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• Homework 3 
• Blog writing
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• Semisupervised NMT 
– Back Translation and Joint Back Translation 
– Alternative Formulation: Dual Learning 

• Unsupervised MT 
– Unsupervised lexicon induction (word translation) 
– Unsupervised NMT

Outline
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• NMT requires large amount of parallel 
bilingual data 

• Parallel data, However, very expensive/
non-trivial to obtain 
– Low resource language pairs (e.g., English-to-

Tamil) 
– Low resource domains (e.g., social network) 
– but additional monolingual data on source side 

and/or target side. can we do reasonably well? 
• Rich resource setting: in addition to 

parallel data (~10s millions), much 
larger monolingual data, can we further 
improve?

Problem: Data Scarcity of NMT
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• Using both parallel corpus 
and monolingual data to 
train an MT system 

• e.g. WMT has additional 
monolingual corpus

Semi-supervised Learning for MT
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File CS-
EN

DE-
EN

HA
-EN

IS-
EN

JA-
EN

RU-
EN

ZH-
EN

FR-
DE

BN-
HI

XH-
ZU

Europarl v10 ✓ ✓ ✓

ParaCrawl v7.1 ✓ ✓ ✓ ✓ ✓ ✓

ParaCrawl v8 ✓ ✓

Common Crawl corpus ✓ ✓ ✓ ✓

News Commentary v16 ✓ ✓ ✓ ✓ ✓ ✓

CzEng 2.0 ✓

Yandex Corpus ✓

Wiki Titles v3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UN Parallel Corpus 
V1.0

✓ ✓

Tilde Rapid corpus ✓ ✓

CCMT Corpus ✓

WikiMatrix ✓ ✓ ✓ ✓ ✓ ✓ ✓

ParIce ✓

Back-translated news ✓ ✓ ✓

Japanese-English 
Subtitle Corpus

✓

The Kyoto Free 
Translation Task Corpus

✓

TED Talks ✓

Khamenei corpus ✓

English-Hausa Opus 
corpus

✓

CC-Aligned ✓ ✓

WMT21 Parallel Corpus

Corpus BN CS DE EN FR HA HI IS JA RU XH ZH ZU

News crawl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

News discussions ✓ ✓

Europarl v10 ✓ ✓ ✓ ✓

News Commentary ✓ ✓ ✓ ✓ ✓ ✓ ✓

Common Crawl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Extended Common 
Crawl

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Icelandic Gigaword ✓

WMT21 Monolingual Corpus

http://www.statmt.org/europarl/v10
http://paracrawl.eu/download.html
https://s3.amazonaws.com/web-language-models/paracrawl/release7.1/en-cs.txt.gz
https://s3.amazonaws.com/web-language-models/paracrawl/release7.1/en-de.txt.gz
https://s3.amazonaws.com/web-language-models/paracrawl/release7.1/en-is.txt.gz
http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/release/2.0/bitext/en-ja.tar.gz
http://data.statmt.org/wmt21/translation-task/zh-en/paracrawl.wmt21.en-zh.gz
http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/
http://paracrawl.eu/download.html
http://data.statmt.org/wmt21/translation-task/paracrawl8/en-ha.tar
http://data.statmt.org/wmt21/translation-task/paracrawl8/en-ru.tar
http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz
http://data.statmt.org/wmt19/translation-task/fr-de/bitexts/
http://data.statmt.org/news-commentary/v16
https://ufal.mff.cuni.cz/czeng/czeng20
http://data.statmt.org/wikititles/v3
https://conferences.unite.un.org/uncorpus
https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
http://data.statmt.org/wmt20/translation-task/rapid/RAPID_2019.cs-en.xlf.gz
http://data.statmt.org/wmt20/translation-task/rapid/RAPID_2019.de-en.xlf.gz
http://mteval.cipsc.org.cn:81/agreement/description
http://data.statmt.org/wmt21/translation-task/WikiMatrix/
http://parice.arnastofnun.is/
https://repository.clarin.is/repository/xmlui/handle/20.500.12537/16
http://data.statmt.org/wmt20/translation-task/back-translation/
https://nlp.stanford.edu/projects/jesc/index.html
https://nlp.stanford.edu/projects/jesc/data/split.tar.gz
http://www.phontron.com/kftt/
http://www.phontron.com/kftt/download/kftt-data-1.0.tar.gz
https://wit3.fbk.eu/
http://data.statmt.org/wmt20/translation-task/ja-en/ted.en-ja.tgz
http://data.statmt.org/wmt21/translation-task/ha-en/khamenei.v1.ha-en.tsv
http://data.statmt.org/wmt21/translation-task/ha-en/opus.ha-en.tsv
http://data.statmt.org/wmt21/translation-task/cc-aligned/bn-hi.tar
http://data.statmt.org/wmt21/translation-task/cc-aligned/xh-zu.tar
http://data.statmt.org/news-crawl
http://data.statmt.org/news-discussions
http://www.statmt.org/europarl/v10
http://data.statmt.org/news-commentary
http://data.statmt.org/ngrams
http://web-language-models.s3-website-us-east-1.amazonaws.com/wmt16/deduped/cs.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/wmt16/deduped/de.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/wmt16/deduped/en-new.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/fr/deduped/fr.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/ha/deduped/ha.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/is/deduped/is.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/ja/deduped/ja.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/wmt16/deduped/ru.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/zh/deduped/zh.deduped.xz
http://data.statmt.org/wmt21/translation-task/cc-mono/
http://igc.arnastofnun.is/


• An initial parallel data D = <x, y> (e.g. De — En) 
• Target side monolingual data (En) 
• Train two separate NMT systems, M1 : x->y, and M2 : 

y->x 
• Now use M2 to generate translation for y —> x’ = M2(y), 

denote this synthetic pairs as D’ = {<x’, y>} 
• Combine both D and D’ —> D”=D U D’ 
• Train a new model M from x -> y using D”

Back Translation
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Illustration
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Does it work? Yes!
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• Two best practice (for 
high-resource): 

– Noisy beam search 
(adding noise to source 
side helps!) 

– Sampling (instead of 
beam search)

Decoding Strategy in Back Translation

9Edunov et al. Understanding Back-translation at Scale. 2018.



• Why back-translation from target side to source? 
– why source is synthetic? 

• Can we use source monolingual to generation 
synthetic pairs? 

– Forward-translation

Some Consideration
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• Like back-translation 
• Use the model x->y 

to create synthetic 
pairs from source 
monolingual data 

• Train x->y MT model 
again on combined 
data

Using Source Monolingual? Forward Translation

11Zhang & Zong. Exploiting Source-side Monolingual Data in Neural Machine Translation. 2016



Forward Translation + Back Translation + Noise

12



• What kind of monolingual data? 
• How much monolingual data? 

– Ratio parallel vs. synthetic? 
– Usually 1:1

Some Consideration
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• More is better? 
• Over BT hurts 
• But noised-BT can sustain improvement!

How much monolingual for BT?
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• Better to pick 
monolingual data the 
same as target 
domain

Target Domain for Back Translation
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BT in Low-resource Setting

16Edunov et al. Understanding Back-translation at Scale. 2018.



Iterative Joint Back Translation
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D = {⟨X, Y⟩}

M(1)
x→y M(1)

y→xDx Dy

D(1)
yx = D ∪ {⟨X, M(1)

x→y(X)⟩ |X ∈ Dx} D(1)
xy = D ∪ {⟨M(1)

y→x(Y), Y⟩ |Y ∈ Dy}

M(2)
y→xM(2)

x→y Dx Dy

D(1)
yx = D ∪ {⟨X, M(1)

x→y(X)⟩ |X ∈ Dx} D(1)
xy = D ∪ {⟨M(1)

y→x(Y), Y⟩ |Y ∈ Dy}

M(3)
y→xM(3)

x→y

Zhang et al. Joint Training for Neural 
Machine Translation Models with 

Monolingual Data. 2018



• For monolingual , treat X as a random 
variable,  

• Training with parallel and monolingual corpus 

Ym ∈ Dy
X ∼ P(X |Ym; θ←)

ℓ = CE + Expected reconstruction

= ∑
⟨Xn,Yn⟩∈D

log P(Yn |Xn; θ→) + ∑
Ym∈DY

log ∑
X∈V*

P(Ym |X; θ→)P(X |Ym; θ←)

∑
⟨Xn,Yn⟩∈D

log P(Xn |Yn; θ←) + ∑
Xm∈Dx

log ∑
Y∈V*

P(Y |Xm; θ→)P(Xm |Y; θ←)

Probabilistic Model for Parallel and Monolingual MT

18Cheng et al. Semi-Supervised Learning for Neural Machine Translation. ACL 2016.



• SGD 
• An instance Monte-Carlo EM 

 

 

• Alg 1: generate top-k candidates, then compute the gradient.

ℓ = ∑
⟨Xn,Yn⟩∈D

log P(Yn |Xn; θ→) + ∑
Ym∈DY

log ∑
X∈V*

P(Ym |X; θ→)P(X |Ym; θ←)

∑
⟨Xn,Yn⟩∈D

log P(Xn |Yn; θ←) + ∑
Xm∈Dx

log ∑
Y∈V*

P(Y |Xm; θ→)P(Xm |Y; θ←)

∂ℓ
∂θ→

= ⋯ + ∑
Ym∈DY

∑
X∈V*

P(Ym |X; θ→)P(X |Ym; θ←)
∑X′ ∈V* P(Ym |X′ ; θ→)P(X′ |Ym; θ←)

∂ log P(Ym |X; θ→)
∂θ→

+ ⋯

Training 

19Cheng et al. Semi-Supervised Learning for Neural Machine Translation. ACL 2016.



•  

• If instead of top-k, just pick the top-1 beam search 
result, ==> back-translation 

• Back-translation is an instance of Semi-supervised MT 
• Other ways to implement?

∂ℓ
∂θ→

= ⋯ + ∑
Ym∈DY

∑
X∈V*

P(Ym |X; θ→)P(X |Ym; θ←)
∑X′ ∈V* P(Ym |X′ ; θ→)P(X′ |Ym; θ←)

∂ log P(Ym |X; θ→)
∂θ→

+ ⋯

Back-translation as a Special Case
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•  

• essentially the lower bound of the complete log-
likelihood (multiplies with language model probability)

ℓ = ∑
Ym∈DY

∑
X∈V*

P(X |Ym; θ← (log P(Ym |X; θ→) + log P(X; θX))
Also known as Dual Learning

21He et al. Dual Learning for Machine Translation. 2016.



• Back-translation 
[Sennrich 2016], Cheng 
2016, Dual Learning [He 
2016], joint back-
translation [Zhang 2018], 
all have same 
performance.  

• Formulation of Cheng 
2016 and Zhang 2018 
are the same.

Comparing Backtranslation and Dual Learning
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Unsupervised Neural Machine Translation



• Learning without supervision 
– No parallel corpus, only monolingual data 

• Why? 
– many language pairs do not have parallel sentences, or very 

expensive to create parallel sentences by human 
– but monolingual data are abundant 

• How? Basic idea: 
– Cross-lingual pre-training 
– Weight sharing 
– Iterative Back Translation

Unsupervised Machine Translation
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• Also called word translation 
• Hypothesis: words with the same meaning in two 

languages share isomorphic embedding space

Unsupervised Lexicon Induction

25Zhang et al. Adversarial Training for Unsupervised Bilingual Lexicon Induction. 2017



• To learn a matrix W 
• Supervised setting (pairs of aligned words available)

  
– closed form solution for this 

• How to learn W without aligned word pairs?

arg min ∥XW − Y∥f

Lexicon Induction: Mapping of the Embedding Space

26



• x, y are pretrained word embeddings in two languages.  
But not aligned. 

• Using a discriminator to distinguish between 
– Wx  and y 
– A feedforward NN with 1 hidden layers. 

• Alternating between 
 min

D
LD = − log D(y) − log(1 − D(Wx))

min
W

LG = − log D(Wx) − cos(x, WTWx)

Lexicon Induction via Adversarial Training

27Zhang et al. Adversarial Training for Unsupervised Bilingual Lexicon Induction. 2017



• Use this as the word-level translation
Find the closest words 

28Zhang et al. Adversarial Training for Unsupervised Bilingual Lexicon Induction. 2017



• Build an initial MT system to translate from English -> 
German, and German -> English using word-level 
translation 

• Iterate

Unsupervised Machine Translation
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English 
Monolingualpseudo German

De-En MT

MT Model1

German-English 
pseudo-parallel



Shared Encoder with Dual Decoder
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• Create a noisy version of source sentence, and 
reconstruct using encoder-decoder 

• Using cross-entropy loss on reconstructed sentence

Training Objective 1: Denoising Autoencoder

31Artetxe et al. Unsupervised Neural Machine Translation. 2018
Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018



• Back-translate: From target to generate pseudo-
parallel source sentence

Training Objective 2: Back-translation

32Artetxe et al. Unsupervised Neural Machine Translation. 2018
Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018



• To distinguish between source and target sentence 
embeddings.  

• min LD = − log PD(0 or 1 |emb(src or tgt))

Training Objective 3: Adversarial Loss

33Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018



Unsupervised Neural Machine Translation

34Artetxe et al. Unsupervised Neural Machine Translation. 2018



Does it work?
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Bidirectional LSTM encoder-decoder

Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018



• Similar languages with large monolingual data 
• Distant languages are still difficult 
• Eg. En-Tr 4.5 (unsupervised) vs. 20 (supervised)

When does Unsupervised NMT work?
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• Sennrich et al. Improving Neural Machine Translation Models with 
Monolingual Data. ACL 2016. 

• Cheng et al. Semi-Supervised Learning for Neural Machine 
Translation. ACL 2016. 

• Artetxe et al. Unsupervised Neural Machine Translation. 2018 
• Lample et al. Unsupervised Machine Translation Using Monolingual 

Corpora Only. 2018 
• He et al. Dual Learning for Machine Translation. 2016. 
• Gulcehre et al. On Using Monolingual Corpora in Neural Machine 

Translation. 2015 
• Edunov et al. Understanding Back-translation at Scale. 2018.

Reading
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