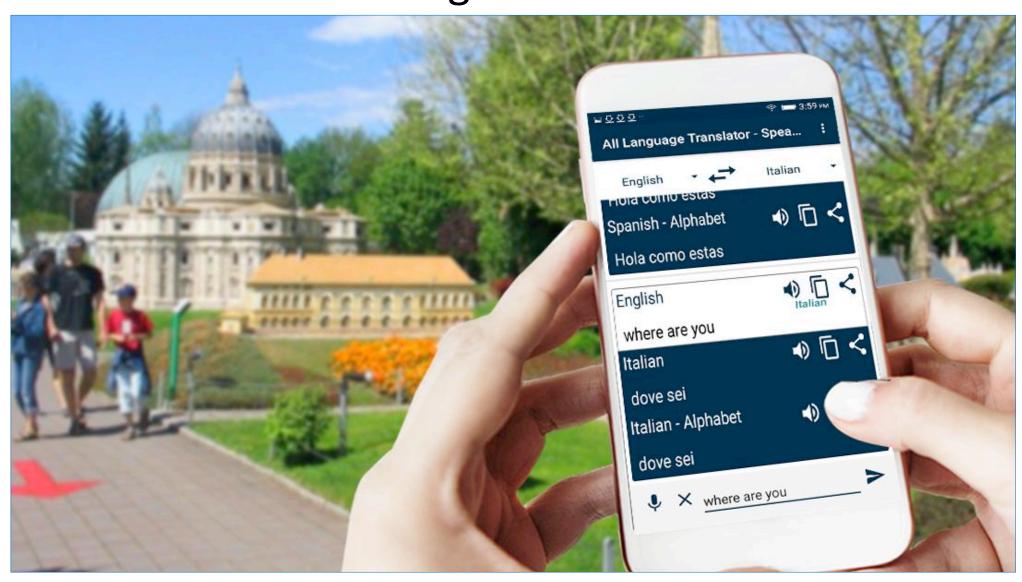
语音翻译:从前沿研究到产品创新 **Speech Translation**

字节跳动人工智能实验室 2021/6/6

Cross Language Barrier with Machine Translation



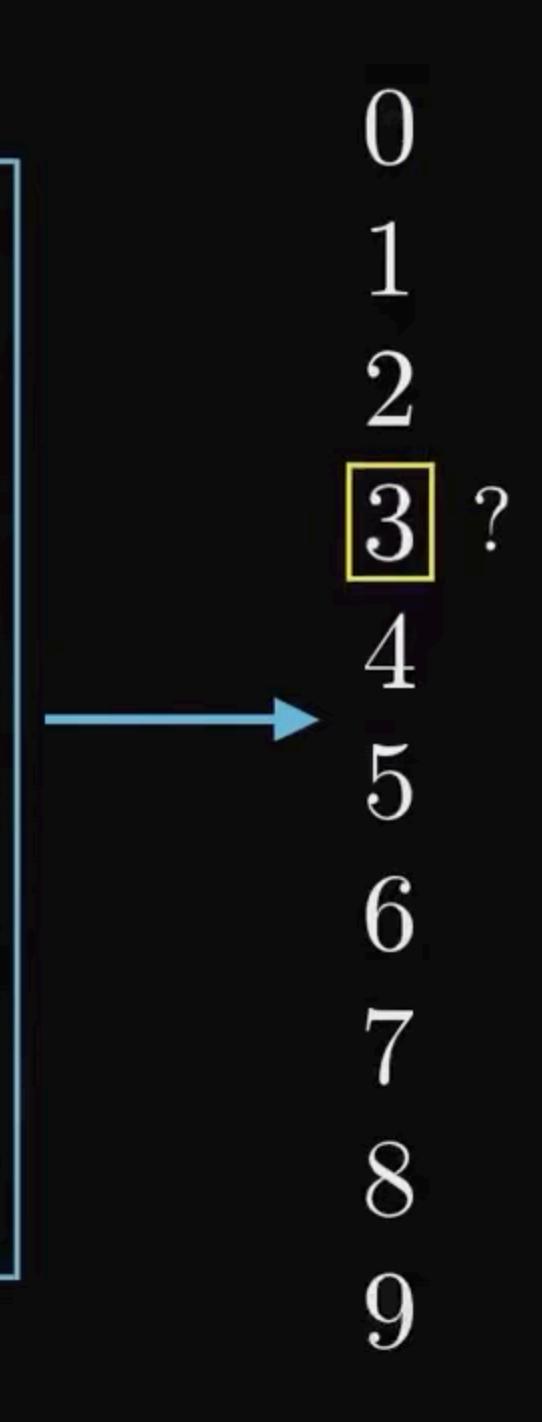
Tourism

Global Conferences

International Trade

2

0.7 1.0 1.0 1.0 1.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.8 0.8 1.0 1.0 1.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.7

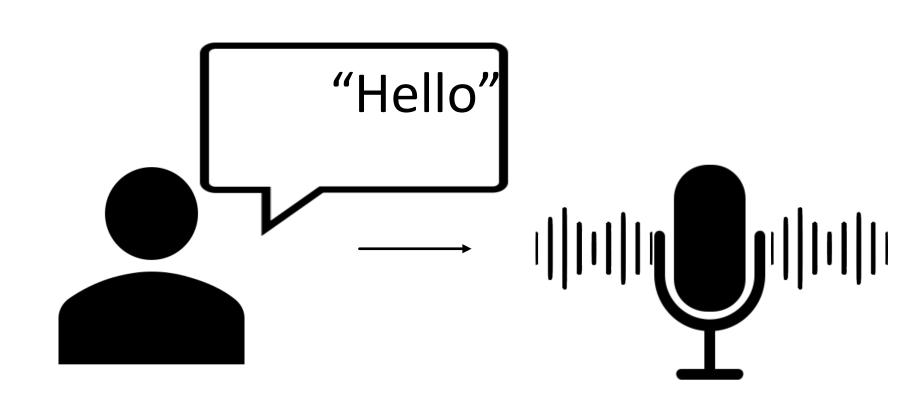


Outline

- 1. Overview: ST Problem and Challenge
- 2. What is a better model for ST?
- 3. Better training strategy for ST?
- 4. New ST-powered Products

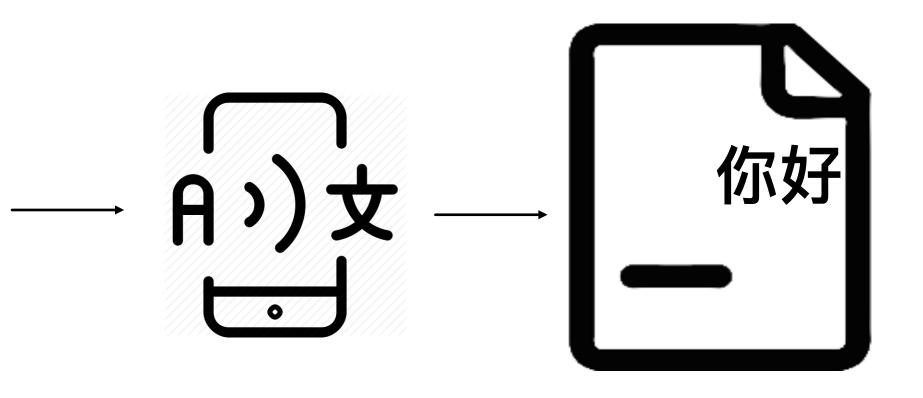
or ST?

Speech-to-Text Translation(ST) source language speech(audio) -> target lang text



Application Type

- (Non-streaming) ST 非流式语音翻译
- Streaming ST 流式语音翻译



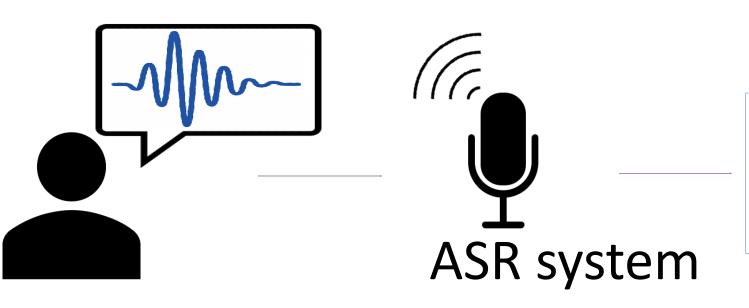
System

Cascaded ST 级联语音翻译 End-to-end ST

端到端语音翻译

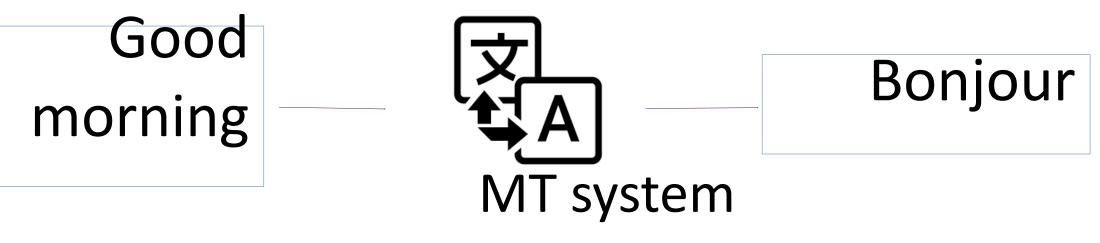
- Challenges:

- **1. Computationally inefficient**
- **2. Error propagation**: Wrong transcription ? Wrong translation



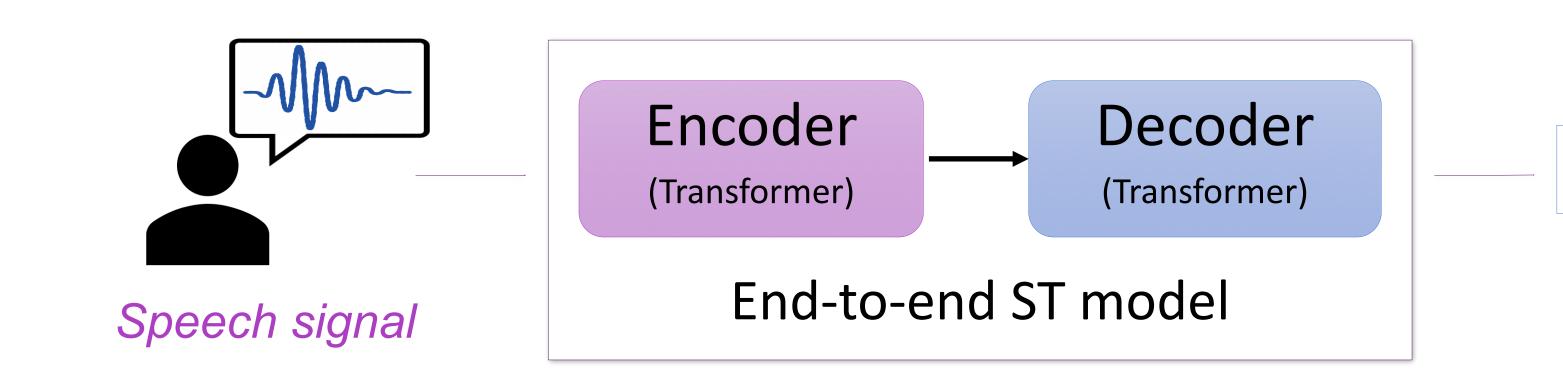
Speech signal

do at this and see if it works for you ? 这样做,看看它是否对你有用 duet this and see if it works for you ? 二重奏一下,看看它是否对你有用



Transcription

Translation



- Single model to produce text translation from speech
- Advantage:
 - Reduced latency, simpler deployment
 - Avoid error propagation

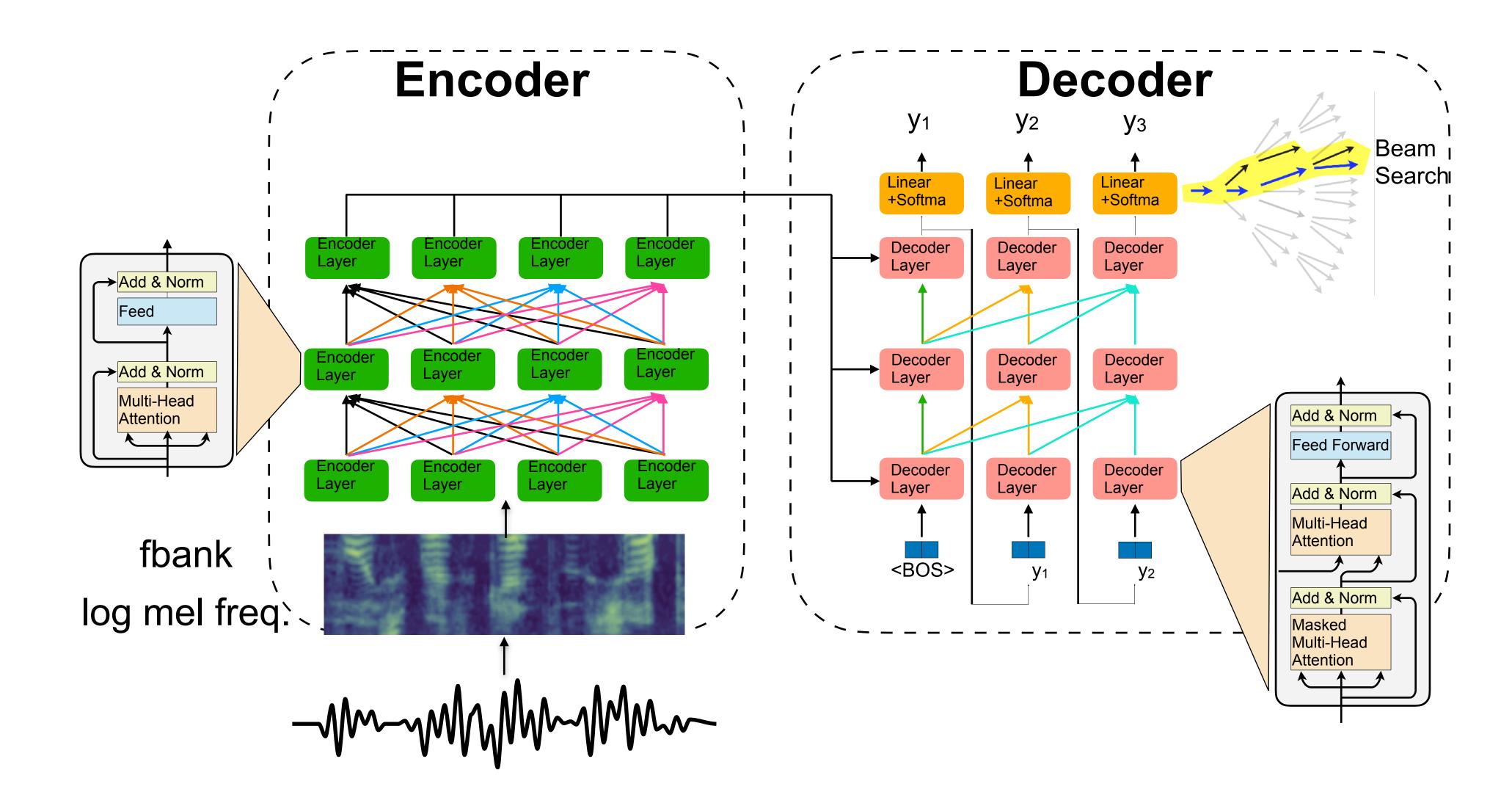
[1] Bérard et al., Listen and translate: A proof of concept for end-to-end speech-to-text translation. 2016

Translation

• Popular model: Encoder-Decoder architecture (e.g. Transformer)

Basic Speech Translation Architecture (Same as MT)

Transformer-based: N-layer encoder, M-layer decoder



Challenge

- Data scarcity lack of large parallel corpus
- Modality disparity between audio and text
- Require low latency for product serving

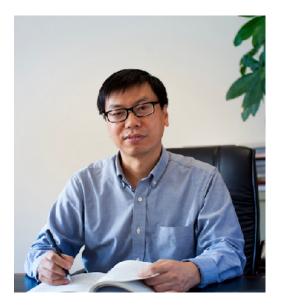
ge parallel corpus en audio and text roduct serving

Approaches for End-to-end ST

- Model
 - Better Encoder: LUT [AAAI 2021a] Chimera[ACL 2021a]
 - Better Decoder: COSTT[AAAI 2021b]
- Training technique
 - Audio pre-training: Wave2Vec2.0[Baevski et al 2021]
 - Progressive multi-task training: XSTNet [Interspeech 2021]
- Speed-up Inference (not in this talk)
 - Parallel Decoding: GLAT [ACL 2021b]
 - GPU optimization: LightSeq [NAACL2021]

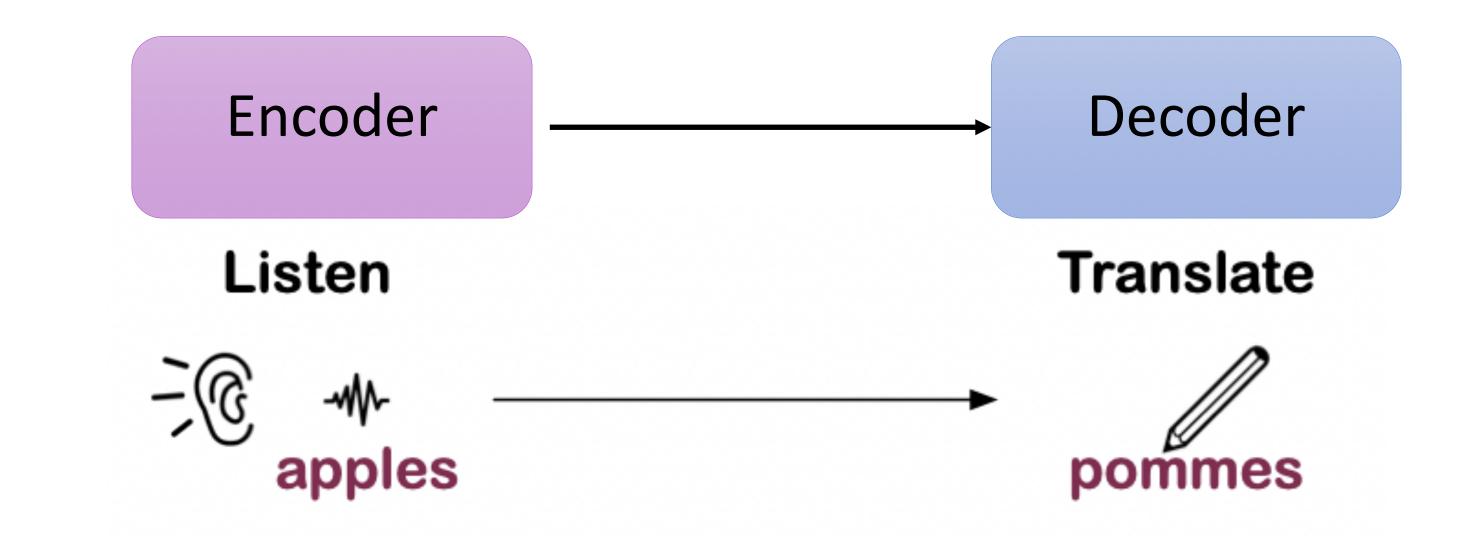
Listen, Understand and Translate: **Triple Supervision Decouples End**to-end Speech-to-text Translation

Qianqian Dong, Rong Ye, Mingxuan Wang, Hao Zhou, Shuang Xu, Bo Xu, Lei Li



11

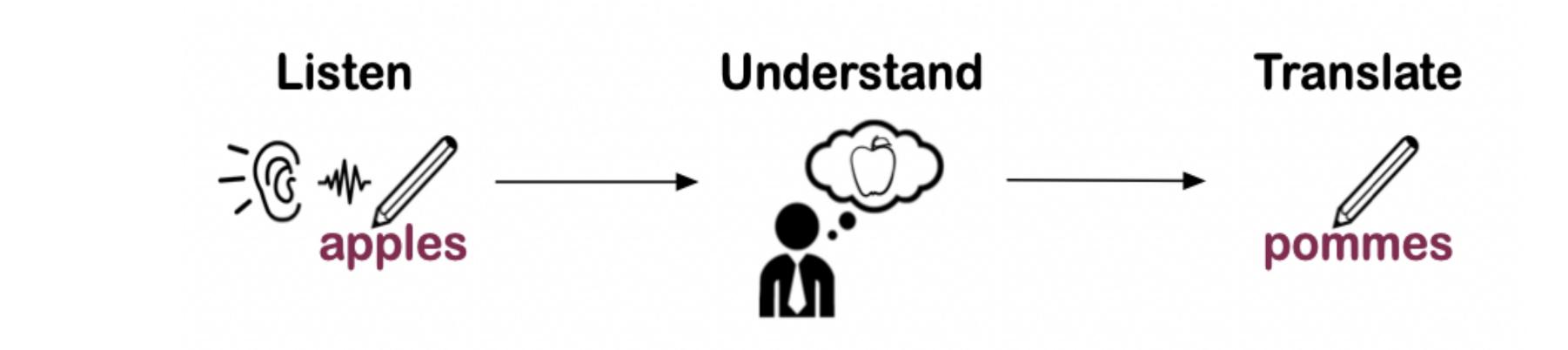
Drawbacks of the Encoder-Decoder Structure



1. A single encoder is hard to capture the representation of audio for the translation. 2. Limited in utilizing the information of "transcription" in the training.

12

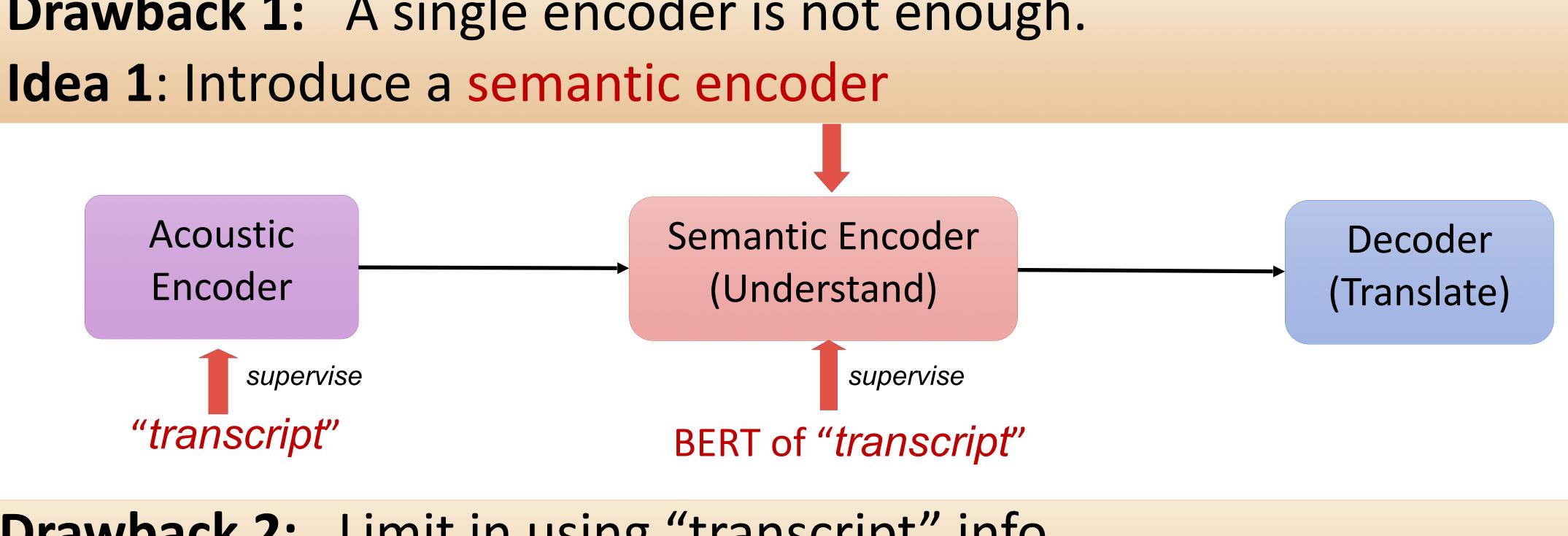
Motivation: Mimic human's behavior Question: How human translate?



"Listen-Understand-Translate" (LUT) model based motivated by human's behavior

Motivation of Better Encoding

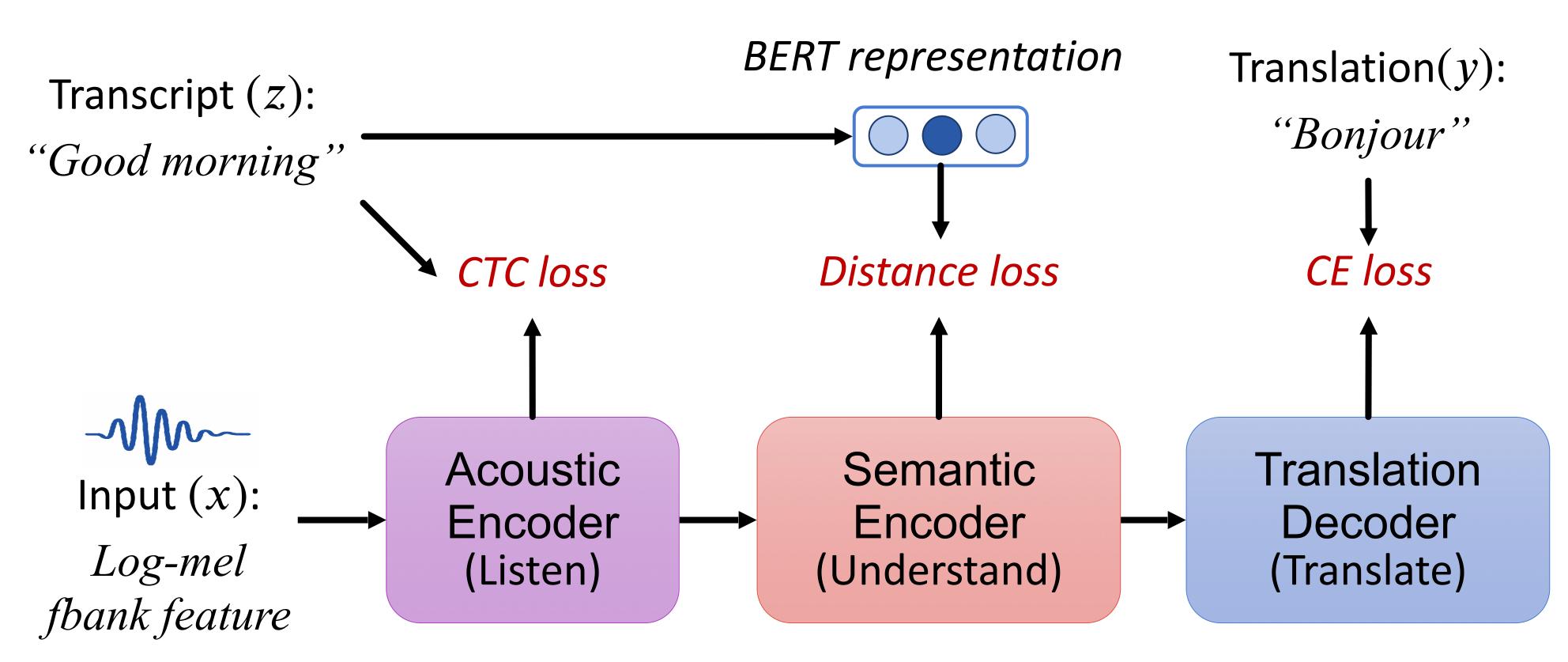
Drawback 1: A single encoder is not enough.



Drawback 2: Limit in using "transcript" info. Idea 2: Utilizing the pre-trained representation (e.g. BERT) of the "transcript" to learn the semantic feature.

Training data: triples of

<speech, transcript_text, translate_text>

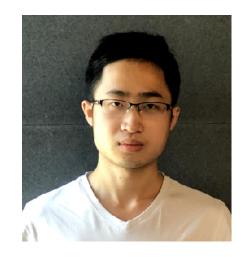


Listen, Understand and Translate [Q. Dong, R. Ye, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021]

LUT for End-to-end ST

15

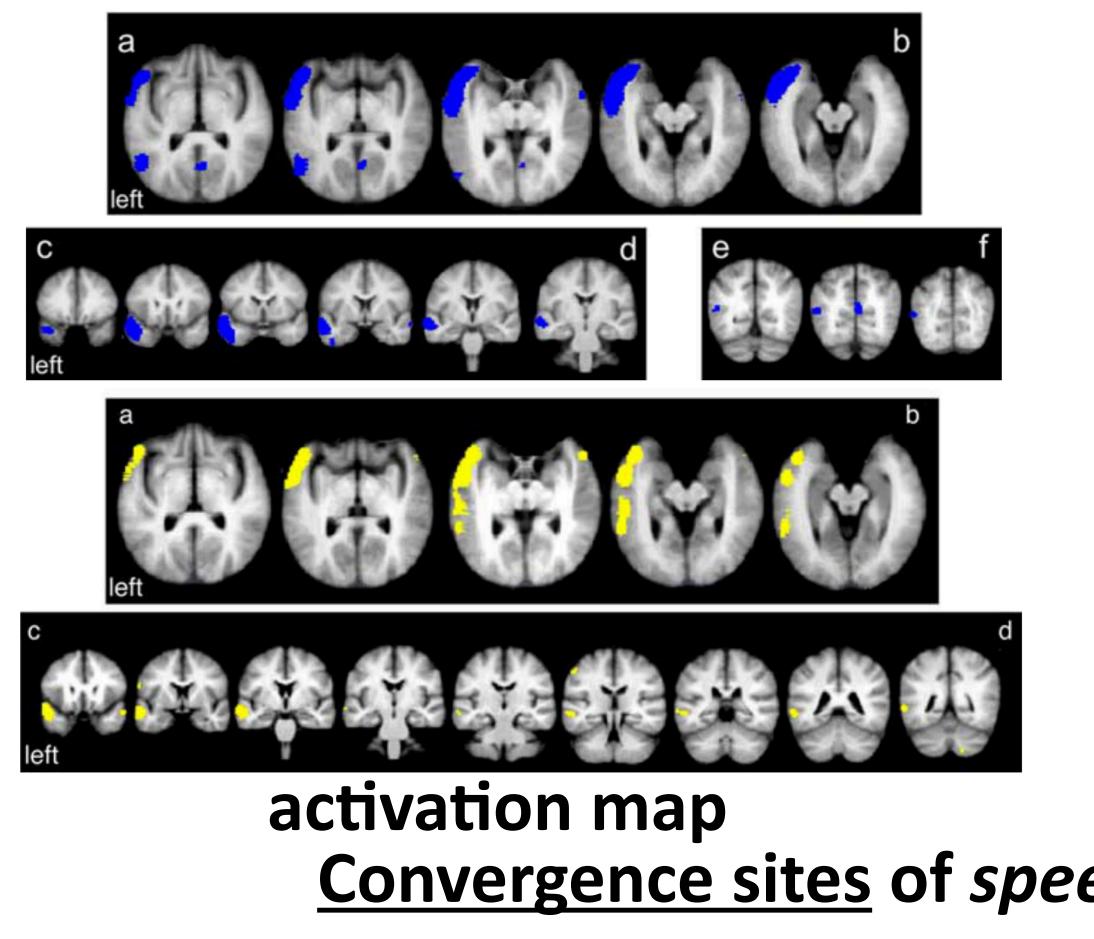
Learning Shared Semantic Space for Speech-to-Text Translation Chi Han, Mingxuan Wang, Heng Ji, Lei Li



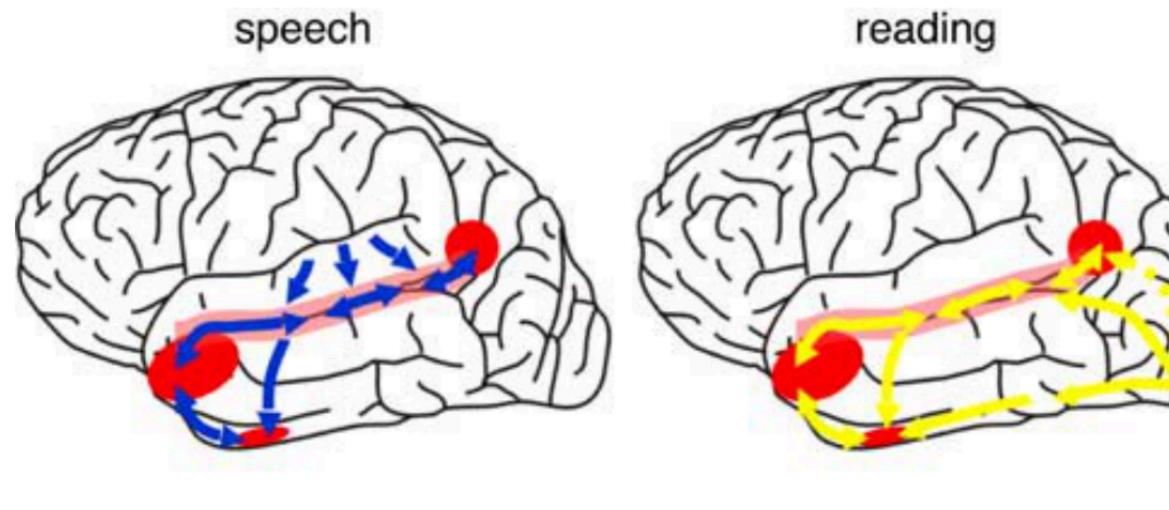
Paper: https://arxiv.org/abs/2105.03095 Code: https://github.com/Glaciohound/Chimera-ST

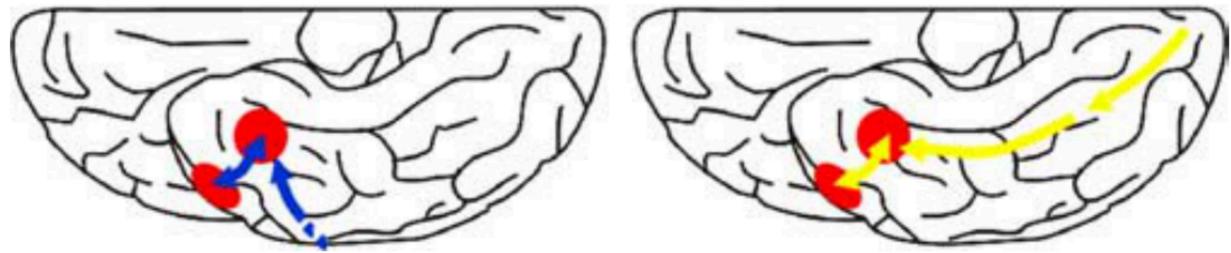
Insights from Cognitive Neuroscience

Speech and text interfere with each other in brain^[1]



[1] Van Atteveldt, Nienke, et al. "Integration of letters and speech sounds in the human brain." Neuron 43.2 (2004): 271-282. [2] Spitsyna, Galina, et al. "Converging language streams in the human temporal lobe." Journal of Neuroscience 26.28 (2006): 7328-7336.



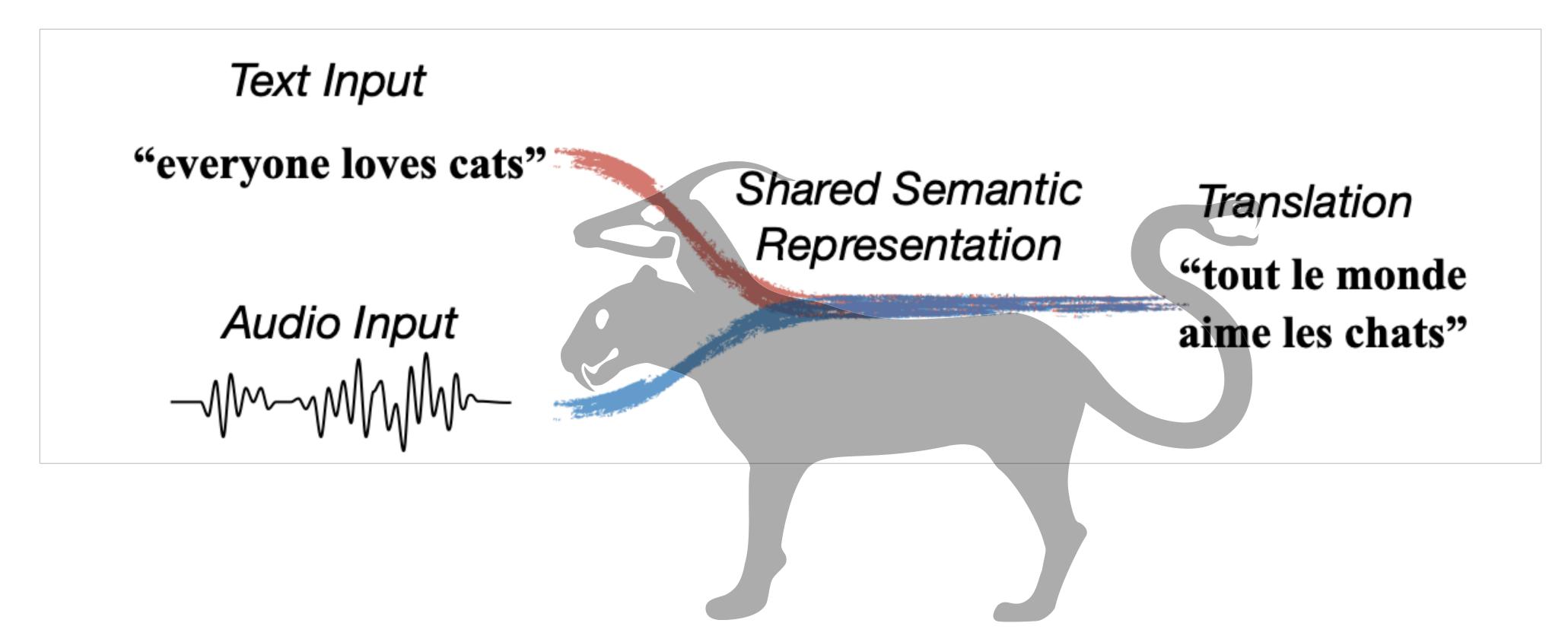


processing paths <u>Convergence sites</u> of *speech* (blue) and *text* (yellow)

Idea: Bridging the Speech-Text modality gap with Shared Semantic Representation

ST triple data:

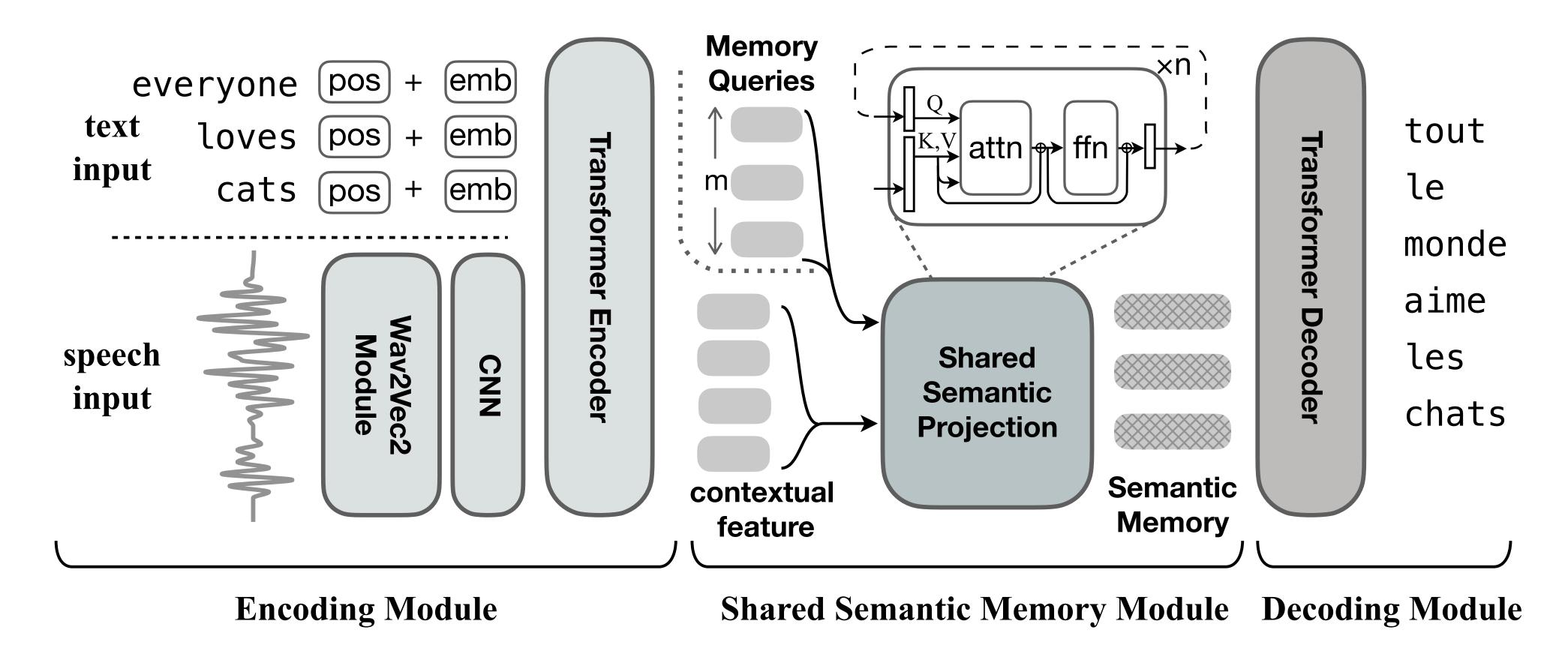
<speech, transcript text, translate text>



Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]

Chimera Model for ST

Training with auxiliary objectives: ST + MT + Contrastive loss Benefit: able to exploit large external MT data



Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]

Chimera achieves the best (so far) BLEU on all languages in MuS

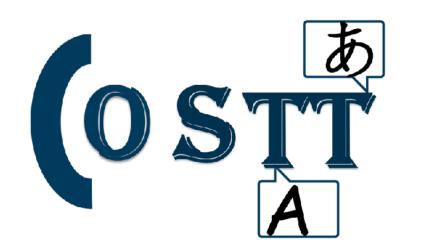
Model	External Data				MuST-C EN-X						
	Speech	ASR	MT	EN-DE	EN-FR	EN-RU	EN-ES	EN-IT	EN-RO	EN-PT	EN-NL
FairSeq ST [†]	×	×	×	22.7	32.9	15.3	27.2	22.7	21.9	28.1	27.3
Espnet ST [‡]	\times	\times	×	22.9	32.8	15.8	28.0	23.8	21.9	28.0	27.4
AFS *	\times	\times	×	22.4	31.6	14.7	26.9	23.0	21.0	26.3	24.9
Dual-Decoder ^{\$}	×	×	×	23.6	33.5	15.2	28.1	24.2	22.9	30.0	27.6
STATST [#]	×	×	\times	23.1	-	-	-	-	-	-	-
MAML ^b	×	×	\checkmark	22.1	34.1	-	-	-	-	-	-
Self-Training °	\checkmark	\checkmark	×	25.2	34.5	-	-	-	-	-	-
W2V2-Transformer *	\checkmark	×	×	22.3	34.3	15.8	28.7	24.2	22.4	29.3	28.2
Chimera Mem-16	\checkmark	Х	\checkmark	25.6	35.0	16.7	30.2	24.0	23.2	29.7	28.5
Chimera	\checkmark	×	\checkmark	27.1 •	35.6	17.4	30.6	25.0	24.0	30.2	29.2

Learning Shared Semantic Space for Speech-to-Text Translation Listen [Chi Han, Mingxuan Wang, Heng Ji, Lei Li, Findings of ACL 2021]

5	- C
_	

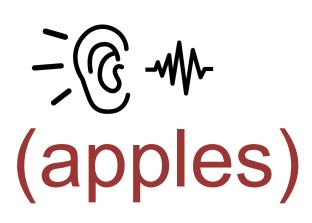
Consecutive Decoding for Speech-to-text Translation

Qianqian Dong, Mingxuan Wang, Hao Zhou, Shuang Xu, Bo Xu, Lei Li

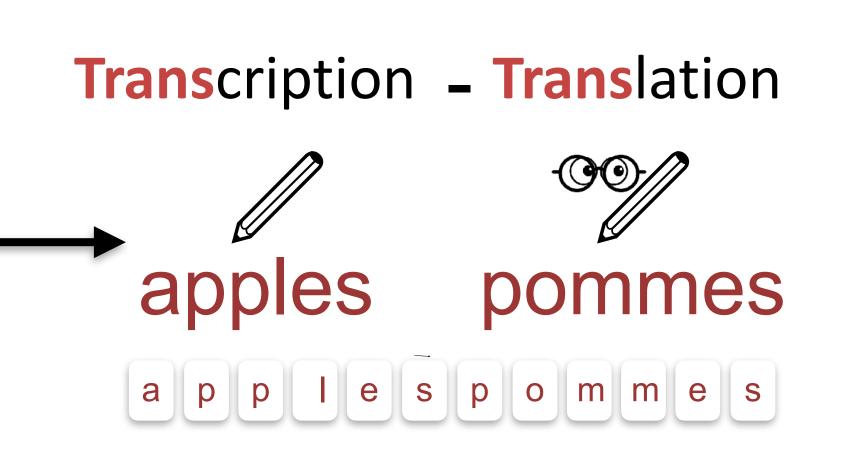


21

Question: How to help the model take notes like human interpreter?



We design "COnSecutive Transcription and Translation" (COSTT) based on interpreter's noting behavior to help the model memory.



Motivation of Better Decoding

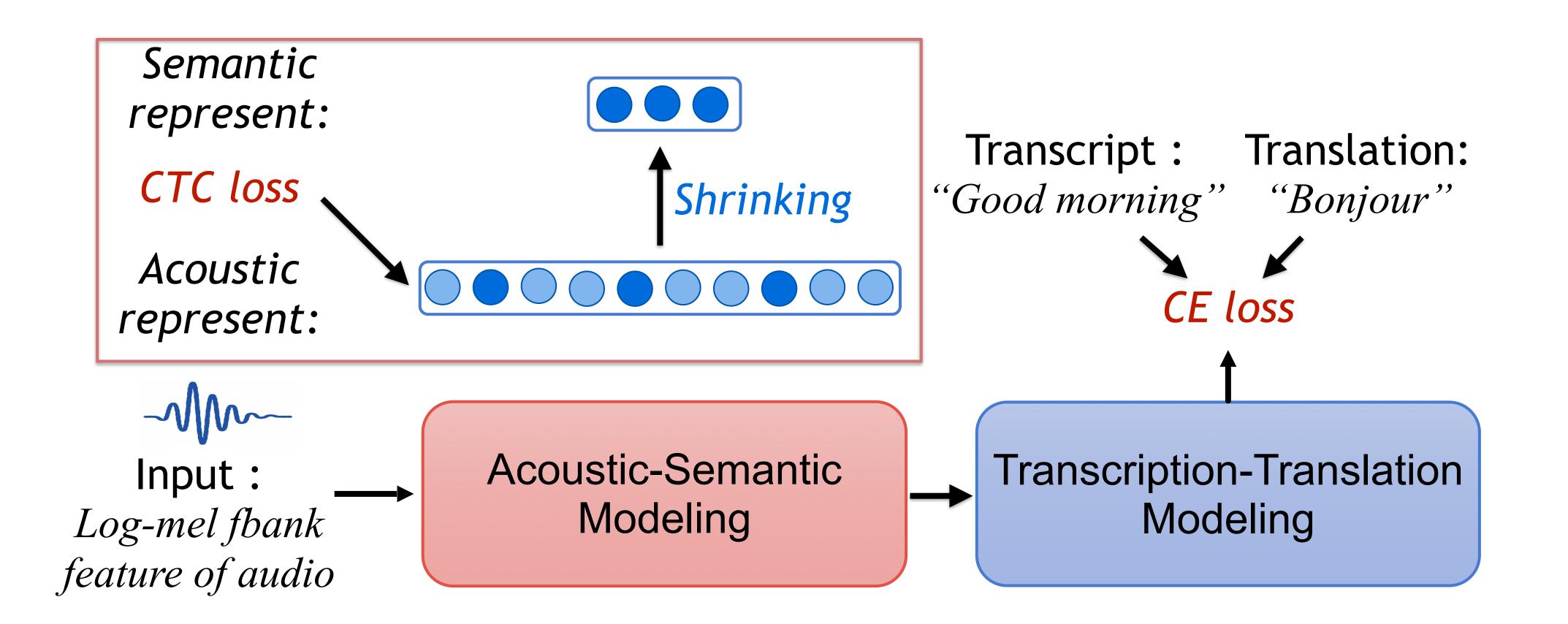
Problem1: How to give the decoder hints? Idea 1: Introduce a consecutive decoder for trans-trans.

Compressed Encoder

Problem2: Long acoustic sequence is challenging for the encoder! Idea 2: Introduce a compressed encoder to relief the model memory.

Consecutive Decoder

COSTT for ST

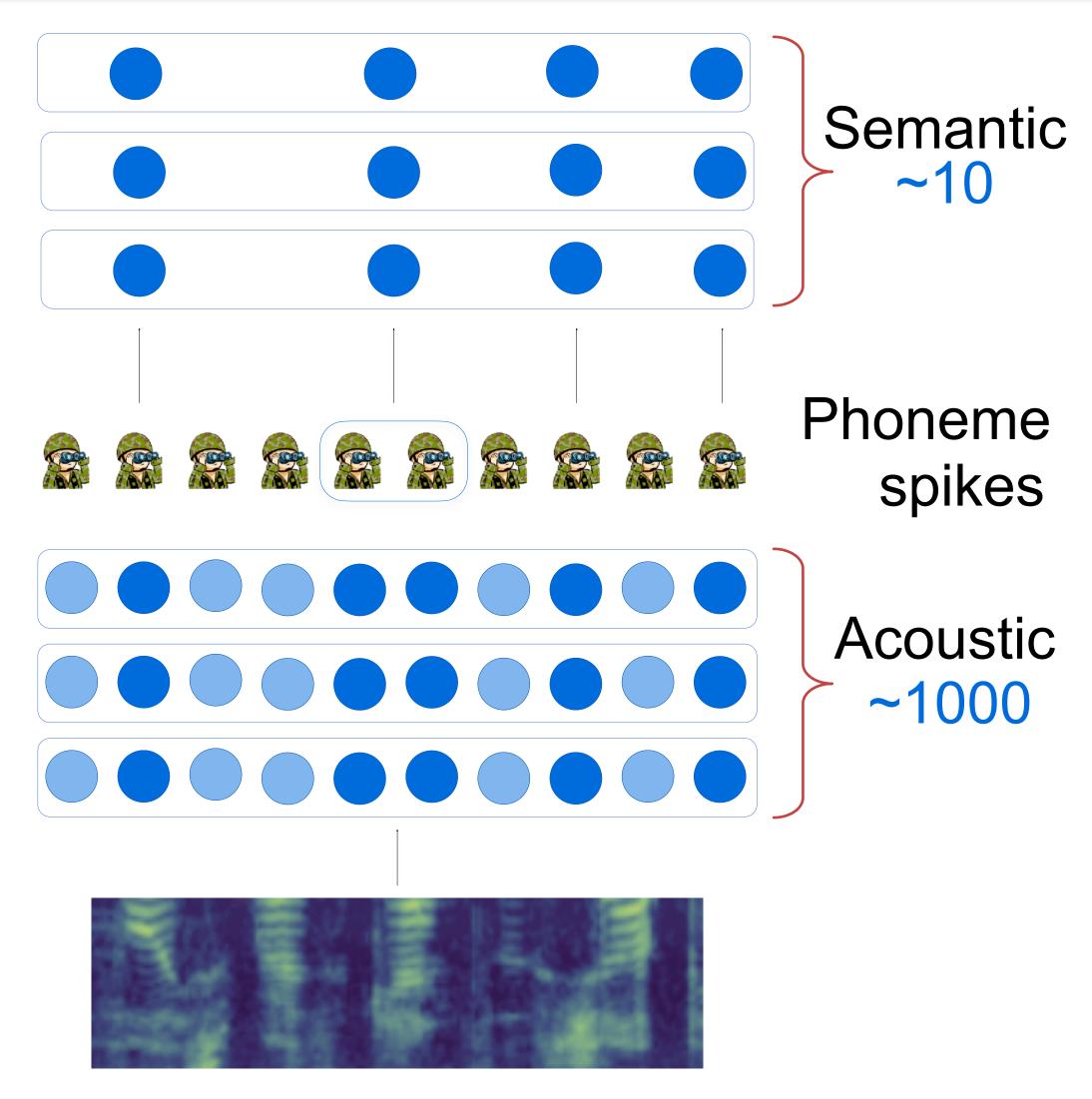


Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021] ²⁴

Advantages of COSTT

- Unified training with both transcript and translation text
- Reduced encoder output size with CTC-guided shrinking
- Able to pre-train the decoder with external MT parallel data

Consecutive Decoding for Speech-to-text Translation [Q. Dong, M. Wang, H. Zhou, S. Xu, B. Xu, Lei Li, AAAI 2021] ²⁵



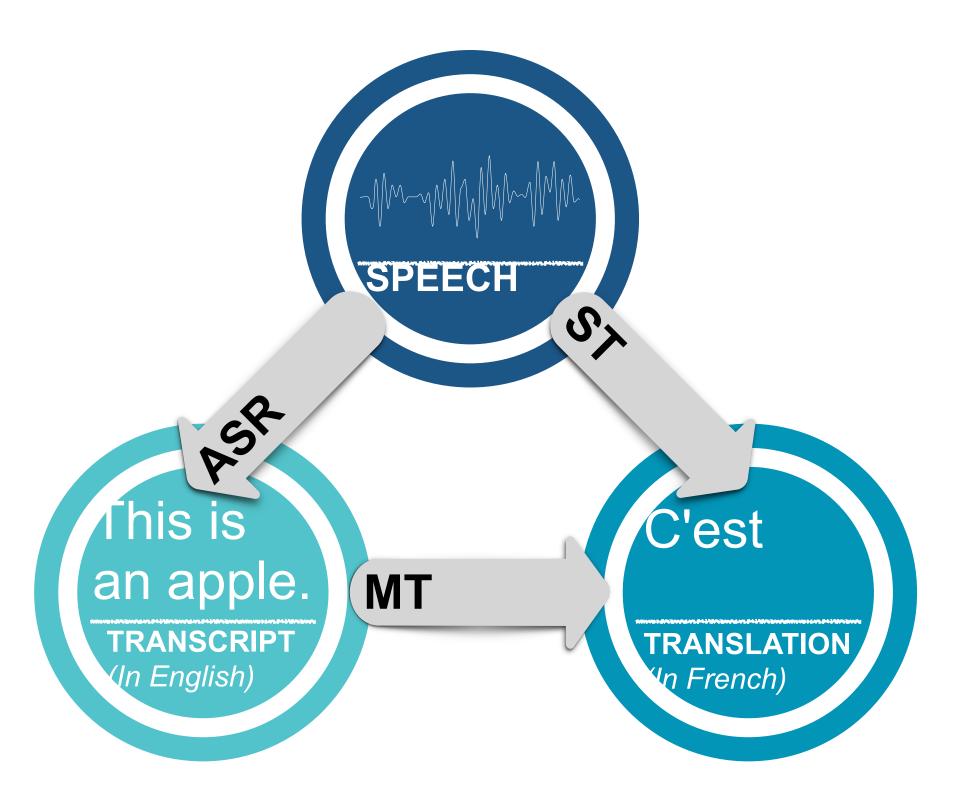


End-to-end Speech Translation via Cross-modal Progressive Training

Rong Ye, Mingxuan Wang, Lei Li

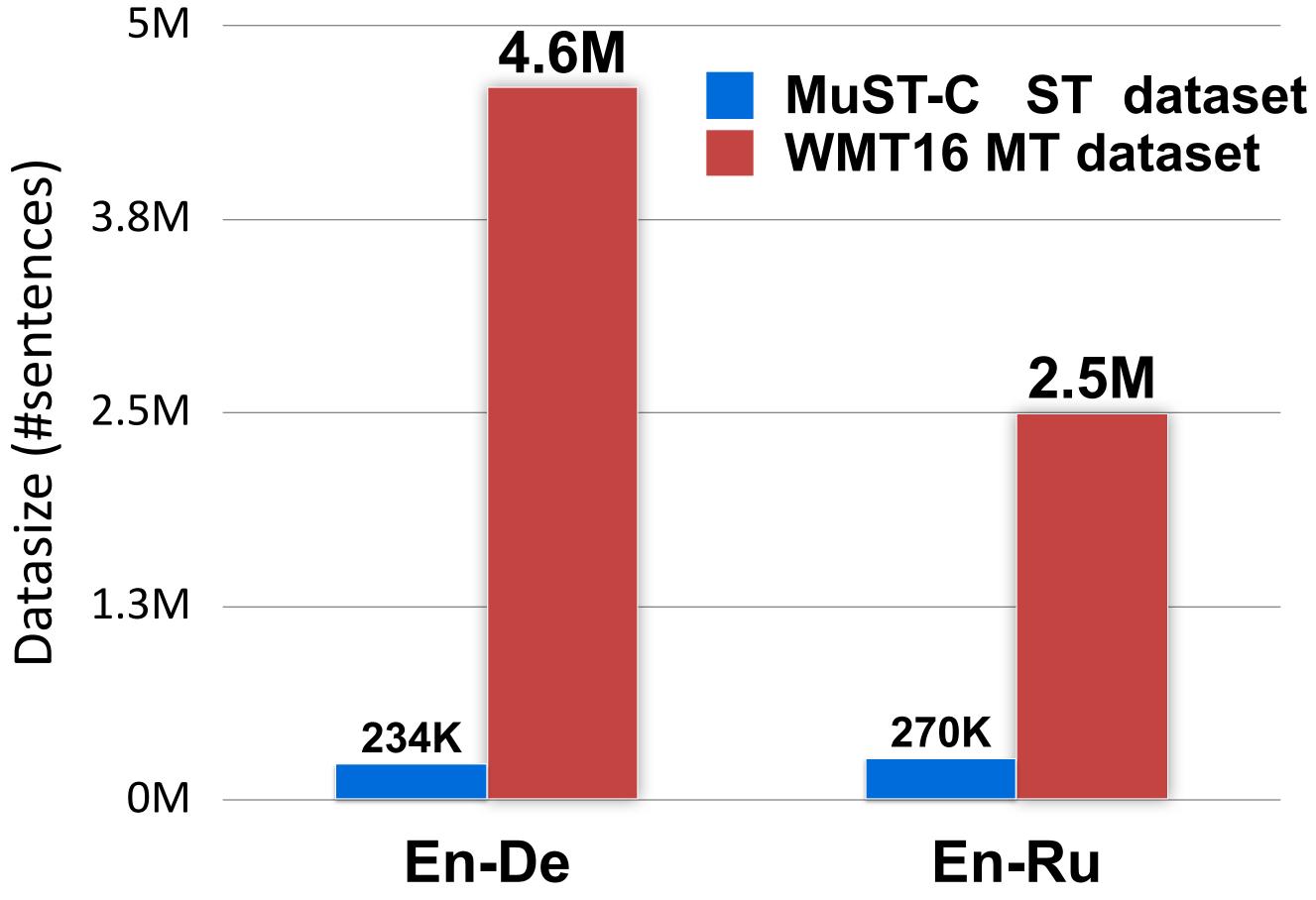
Link: <u>https://arxiv.org/abs/2104.10380</u>

Goal: To fully utilize the existing <Speech, Transcript, Translation> supervision.



Decomposed into three subtasks with parallel supervision, ST, ASR and MT.

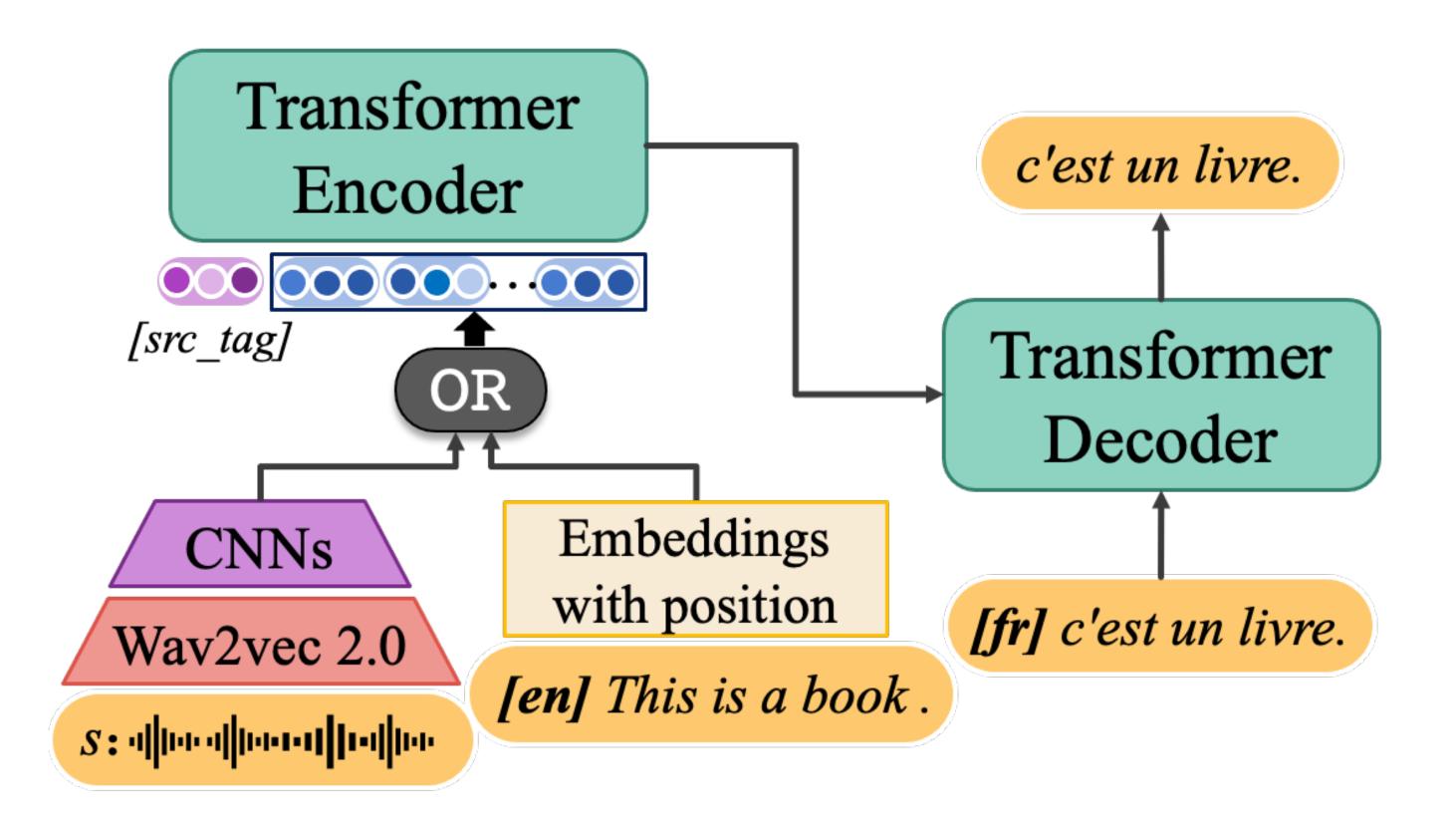
Comparison of dataset size between ST and MT



Idea 2: Using large-scale MT data

data with much larger <u>scale</u> to improve ST performance?

Cross Speech-Text Network (XSTNet)

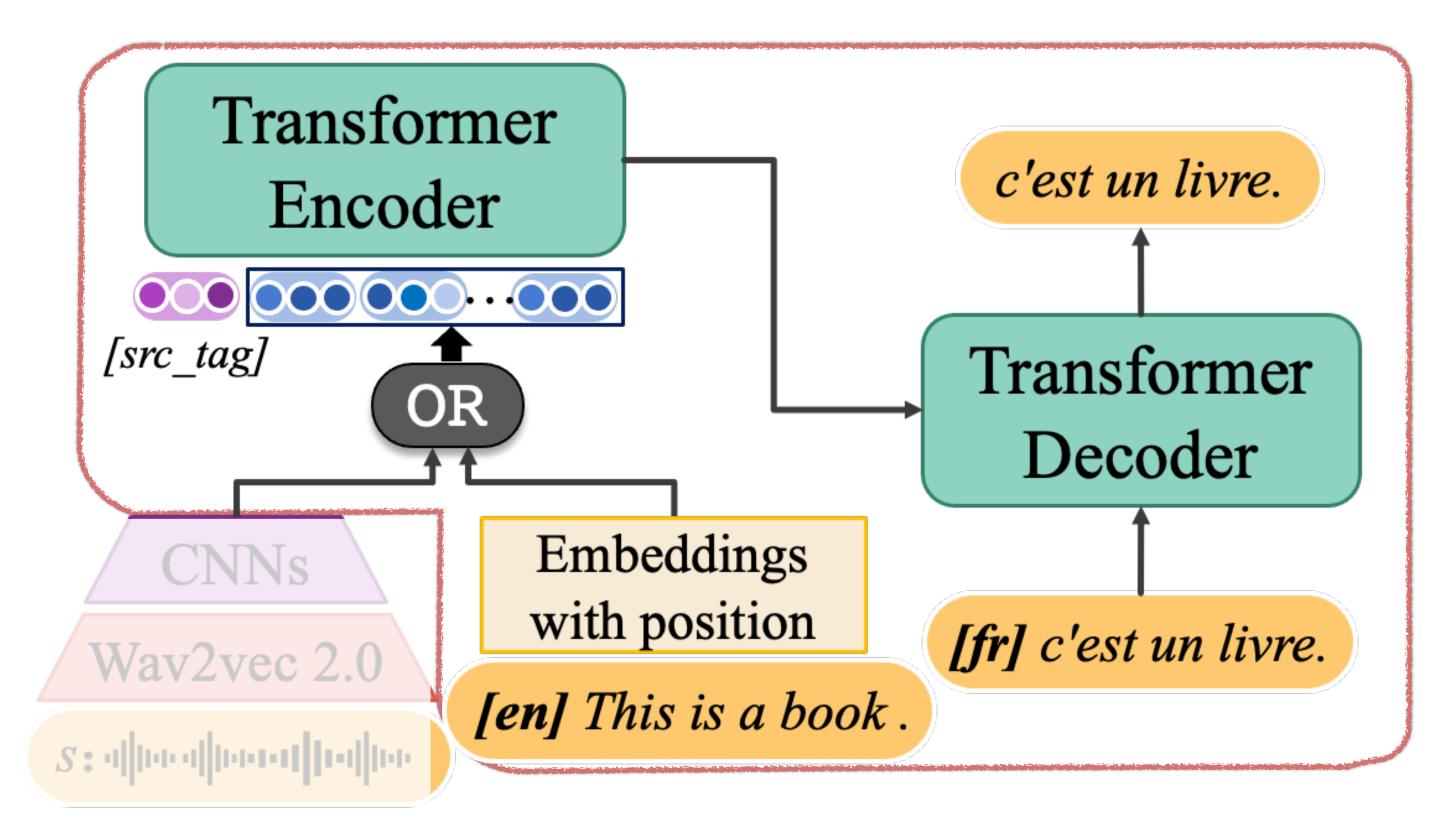


End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

Supports to train MT data

Markov Transformer MT model

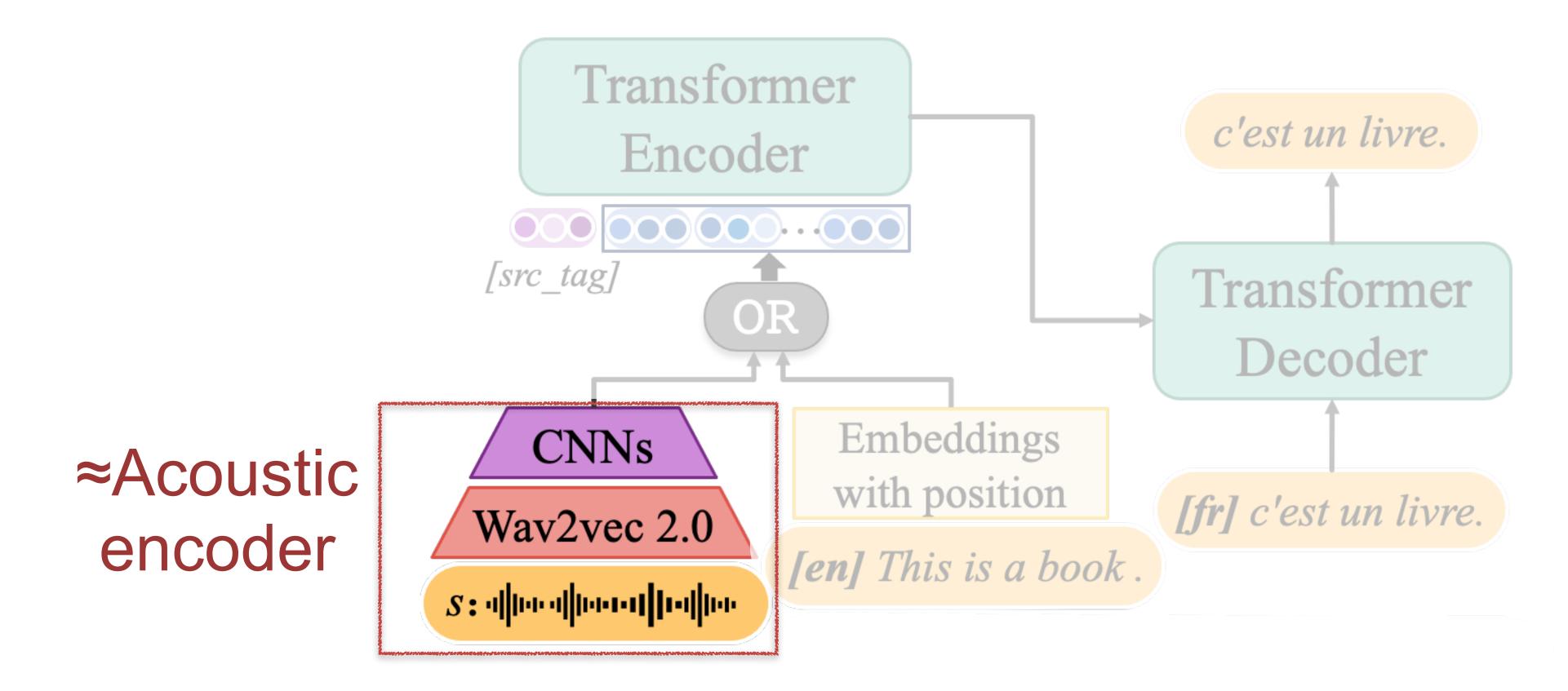
We can add <u>more external MT data</u> to train Transformer encoder & decoder



End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

Supports inputs of two modalities

✓ Wav2vec2.0[™] as the acoustic encoder We add two convolution layers with 2-stride to shrink the length.



[1] wav2vec 2.0: A framework for self-supervised learning of speech representations, 2020

31

Language indicator strategy

 We use language indicators to distinguish different tasks.

Tasks	Source input
MT	<en> This is a book.</en>
ASR	<audio></audio>
ST	<audio></audio>

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

Target output

<fr>> c'est un livre.

<en> This is a book.

<fr>> c'est un livre.

Progressive Multi-task Training

Large-scale MT pre-training Using external MT D_{MT-ext} # Multi-task Finetune Using (1) external MT D_{MT-ext} (2) D_{ST} with <speech, translation> (3) D_{ASR} with <speech, transcript>

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]

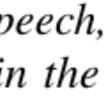
XSTNet achieves State-of-the-art Performance

Models	External data	Pre-train tasks	En-De	En-Fr	En-Ru	Avg.
Transformer ST [13]	×	ASR	22.8	33.3	15.1	23.7
AFS [28]	×	×	22.4	31.6	14.7	22.9 (-0.8)
Dual-Decoder Transf. [15]	×	×	23.6	33.5	15.2	24.1 (+0.4)
STAST [29]	×	×	23.1	-	-	-
Tang et al. [2]	MT	ASR, MT	24.8	36.4	-	-
FAT-ST (Big) [6]	ASR, MT, mono-data [†]	FAT-MLM	25.5	-	-	-
W-Transf.	audio-only*	SSL*	23.6	34.6	14.4	24.2 (+0.5)
XSTNet-Base	audio-only*	SSL*	25.5	36.0	16.9	26.1 (+2.4)
XSTNet-Expand	MT, audio-only*	SSL*, MT	27.8	38.0	18.4	27.8 (+4.1)

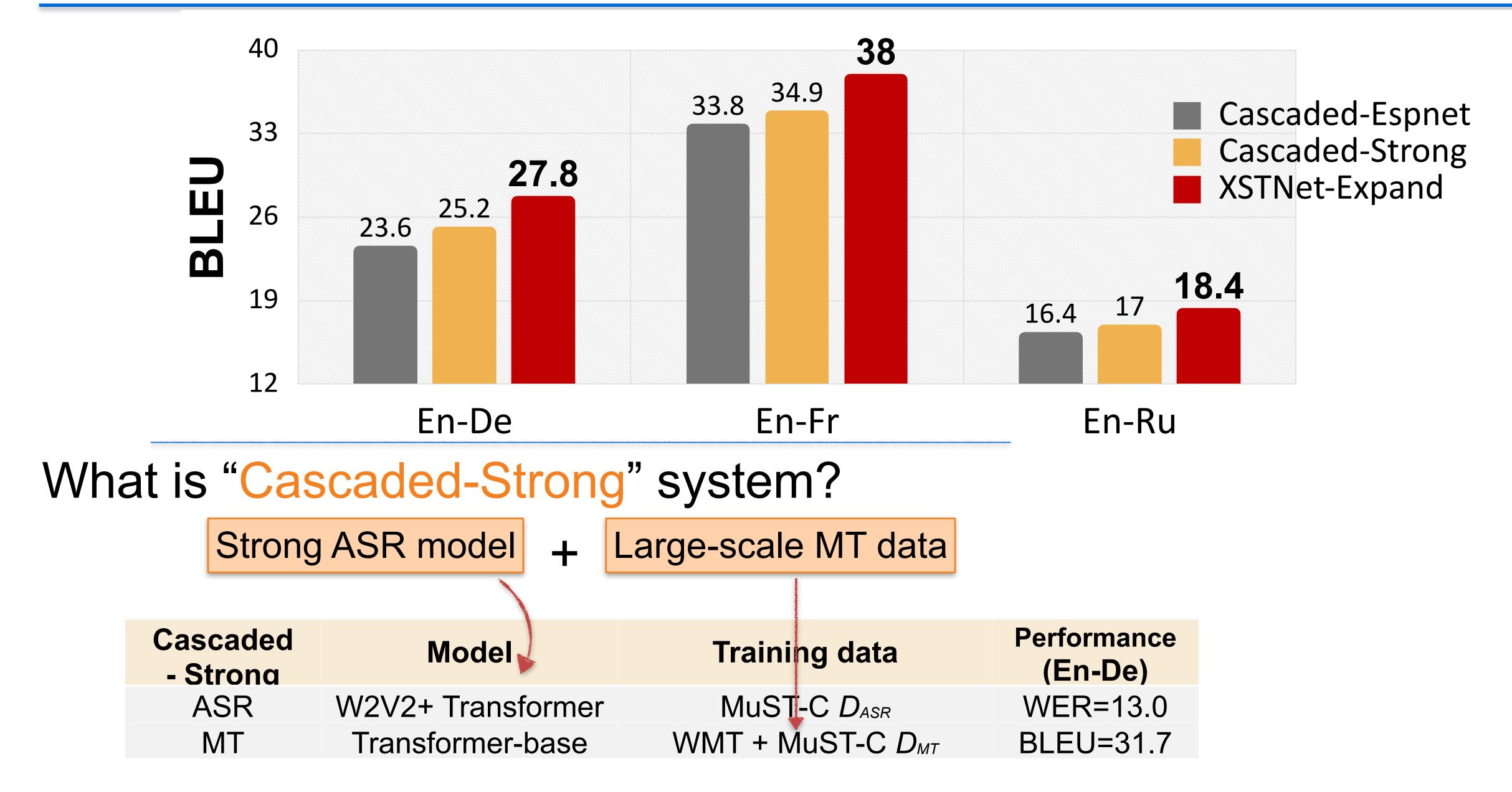
Table 2: Performance (BLEU) on MuST-C En-De, En-Fr and En-Ru test sets. [†]: "Mono-data" means audio-only data from Librispeech, Libri-Light, as well as text-only data from Europarl/Wiki Text; *: "Audio-only" data from Librispeech audio data is used in the pre-training of wav2vec2.0-base module, and "SSL" means the self-supervised learning from unlabeled audio data.

XSTNet-Base: Achieves the SOTA in the restricted setup **XSTNet-Expand**: Goes better by using extra MT data

End-to-end Speech Translation via Cross-modal Progressive Training [Rong Ye, Mingxuan Wang, Lei Li, Interspeech 2021]



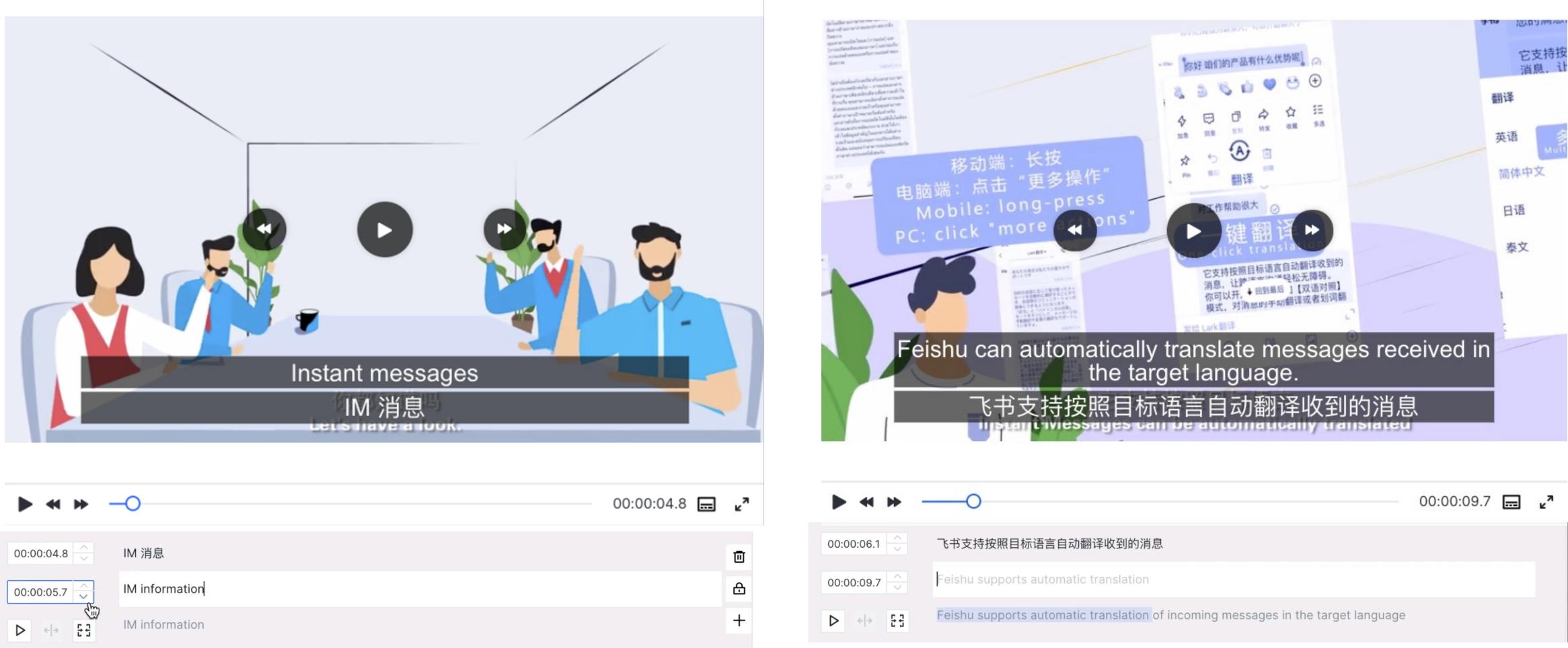
XSTNet better than cascaded ST! a gain of 2.6 BLE



	_	
. (

35

VolcTransStudio: Video Translation Platform **入** 火山翻译



▶ +	-0	00:00:04.8	
00:00:04.8	IM 消息		
00:00:05.7	IM information		
	IM information		

实时翻译, 自动提示 & 交互式修改

Correct-and-Memorize: Learning to translation from interactive revisions [Rongxiang Weng, Hao Zhou, Shujian Huang, Yifan Xia, Lei Li, Jiajun Chen. IJCAI 19]

Summary

- End-to-end Speech-to-Text works!
- Use external ASR, MT data, and audio/text for auxiliary signals
- Model
 - LUT: two-stage encoder, additional BERT KD [Dong et al AAAI 2021a]
 - Chimera: Shared semantic space encoder with fixed-size memory [Han et al ACL 2021]
 - COSTT: consecutive transcription-translation decoder [Dong et al AAAI 2021b]
- Training technique
 - Audio pre-training: Wave2Vec2.0[Baevski et al 2021]
 - External MT Pre-training
 - XSTNet: Progressive multi-task training [Ye et al Interspeech 2021]

Meurst neural speech translation toolkit https://github.com/bytedance/neurst

https://github.com/bytedance/lightseq

