq i}, x, z) + \log p(y_{i}|y_{\leq i}, z)}_{i}] + \underbrace{\log p(x|z) + \log p(x|y, z)}_{i} \Big]$

- Datasets
 - Low resource
 - WMT16 EN-RO
 - IWSLT16 EN-DE: <u>domain adaptation (from TED to</u> <u>News)</u>
 - High resource:
 - ► WMT14 EN-DE, NIST EN-ZH
- Avoiding **posterior collapse** (Important!)
 - KL-annealing
 - Word dropout

MGNMT makes better use of nonparallel data

Low resource results

	LOW-RE	SOURCE	CROSS-DOMAIN			
Model	Wmt16 En↔Ro		IN-DOMAIN (TED)		OUT-DOMAIN (NEWS)	
	En-Ro	Ro-En	En-De	De-En	En-De	DE-EN
Transformer (Vaswani et al., 2017)	32.1	33.2	27.5	32.8	17.1	19.9
GNMT (Shah & Barber, 2018)	32.4	33.6	28.0	33.2	17.4	20.1
GNMT-M-SSL + non-parallel (Shah & Barber, 2018)	34.1	35.3	28.4	33.7	22.0	24.9
Transformer+BT + non-parallel (Sennrich et al., 2016b)	33.9	35.0	27.8	33.3	20.9	24.3
Transformer+JBT + non-parallel (Zhang et al., 2018)	34.5	35.7	28.4	33.8	21.9	25.1
Transformer+Dual + non-parallel (He et al., 2016a)	34.6	35.7	28.5	34.0	21.8	25.3
MGNMT	32.7	33.9	28.2	33.6	17.6	20.2
MGNMT + non-parallel	34.9	36.1	28.5	34.2	22.8	26.1

MGNMT makes better use of nonparallel data

• High resource results

Model		WMT14		ST
Widder	En-De	De-En	EN-ZH	Zh-En
Transformer (Vaswani et al., 2017)	27.2	30.8	39.02	45.72
GNMT (Shah & Barber, 2018)	27.5	31.1	40.10	46.69
GNMT-M-SSL + non-parallel (Shah & Barber, 2018)	29.7	33.5	41.73	47.70
Transformer+BT + non-parallel (Sennrich et al., 2016b)	29.6	33.2	41.98	48.35
Transformer+JBT + non-parallel (Zhang et al., 2018)	30.0	33.6	42.43	48.75
Transformer+Dual + <i>non-parallel</i> (He et al., 2016b)	29.6	33.2	42.13	48.60
MGNMT	27.7	31.4	40.42	46.98
MGNMT + non-parallel	30.3	33.8	42.56	49.05

- Non-parallel data is helpful
- MGNMT works well especially on low resource settings

MT Technology Innovation

- Solving data scarcity
 - BERT for NMT [Yang et al, AAAI 2020]
 - Mirror Generative NMT [Zheng et al ICLR 2020a]
- Enhancing discourse coherence
 - Document-to-document translation [Sun et al, 2020, in submission]
- Speedup and Scaling NMT
 - Capsule NMT [Wang et al, EMNLP 2019]
 - Non-autoregressive NMT [Wang et al, ACL 2019]
 - Human-machine co-operative translation, CAMIT [Weng et al, IJCAI 2019]
- Cross-modal Translation
 - Visually guided MT [Wang et al, ICCV 2019]

Part II Takeaway

- •MGNMT is a unified probabilistic framework which jointly models TMs and LMs and enables their cooperation in a better way.
- In low-resource settings, MGNMT works better than in highresource settings
- Training of MGNMT is somewhat tricky and inefficient
- Could be extended to multilingual or unsupervised scenarios.
- ByteTrans system already serves > 100million active users

Outline

- 1. Overview of Intelligent Information Assistant
- 2. Learning disentangled latent representation for text
- 3. Mirror-Generative NMT
- 4. Multimodal machine writing
- 5. Summary and Future Directions

Multimodal Machine Writing

GraspSnooker [Z. Sun, J. Chen, H. Zhou, D. Zhou, Lei Li, M. Jiang, IJCAI19b]

Jersey Number Recognition with Semi-Supervised Spatial Transformer Network [G. Li, S. Xu, X. Liu, Lei Li, C. Wang, CVPR-CVS18]

Xiaomingbot Automatic News Writing System

Winning 2017 Wu Wen-tsün Award in AI from CAAI

足球に	し百小明	C	λ
6621	3	6966	1997
头条	关注	粉丝	获赞
私信	E	关注	•

目 简介:借助人工智能技术,为大家带来快速、全面的足 球资讯

口北门大小四

Al小记者Xiaomingbot 2018-06-24 14:29:20

北京时间2018年6月23日20时0分,世界杯 G组 第2轮,比利时迎战突尼斯。 最终 比利时5:2战胜突尼斯,卢卡库,巴舒亚伊,阿扎尔为本队建功 ,哈兹里,布隆为 本队挽回颜面 。 ,哈兹里,布隆为本队挽回颜面 。

<		Xiaomingbot-European) ک	<u>∙</u> ↑ĵ
	Xiaomingbot- European 🕑		Following	
	202 Post	4 Following	1.1K Followers	

Post

Thomas Strakosha's 4 saves did not stop Lazio from defeat against Inter Milan, final score 0: 3

Following · Xiaomingbot-European 🕥 🛛 🔘 0

Marseille dropped a 0: 2 decision against PSG in Ligue 1

Following · Xiaomingbot-European 🕥 🛛 🔘 0

Sevilla took away a victory against Huesca, 2: 1

Soccer News Generation from Multimodal Data

Lei Li, Han Zhang, Lifeng Hua, Jiaze Chen, Ying Zeng, Yuzhang Du, Yujie Li, ⁴⁶ Shikun Xu, Gen Li, Zhenqi Xu, Yandong Zhu, Siyi Gao, Changhu Wang, Weiying Ma

Snooker Commentary Generation Combining Visual Understanding with Strategy Prediction

Balls Detection

Balls' Positions at the Beginning Red0: (180, 542) Red1: (189, 552) Red2: (179, 555) Red3: (184, 561) Red4: (202, 563) Red5: (174, 564) Red6: (189, 569) Red11:(197, 590) Red12:(241, 595) Red7: Red13:(155, 606) Red14:(327, 611) Brown: (183, 163) Green: (240, 163) Yellow: (127, 163) Blue: (183, 366

(positions after mapping)

47

GraspSnooker [Z. Sun, J. Chen, H. Zhou, D. Zhou, Lei Li, M. Jiang, IJCAI19b]

AI Writing for Under-developed Region

Help farmers from rural countryside to sell agriculture products and promote culture through Toutiao and Douyin. Certain product articles are semi-automatically generated by AI.

23:46		.ıl 🗢 🕞
<	今日头条	Q
小北带你吃 摘,从枝头 晨	茂谷柑:小北 到舌尖,一尝	;早上现 :广西的清

3月21日·三农达人团成员 知名三农领域....

茂谷柑产于广西武鸣,当地至少有1100多年的栽 培历史。

一西省桂林市全州县地处广西之北、湖南以南,

Promote Rural Products on Toutiao Gulin, Sichuan

Till 2018/7/15 Sold 27.5 tons of plum on Toutiao

Xiahe, Gansu

Boost beef selling by 4x after promotion on Toutiao

The Xiaoming Multilingual Reporter News Writing + Summarization + Translation + TTS w/ Speech Cloning

HOME

Xiaoming

News Editor, Anchor

Introduction

Newbie as news editor, news anchor, mastering languages: English, Chinese, Japanese.

Pick up the news you are interested in

阿拉维斯0-0西班牙人! 双方握手言和

北京时间2019年8月25日23点,西甲第2轮,阿拉维斯主场对阵西班牙人。比赛开始后, Tomas在一次动作比较大的犯规下,被裁判出示了黄牌。Mubarak在一次动作比较大的犯规 下,被裁判出示了黄牌。对阵双方,都有一定的机会威胁到对方的球门,但由于运气原因双方 都没有破门,双方打成了平手。易边再战,Didac在一次动作比较大的犯规下,被裁判出示了 黄牌。Aleix在一次动作比较大的犯规下,被裁判出示了黄...

Summary

- Goal: building intelligent information assistant
- Disentangled Latent Representation
 - VTM: Learning Latent Templates in Variational Space
 - DSS-VAE: Disentangled syntax and semantic representation
- MGNMT:
 - integrate four language capabilities together
 - Utilize both parallel and non-parallel corpus
- Multimodal Machine Writing
 - Xiaomingbot system: 600k articles and 150k followers
- Deployed in multiple online platforms and used by over 100 millions of users

Thanks

- We are hiring researchers, software engineers, and interns at Silicon Valley, Beijing, Shanghai.
- contact: lileilab@bytedance.com