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• New media platforms 

• Tremendous improvement in the efficiency 
and quality of content creation 

• Massive distribution of personalized 
information
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Revolution in Information  
Creation and Sharing
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Why is NLG important?
Machine Translation 

ChatBOT Question Answering

Machine Writing
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Machine Translation has quietly increased 
international  trade by over 10%
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Machine Translation at ByteDance

50+
Clients

50+
languages

Public MT Corpus
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3rd-party best
VolcTrans

Five champions  

in WMT 20 

including 

Chinese-to-English 

German-to-English 

German-to-French

translate.volcengine.cn
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Simultaneous Speech-to-Text Translation
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Winning 2017 Wu Wen-tsün Award in AI from CAAI 
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Xiaomingbot  
Automatic News Writing System

600,000 
articles

150,000  
followers

6 
lang



Runxin Xu, Jun Cao, Mingxuan Wang, Jiaze Chen, Hao Zhou, Ying Zeng, Yuping Wang, 
Li Chen, Xiang Yin, Xijin Zhang, Songcheng Jiang, Yuxuan Wang, Lei Li, ACL 2020.
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Xiaomingbot : Multilingual Robot News Reporter
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Snooker Commentary Generation 
Combining Visual Understanding with Strategy Prediction

GraspSnooker [Z. Sun, J. Chen, H. Zhou, D. Zhou, Lei Li, M. Jiang, IJCAI19b] 



1. Sequence Generation Problem 
2. Deep Latent Variable Models for Text 

Generation 
3. Monte-Carlo Methods for Constrained Text 

Generation 
4. One model to acquire 4 language skills 

– Mirror Generative NMT [ICLR 20a] 
5. mRASP: Multilingual Pretraining NMT 
6. Summary
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Outline
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Modeling a Sequence
The quick brown fox jumps over the lazy dog    .

x = ( x1 , x2 , x3 , x4, x5 , x6 , x7, x8, x9, x10)

pθ(x) = pθ(x1, ⋯, xL)

 The central problem of language modeling 
is to find the joint probability distribution:

There are many ways to represent and learn 
the joint probability model.
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Auto-Regressive Language Model
Decompose the joint distribution as a product 
of tractable conditional probabilities: 

Given x = [x1, x2, x3 . . . , xn]

pθ =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1) =
n

∏
i=1

pθ(xi |x<i)

x1 x2 x3 x4 x5
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Auto-Regressive Factorization -  
Token Probability from a Neural Network

x1 x2 x3 x4

x5

pθ(xi |x<i) = Softmax (fθ(x<i))xi

Softmax(x)j =
exp xj

∑k exp xk

pθ(x5 |x1, x2, x3, x4)

The quick brown fox

jumps

Input 
Tokens

Output 
Tokens

12x

Token 
Embedding

Figure 1: The Transformer - model architecture.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

3

Feed Forward

Add & Norm

Add & Norm

Masked 
Multi-Head 
Attention

Linear

Softmax

pθ =
n

∏
i=1

pθ(xi |x1, x2, . . . , xi−1) =
n

∏
i=1

pθ(xi |x<i)



aka. sequence-to-sequence generation 
• Machine Translation 
• Dialog Generation 
• Question Answering 
• … 
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Conditional Sequence Generation

pθ(y |x)

敏捷的棕狐跳过懒狗

The quick brown fox jumps over the lazy dog    .

Output

Input



DGM Taxonomy

Maximum Likelihood Estimation

DSS-VAE 
VTM

pθ(x) ⟷ pdata(x)

RNN, LSTM 
Transformer

Adversarial Learning

Explicit Density

Auto-
Regressive 

Factorization

Intractable DensityTractable Density

Parallel 
Factorization

Markov 
Factorization

Glancing 
Transformer 

PNAT

Latent 
Variable Model

Implicit Density

Energy-based

Conditional 
EBM

CGMH 
MHA 

TSMH

Constrained 
PM

GSN



1. Sequence Generation Problem 
2. Deep Latent Variable Models for Text 

Generation 
3. Monte-Carlo Methods for Constrained Text 

Generation 
4. One model to acquire 4 language skills 

– Mirror Generative NMT [ICLR 20a] 
5. mRASP: Multilingual Pretraining NMT 
6. Summary
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Outline



• Interpretable Deep Latent Representation 
from Raw Text 
– Learning Exponential Family Mixture VAE 

[ICML 20] 
• Disentangled Representation Learning for 

Text Generation 
– Data to Generation: VTM [ICLR 20b] 
– Learning syntax-semantic representation [ACL 

19c]

18

Deep Latent Variable Models for Text
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Learning Interpretable Latent 
Representation

“Remind me about 
the football game.” 

[action=remind] 
“Will it be overcast 

tomorrow?” 
[action=request] 

…… x0 x1 x2

x1 x2 x3
GENERATOR Sampling

Generate Sentences with 
interpretable factors

Latent structure 
dialog actions
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How to Interpret Latent Variables in 
VAEs? 

Remind me about my 
meeting.

: 
continuou

s latent 
variables

z

Will it be humid in New York today? 

Variational Auto-encoder (VAE) 

z xinterpretable

structure

difficult to 
interpret 

discrete factors

(Kingma & Welling, 2013) 
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Discrete Variables Could Enhance 
Interpretability - but one has to do it right!

Gaussian Mixture Variational Auto-
encoder (GM-VAE) 

interpretable 
structure z xc

: discrete 
component
c

: continuous 
latent variable
z Remind me 

about the 
football game. 

Will it be overcast 
tomorrow? 

How to fix it?

mode-
collapse

Why?

(Dilokthanakul et al., 2016; Jiang et al., 2017)  
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Do it right for VAE w/ hierarchical priors -  
Dispersed Exponential-family Mixture VAE

Exponential-family Mixture VAE


Dispersed EM-VAE 

L(θ; x) = ELBO + β ⋅ Ld,

Ld = 𝔼qϕ(c|x)A(ηc) − A(𝔼qϕ(c|x)ηc) .
dispersion term

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020] 

z xc

adding dispersion term in training 



23

Latent Variables Learned by DEM-VAE 
are Semantically Meaningful

 Inferred action=Inform-route/address 
“There is a Safeway 4 miles away.” 
“There are no hospitals within 2 miles.” 
“There is Jing Jing and PF Changs.” 
…

Inferred action =Request-weather 
“What is the weather today?” 
“What is the weather like in the city?” 
“What's the weather forecast in New 
York?” 
…

Example actions and corresponding 
utterances (classified by )qϕ(c |x)

 Utterances of the same actions could be assigned 
with the same discrete latent variable .c

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020] 
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Generate Sensible Dialog Response 
with DEM-VAE

Predict 
User: “Thank you car, let's go there!” 

Predict 
User: “What is the address?”

(action = thanks) (action = request-address) 

sampling different values of discrete latent variables

Input Context 
Sys: “Taking you to Chevron.”

 Responses with different actions are generated by 
sampling different values of discrete latent variables.

DEM-VAE [W. Shi, H. Zhou, N. Miao, Lei Li, ICML 2020] 
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Data-to-Text Generation

Sukiyaki is a Japanese 
restaurant. It is a 
pub and it has a 
average cost and 
good rating. It is 
based in seattle.

name Sukiyaki

eatType pub

food Japanese

price average

rating good

area seattle
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Previous Idea: Templates

name Sukiyaki

eatType pub

food Japanese

price average

rating good

area seattle

Sukiyaki is a Japanese 
restaurant. It is a 
pub and it has a 
average cost and 

good rating. It is in 
seattle.

[name] is a [food] restaurant. 
It is a [eatType] and it has 
a [price] cost and [rating] 

rating. It is in [area].

But manually creation of 
templates are tedious 



Raw text

Motivation 2: 
   Incorporate raw text 
corpus to learn good 
representation.

27

Generating from Latent Factors
Motivation 1: 
   Continuous and 
disentangled 
representation for 
template and content

Template

Content
Table

Sentence

q (template, 
content | 
sentence)

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, ICLR20b]



28

Variational Template Machine

zc

y

xtable 
data

text

template 
variable

content 
variable

Input: triples of <field_name, 
position, value> 

   

1. Neural Net 
 

2. Sample , e.g. 
Gaussian 

3. Decode  from  using 
another NN (e.g. 
Transformer)

{x f
k , xp

k , xv
k}K

k=1

p(c |x) ∼
maxpool(tanh(W ⋅ [xk

f , xk
p, xk

v] + b))
z ∼ p0(z)

y [c, z]

VTM [R. Ye, W. Shi, H. Zhou, Z. Wei, Lei Li, ICLR20b]



Table Text

Sukiyaki is a Japanese restaurant. It is 
a pub and it has a average cost and 

good rating. It is in seattle.

?
q(<c,z>|y)

Known for its creative flavours, 
Holycrab's signatures are the 

Hokkien crab.

• Semi-supervised learning: “Back-translate” 
corpus to obtain pseudo-parallel pairs 
<table, text>, to enrich the learning

29

Learning with Raw Corpus

name Sukiyaki
eatType pub

food Japanese
price average
rating good
area seattle
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VTM Produces High-quality and 
Diverse Text

WIKI

B
LE

U

0.08

0.124

0.168

0.212

0.256

0.3

Self-BLEU
0.6 0.705 0.81 0.915 1.02

VTM T2S-beam

T2S-
pretrain

Temp-KN

SPNLG

B
LE

U
0.05

0.14

0.23

0.32

0.41

0.5

Self-BLEU
0.3 0.48 0.66 0.84 1.02

VTM T2S-beam
T2S-
pretrain

Temp-KN

Ideal Ideal

VTM uses beam-search decoding.

VTM [Ye, …, Lei Li, ICLR20b]



BL
EU
↑

0.1

0.14

0.18

0.22

0.26

Self-BLEU↓
0.7 0.75 0.8 0.85 0.9

31

Raw data and loss terms are necessary

VTM

w/o 
information-preserving losses

w/o raw data

Ablation results on Wiki-bio dataset
ideal
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Interpreting VTM
Template variable project to 2D
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VTM Generates Diverse Text

1: John Ryder (8 August 1889 – 4 April 1977) 
was an Australian cricketer.

2: Jack Ryder (born August 9, 1889 in Victoria, 
Australia) was an Australian cricketer. 

3: John Ryder, also known as the king of 
Collingwood (8 August 1889 – 4 April 1977) 
was an Australian cricketer. 

Input Data Table Generated Text
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Learning Disentangled Representation 
of Syntax and Semantics 

There is an apple 
on the table

Syntax provider 

The dog is 
behind the door

Semantic content

DSSVAE

There is a dog behind the door

DSS-VAE [Y. Bao, H. Zhou, S. Huang, Lei Li, L. Mou, O. Vechtomova, X. Dai, J. Chen, ACL19c]

x

zsyn zsem

syntactic 
style

semantic 
content

sentence

DSSVAE enables learning and 
transferring sentence-writing styles 



1. Sequence Generation Problem 
2. Deep Latent Variable Models for Text 

Generation 
3. Monte-Carlo Methods for Constrained Text 

Generation 
4. One model to acquire 4 language skills 

– Mirror Generative NMT [ICLR 20a] 
5. mRASP: Multilingual Pretraining NMT 
6. Summary
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Outline



To generate sentences that are: 
• Fluent 
• Constraint-satisfying 

• e.g. keyword-occurrence constraint 

36

Constrained Text Generation

Comfortable sports shoes, 
a breathing pair of man's 
shoes, accompanying you 
in autumn

“Autumn” 
“Sports shoes”



Exponential search space, O((N-k)V) 
RNN grid beam search [Hokamp & Liu 2017] 
does not usually produce high quality 
sentences

37

Why is Constrained Text Generation 
difficult?

h0

𝑤0

h1

𝑤1

h2

𝑤2

h3

𝑤3

h4

𝑤4

No 
constraints

word 1

word 2

word 3

pos



• Key idea: To generation 
samples from the implicit 
distribution by iterative 
editing (MH sampling)

38

Constrained Sentence Generation via 
Metropolis-Hastings Sampling

CGMH [N. Miao, H. Zhou, L. Mou, R. Yan, Lei Li, AAAI19]

π(x) = ∏
i

P(xi |x0:i−1) ⋅ ∏
j

Pj
C(x)

pre-trained  
language 

model prob.

indicator (0-1) 
function for  
constraints

All token seq’s

Fluent 
 Text

Constrained

Ideal 
Text



• CGMH performs constrained generation by: 
1. Pretrain Neural Language Model (e.g. GPT2); 
2. Iterative Editing:  

1) Start from a initial sentence ;  
2) Propose a new sentence  from , and accept/
reject the action. Action proposal include: 
I. Replacement: change a word to another one 
II. Insertion: add a word 
III. Deletion: remove a word  

𝑥0
𝑥𝑡 𝑥𝑡−1

39

CGMH: Main Idea

BMW, the sports car of daily life
BMW, the sports car of today’s life
BMW, the sports car of future life
BMW, the sports car of new life
BMW, the sports car of happy life

…
CGMH [N. Miao, H. Zhou, L. Mou, R. Yan, Lei Li, AAAI19]



NLL(↓)

0

2.5

5

7.5

10

#keywords

1 2 3 4

LSTM w/ sep-B/F
LSTM w/asyn-B/F
GBS
CGMH

Scores of human evaluation (↑)

0
0.18
0.35
0.53

0.7

#keywords

1 2 3 4

LSTM w/ sep-B/F
LSTM w/ asyn-B/F
GBS
CGMH 40

CGMH generates better sentences from 
keywords



• CGMH is deployed in a large-scale online 
ads creation platform 

• Active used by 100,000 merchants and 
organizations 

• Adoption rate: ~75%

41

Impact

Comfortable sports shoes, 
a breathing pair of man's 
shoes, accompanying you 
in autumn

“Autumn” 
“Sports shoes”



• Machine learning models are vulnerable to 
noises and attacks.  

• Generating fluent adversarial text is challenging, 
due to the discreteness in text! (Ebrahimi et al., 2018; 
Alzantot et al., 2018) 

• Our MHA achieves higher attack success rate

42

Generating Adversarial Fluent 
Sentence Generation

MHA [H. Zhang, N. Miao, H. Zhou, Lei Li, ACL19a]



• Logical and Combinatorial constraints 
• E.g. generating a question for the following 

statement. 
• Paris is located in France. 
• ==> Is Paris located in France? 
• ==> Which country is Paris located in?

43

Generation under Combinatorial 
Constraints

TSMH [M. Zhang, N. Jiang, Lei Li, Yexiang Xue, EMNLP20e]



• Logical and Combinatorial constraints

44

Generation under Combinatorial 
Constraints

TSMH [M. Zhang, N. Jiang, Lei Li, Yexiang Xue, EMNLP20e]

π(x) = PLM(x; θ) ⋅ ϕ(x)

Language 
Model

Constraint

ϕ(x) = βM−∑i ci(x), 0 < β < 1
 is a formula or logical constraint. e.g. the first 

word must be Wh- words. 
Method: Tree search enhanced Metropolis-Hastings 
  details in

ci(x)



Mirror Generative Model for 
Neural Machine Translation
MGNMT [Z. Zheng, H. Zhou, S. Huang, Lei Li, X. Dai, 

J. Chen, ICLR 2020a]
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Neural Machine Translation

Chinese 
x ∼ 𝖣xy

English 
y ∼ 𝖣xy

[p(y |x; θxy)]
src2tgt 

[p(x |y; θyx)]
tgt2src TM

• BUT, very expensive/non-trivial to obtain 
– Low resource language pairs (e.g., English-to-Tamil) 
– Low resource domains (e.g., social network) 

• Large-scale mono-lingual data are not fully 
utilized

• Neural machine translation (NMT) systems are 
super good when you have large amount of 
parallel bilingual data
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Integrating Four Language Skills with 
MGNMT

z(x, y)
yx

y x

[p(y |x, z; θxy)]src2t[p(y |z; θy)]target 

[p(x |y, z; θyx)]tgt2sr[p(x |z; θx)]source 

MGNM

1. composing sentence in Source lang 
2. composing sentence in Target lang 
3. translating from source to target 
4. translating from target to source

Benefits 
utilizing both 

parallel 
bilingual data 

and non-
parallel corpus

MGNMT [Z. Zheng, H. Zhou, S. Huang, L. Li, X. Dai, J. Chen, ICLR 2020a]



Mirror-Generative NMT

We propose the mirror-generative NMT (MGnmt) to address the aforementioned problems
for e↵ectively exploiting non-parallel data in NMT.

I Jointly training translation models (i.e., Tmx!y and Tmy!x) and language models (i.e.,
Lmx and Lmy) in a unified probabilistic framework.

I A latent variable z representing the shared semantic space between the two language x
and y , inspired by generative NMT (Shaw et al., 2018)

x yMGNMT z(x, y)
[p(x |z)]src LM

[p(x |y, z)]tgt2src TM

[p(y |x, z)]src2tgt TM

[p(y |z)]
tgt LM

y

x

z(x, y) yx
y x

[p(y |x, z; �xy)]
src2tgt TM

[p(y |z; �y)]
target LM

[p(x |y, z; �yx)]
tgt2src TM

[p(x |z; �x)]
source LM

MGNMT

Zheng et al. (NJU & ByteDance) iclr20 31 Mar, 2020 13 / 34

• The mirror property to decompose 

48

Approach: Mirror-Generative NMT

Published as a conference paper at ICLR 2020

z

x y

z

x y
GNMT MGNMT

Figure 1: The
graphical model of
MGNMT.

x yMGNMT z(x, y)
[p(x |z)]src LM

[p(x |y, z)]tgt2src TM

[p(y |x, z)]src2tgt TM

[p(y |z)]
tgt LM

y

x

z(x, y) yx
y x

[p(y |x, z; �xy)]
src2tgt TM

[p(y |z; �y)]
target LM

[p(x |y, z; �yx)]
tgt2src TM

[p(x |z; �x)]
source LM

MGNMT

Figure 2: Illustration of the mirror property of MGNMT.

For decoding, some related works (Gulcehre et al., 2015) propose to interpolate external language
models LMy (trained separately on target monolingual data) to translation model TMx!y, which in-
cludes knowledge from target monolingual data for better translation. This is particularly useful for
domain adaptation because we may obtain better translation output quite fitting test domain (e.g.,
social networks), through a better LMy. However, directly interpolating an independent language
model in decoding maybe not the best. First, the language model used here is external, still inde-
pendently learned to the translation model, thus the two models may not cooperate well by a simple
interpolation mechanism (even conflict). Additionally, the language model is only included in de-
coding, which is not considered in training. This leads to the inconsistency of training and decoding,
which may harm the performance.

In this paper, we propose the mirror-generative NMT (MGNMT) to address the aforementioned
problems for effectively exploiting non-parallel data in NMT. MGNMT is proposed to jointly train
translation models (i.e., TMx!y and TMy!x) and language models (i.e., LMx and LMy) in a unified
framework, which is non-trivial. Inspired by generative NMT (Shah & Barber, 2018), we propose to
introduce a latent semantic variable z shared between x and y. Our method exploits the symmetry,
or mirror property, in decomposing the conditional joint probability p(x, y|z), namely:

log p(x, y|z) = log p(x|z) + log p(y|x, z) = log p(y|z) + log p(x|y, z)

=
1

2
[log p(y|x, z)| {z }

src2tgt TMx!y

+ log p(y|z)| {z }
target LMy

+ log p(x|y, z)| {z }
tgt2src TMy!x

+ log p(x|z)| {z }
source LMx

] (1)

The graphical model of MGNMT is illustrated in Figure 1. MGNMT aligns the bidirectional trans-
lation models as well as language models in two languages through a shared latent semantic space
(Figure 2), so that all of them are relevant and become conditional independent given z. In such
case, MGNMT enables following advantages:

(i) For training, thanks to z as a bridge, TMy!x and TMx!y are not independent, thus ev-
ery updating of one direction will directly benefit the other direction. This improves the
efficiency of using non-parallel data. (Section 3.1)

(ii) For decoding, MGNMT could naturally take advantages of its internal target-side language
model, which is jointly learned with the translation model. Both of them contribute to the
better generation process together. (Section 3.2)

Note that MGNMT is orthogonal to dual learning (He et al., 2016a) and joint back-translation (Zhang
et al., 2018). Translation models in MGNMT are dependent, and the two translation models could
directly promote each other. Differently, dual learning and joint back-translation works in an im-
plicit way, and these two approaches can also be used to further improve MGNMT. The language
models used in dual learning faces the same problem as Gulcehre et al. (2015). Given GNMT, the
proposed MGNMT is also non-trivial. GNMT only has a source-side language model, thus it cannot
enhance decoding like MGNMT. Also, in Shah & Barber (2018), they require GNMT to share all the
parameters and vocabularies between translation models so as to utilize monolingual data, which is
not best suited for distant language pairs. We will give more comparison in the related work.

Experiments show that MGNMT achieves competitive performance on parallel bilingual data, while
it does advance training on non-parallel data. MGNMT outperforms several strong baselines in
different scenarios and language pairs, including resource-rich scenarios, as well as resource-poor
circumstances on low-resource language translation and cross-domain translation. Moreover, we
show that translation quality indeed becomes better when the jointly learned translation model and
language model of MGNMT work together. We also demonstrate that MGNMT is architecture-free
which can be applied to any neural sequence model such as Transformer and RNN. These pieces of
evidence verify that MGNMT meets our expectation of fully utilizing non-parallel data.

2

• Relevant TMs & LMs under a unified probabilistic 
framework! 
– Enables the aforementioned advantages

p(x, y |z) = p(y |x, z)p(x |z) = p(x |y, z)p(x |z)



• Low resource results

49

MGNMT makes better use of non-
parallel data

Published as a conference paper at ICLR 2020

Table 2: Statistics of the training datasets for each translation tasks. These values of DKL[q(z)||p(z)]
are to some extent large, which means that MGNMT does rely on the latent variable.

Dataset WMT14 EN$DE NIST EN$ZH WMT16 EN$RO IWSLT16 EN$DE

KL-annealing steps 35k 13.5k 8k 4k
DKL[q(z)||p(z)] 6.78 8.26 6.36 7.81

Table 3: BLEU scores on low-resource translation (WMT16 EN$RO), and cross-domain translation
(IWSLT EN$DE).

Model
LOW-RESOURCE CROSS-DOMAIN
WMT16 EN$RO IN-DOMAIN (TED) OUT-DOMAIN (NEWS)
EN-RO RO-EN EN-DE DE-EN EN-DE DE-EN

Transformer (Vaswani et al., 2017) 32.1 33.2 27.5 32.8 17.1 19.9
GNMT (Shah & Barber, 2018) 32.4 33.6 28.0 33.2 17.4 20.1
GNMT-M-SSL + non-parallel (Shah & Barber, 2018) 34.1 35.3 28.4 33.7 22.0 24.9
Transformer+BT + non-parallel (Sennrich et al., 2016b) 33.9 35.0 27.8 33.3 20.9 24.3
Transformer+JBT + non-parallel (Zhang et al., 2018) 34.5 35.7 28.4 33.8 21.9 25.1
Transformer+Dual + non-parallel (He et al., 2016a) 34.6 35.7 28.5 34.0 21.8 25.3
MGNMT 32.7 33.9 28.2 33.6 17.6 20.2
MGNMT + non-parallel 34.9 36.1 28.5 34.2 22.8 26.1

4.1 RESULTS AND DISCUSSION

As shown in Table 3 and Table 4, MGNMT outperforms our competitive Transformer base-
line (Vaswani et al., 2017), Transformer-based GNMT (Shah & Barber, 2018) and related work
in both resource-poor scenarios and resource-rich scenarios.

MGNMT makes better use of non-parallel data. As shown in Table 3, MGNMT outperforms
our competitive Transformer baseline (Vaswani et al., 2017), Transformer-based GNMT (Shah &
Barber, 2018) and related work in both resource-poor scenarios.

1. On low-resource language pairs. The proposed MGNMT obtains a bit improvement over Trans-
former and GNMT on the scarce bilingual data. Large margins of improvement are obtained by
exploiting non-parallel data.
2. On cross-domain translation. To evaluate the capability of our model in the cross-domain set-
ting, we first trained our model on TED data from IWSLT benchmark as in-domain training, and then
exposed the model to out-of-domain NEWS non-parallel bilingual data from News Crawl to access-
ing out-domain knowledge. As shown in Table 3, being invisible to out-domain training data leads to
poor performance in out-domain testset of both Transformer and MGNMT. In this case, out-domain
non-parallel data contributes significantly, leading to 5.7⇠6.4 BLEU gains. We also conduct a case
study on the cross-domain translation in Appendix.
3. On Resource-rich scenarios. We also conduct regular translation experiments on two resource-
rich language pairs, i.e., EN$DE and NIST EN$ZH. As shown in Table 4, MGNMT can obtain
comparable results compared to discriminative baseline RNMT and generative baseline GNMT on
pure parallel setting. Our model can also achieve better performance by the aid of non-parallel
bilingual data than the compared previous approaches, consistent with the experimental results in
resource-poor scenarios.
4. Comparison to other semi-supervised work. We compare our approach with well-established
approaches which are also designed for leveraging non-parallel data, including back-translation
(Sennrich et al., 2016b, Transformer+BT), joint back-translation training (Zhang et al., 2018, Trans-
former+JBT), multi-lingual and semi-supervised variant of GNMT (Shah & Barber, 2018, GNMT-
M-SSL), and dual learning (He et al., 2016a, Transformer+Dual). As shown in Table 3, while
introducing non-parallel data to either low-resource language or cross-domain translation, all listed
semi-supervised approaches gain substantial improvements. Among them, our MGNMT achieves
the best BLEU score. Meanwhile, in resource-rich language pairs, the results are consistent. We
suggest that because the jointly trained language model and translation model could work coordi-
nately for decoding, MGNMT surpasses joint back-translation and dual learning. Interestingly, we
can see that the GNMT-M-SLL performs poorly on NIST EN$ZH, which means parameters-sharing
is not quite suitable for distant language pair. These results indicate its promising strength of boost-

7



• High resource results
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MGNMT makes better use of non-
parallel data
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Table 4: BLEU scores on resource-rich language pairs.

Model WMT14 NIST
EN-DE DE-EN EN-ZH ZH-EN

Transformer (Vaswani et al., 2017) 27.2 30.8 39.02 45.72
GNMT (Shah & Barber, 2018) 27.5 31.1 40.10 46.69
GNMT-M-SSL + non-parallel (Shah & Barber, 2018) 29.7 33.5 41.73 47.70
Transformer+BT + non-parallel (Sennrich et al., 2016b) 29.6 33.2 41.98 48.35
Transformer+JBT + non-parallel (Zhang et al., 2018) 30.0 33.6 42.43 48.75
Transformer+Dual + non-parallel (He et al., 2016b) 29.6 33.2 42.13 48.60
MGNMT 27.7 31.4 40.42 46.98
MGNMT + non-parallel 30.3 33.8 42.56 49.05

Figure 4: BLEU vs. scales of non-
parallel data on IWSLT EN$DE tasks.

Figure 5: BLEU increments vs. adding one side mono-
lingual (w/o interactive training) or non-parallel bilin-
gual data for MGNMT on IWSLT EN$DE tasks.

ing low-resource translation and exploiting domain-related knowledge from non-parallel data for
cross-domain scenarios.

Table 5: Incorporating LM for decoding
(IWSLT task).

Model EN-DE DE-EN

MGNMT: dec. w/o LM 21.2 24.6
MGNMT: dec. w/ LM 22.8 26.1
Transformer 17.1 19.9
Transformer+LM-FUSION 18.4 21.1

MGNMT is better at incorporating language
model in decoding In addition, we find from Ta-
ble 5 that simple interpolation of NMT and exter-
nal LM (separately trained on target-side mono-
lingual data) (Gulcehre et al., 2015, Transformer-
LM-FUSION) only produces mild effects. This can
be attributed to the unrelated probabilistic model-
ing, which means that a more naturally integrated
solution like MGNMT is necessary.

Table 6: Comparison with NCMR (IWSLT task).

Model EN-DE DE-EN

MGNMT + non-parallel 22.8 26.1
Transformer+BT w/ NCMR (w/o) 21.8 (20.9) 25.1 (24.3)
GNMT-M-SSL w/ NCMR (w/o) 22.4 (22.0) 25.6 (24.9)

Comparison with noisy channel model
reranking (Ng et al., 2019) We com-
pare MGNMT with the noisy channel
model reranking (Ng et al., 2019, NCMR).
NCMR uses log p(y|x) + �1 log p(x|y) +
�2 log p(y) to rerank the translation candi-
dates obtained from beam search, where �1 = 1 and �2 = 0.3, which are similar to our decoding
setting. As shown in Table 6, NCMR is indeed effective and easy-to-use. But MGNMT still works
better. Specifically, the advantage of the unified probabilistic modeling in MGNMT not only im-
proves the effectiveness and efficiency of exploiting non-parallel data for training, but also enables
the use of the highly-coupled language models and bidirectional translation models at testing time.

Effects of non-parallel data. We conduct experiments regarding the scales of non-parallel data on
IWSLT EN$DE to investigate the relationship between benefits and data scales. As shown in Fig-
ure 4, as the amount of non-parallel data increases, all models become strong gradually. MGNMT
outperforms Transformer+JBT consistently in all data scales. Nevertheless, the growth rate de-
creases probably due to noise of the non-parallel data. We also investigate if one side of non-parallel
data could benefit both translation directions of MGNMT. As shown in Figure 5, we surprisingly
find that only using one side monolingual data, for example, English, could also improve English-
to-German translation a little bit, which meets our expectation.

8

– Non-parallel data is helpful  
– MGNMT works well especially on low resource settings



Multilingual 
Pretraining NMT

mRASP [Zehui Lin, Xiao Pan, Mingxuan 
Wang, Xipeng Qiu, Jiangtao Feng, Hao Zhou, 

Lei Li, EMNLP 2020]
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• # of human languages: >6900. 
• How to build a universal MT system that is 

capable of translating any source language 
into a target one?

52

The Ultimate Quest of Machine 
Translation
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Why Training Multilingual MT Jointly?

1 year 1 year

1 year 3 months

• Data scarcity for low/zero resource languages. 
• Transfer knowledge between languages. 



• Further: It is expected to bridge distributional 
representation of different languages. 

• Utterances in different languages with the same 
semantics will be mapped to adjacent embedding 
spaces.
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Further Pursuit:  
Unified Multilingual Representation

En 
Fr 

Es 

De 
It 

<En> I love you.           <Fr> Je t’aime. 
<De> Ich liebe dich.     <Es> Te quiero.  
<It> ti amo. 
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Overview of mRASP 

Encoder Decoder

I like singing and dancing<EN id>

I like chanter and danser<EN id>

1 2 3 4 50

1 2 3 4 50

Orig
J’adore chanter et danser<FR id>

1 2 3 40

J’adore chanter et danser

J’adore chanter et danser

J’adore chanter et danser

1 2 3 40

RAS

tok
pos

tok
pos

<EOS>

<EOS>Pre-training

<FR id>

Random Aligned Substitution

En 
Fr 

Es 

De 
It 

<En> I love you. 
<Fr> Je t’aime. 
<De> Ich liebe dich.  
<Es> Te quiero.  
<It> ti amo. 
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(Extremely) Low Resource

lower resource higher resource

Extremely-Low Resource Direc4ons

0
10
20
30
40

En2Be Be2En En2My My2En En2Af Af2En En2Eo Eo2En

35.8
30.427

31.1
25.328.632.3

25.8

6.74.97.28.35.4
10.29.68.5

Direct
mRASP

Low Resource Direc4ons

0
10
20
30
40
50

En2He He2En En2Tr Tr2En En2Ro Ro2En En2Cs Cs2En

29.8
23.2

37.439
33.3

21

44.6

32.4
22.719

29.230.5

19.4
10.7

27.6
19



• Rich resource benchmarks can be further 
improved (En->Fr +1.1BLEU).
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Medium & Rich Resource 
(Popular Benchmark)

28

28.75

29.5

30.25

31

En2De(wmt2016)

Direct CTNMT
XLM MASS
mBERT mRASP

40

41.75

43.5

45.25

47

En2Fr(wmt2014)

Direct CTNMT
mBART mRASP
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Does mRASP boost MT performance 
for Exotic Languages?

• mRASP generalizes on all exotic scenarios.
Fr-Zh(20K) De-Fr(9M)

—> <— —> <—

Exotic Pair Direct 0.7 3 23.5 21.2
mRASP 25.8 26.7 29.9 23.4

Nl-Pt(12K) Da-El(1.2M)
—> <— —> <—

Exotic Full Direct 0.0 0.0 14.1 16.9
mRASP 14.1 13.2 17.6 19.9

En-Mr(11K) En-Gl(1.2M)
—> <— —> <—

Exotic Source/
Target

Direct 6.4 6.8 8.9 12.8
mRASP 22.7 22.9 32.1 38.1

En-Eu(726k) En-Sl(2M)
—> <— —> <—

Direct 7.1 10.9 24.2 28.2
mRASP 19.1 28.4 27.6 29.5

12k: Direct not work VS mRASP achieves 10+ BLEU!!



• Multimodal Machine Writing 
– Xiaomingbot system: 600k articles and 150k followers 

• Disentangled Latent Representation 
– VTM: Learning Latent Templates in Variational Space 
– DSS-VAE: Disentangled syntax and semantic representation 

• DEM-VAE: Self identifying meaningful clusters with corpus 
• Bayesian approach to constrained text generation 

– CGMH: generic framework to specify constraints and generate 
– MHA, TSMH 

• MGNMT:  
– integrate four language capabilities together 
– Utilize both parallel and non-parallel corpus 

• mRASP: a new pre-trained model for many translation directions
59

Summary
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For the Community

https://github.com/linzehui/mRASP

https://github.com/bytedance/lightseq
A high performance sequence processing lib

Multilingual MT Pretraining

https://translate.volcengine.cn

https://github.com/linzehui/mRASP


• ByteDance AI Lab MLNLC Group and 
many collaborators 

• Contact: lileilab@bytedance.com

61

Thanks

mailto:lileilab@bytedance.com
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