291K Deep Learning for Machine Translation Semi-supervised and Unsupervised NMT

Lei Li UCSB 10/27/2021

- Homework 3
- Blog writing

- Semisupervised NMT
 - Back Translation and Joint Back Translation
 - Alternative Formulation: Dual Learning
- Unsupervised MT
 - Unsupervised lexicon induction (word translation)
 - Unsupervised NMT

Problem: Data Scarcity of NMT

- NMT requires large amount of parallel bilingual data
- Parallel data, However, very expensive/ non-trivial to obtain
 - Low resource language pairs (e.g., English-to-Tamil)
 - Low resource domains (e.g., social network)
 - but additional monolingual data on source side and/or target side. can we do reasonably well?
- Rich resource setting: in addition to parallel data (~10s millions), much larger monolingual data, can we further improve?

Semi-supervised Learning for MT

- Using both parallel corpus and monolingual data to train an MT system
- e.g. WMT has additional monolingual corpus

WMT21 Monolingual Corpus

Corpus	BN	CS	DE	EN	FR	HA	ні	IS	JA	RU	ХН	ZH	ZU
News crawl	V	V	V	V	V	V	V	V	V	V		V	
News discussions				V	V								
Europarl v10		V	V	V	V								
News Commentary		V	√	V	V				V	V		V	
Common Crawl		✓	⊻	⊻	⊻	⊻		✓	⊻	⊻		⊻	
Extended Common Crawl	V	√	√		V	V	V	V	V	V	V	V	V
Icelandic Gigaword								✓					

WMT21 Parallel Corpus

File	CS- EN	DE- EN	HA -EN	IS- EN	JA- EN	RU- EN	ZH- EN	FR- DE	BN- HI	
Europarl v10	√	√						√		
ParaCrawl v7.1	₹	⊻		⊻	⊻		⊻	⊻		
ParaCrawl v8			⊻			<u>√</u>				
Common Crawl corpus	√	√				√		⊻		
News Commentary v16	√	√			√	√	√	√		
CzEng 2.0	\checkmark									
Yandex Corpus						√				
Wiki Titles v3	√	√	√	√	√	√	√	√		
<u>UN Parallel Corpus</u> <u>V1.0</u>						V	V			
Tilde Rapid corpus	₹	<u>√</u>								
CCMT Corpus							√			
<u>WikiMatrix</u>	√	√		√	√	√	√	√		
ParIce				✓						
Back-translated news	\checkmark					√	√			
<u>Japanese-English</u> Subtitle Corpus					⊻					
<u>The Kyoto Free</u> <u>Translation Task Corpus</u>					✓					
TED Talks					⊻					
Khamenei corpus			<u>√</u>							
English-Hausa Opus corpus			⊻							
CC-Aligned									✓	

Back Translation

- An initial parallel data $D = \langle x, y \rangle$ (e.g. De En) Target side monolingual data (En) • Train two separate NMT systems, M₁ : x->y, and M₂ :
- y->x
- denote this synthetic pairs as $D' = \{\langle x', y \rangle\}$
- Now use M_2 to generate translation for $y \longrightarrow x' = M_2(y)$, Combine both D and D' —> D"=D U D' Train a new model M from x -> y using D"

Illustration

Does it work? Yes!

Decoding Strategy in Back Translation

- Two best practice (for high-resource):
 - Noisy beam search (adding noise to source side helps!)
 - Sampling (instead of beam search)

Edunov et al. Understanding Back-translation at Scale. 2018.

Some Consideration

- Why back-translation from target side to source? – why source is synthetic?
- Can we use source monolingual to generation synthetic pairs?
 - Forward-translation

Using Source Monolingual? Forward Translation

- Like back-translation
- Use the model x->y to create synthetic pairs from source monolingual data
- Train x->y MT model again on combined data

Zhang & Zong. Exploiting Source-side Monolingual Data in Neural Machine Translation. 2016

The de-tokenized SacreBLEU scores Figure 1: on En \rightarrow De newstest2016, newstest2017 and newstest2018 of the models trained by different synthetic data: (1) $\overline{\mathcal{B}}_s$ from source-side monolingual data only, (2) \mathcal{B}_t from target-side monolingual data only and (3) the combination of \mathcal{B}_s and \mathcal{B}_t .

Forward Translation + Back Translation + Noise

and \mathcal{B}_t^n data.

Figure 2: The de-tokenized SacreBLEU scores on En \rightarrow De newstest2016, newstest2017 and newstest2018 of the models trained by synthetic data generated in different ways: (1) clean \mathcal{B}_s and \mathcal{B}_t data, (2) $\bar{\mathcal{B}}_s^r$ and randomly sampled $\bar{\mathcal{B}}_t^r$ data, and (3) noised $\bar{\mathcal{B}}_s^n$

Some Consideration

- What kind of monolingual data?
- How much monolingual data?
 - Ratio parallel vs. synthetic?
 - Usually 1:1

I data? Jata?

How much monolingual for BT?

- More is better?
- Over BT hurts
- But noised-BT can sustain improvement!

(a) Different scales of \overline{B}_t data.

c) Different scales of noised $\overline{B}_s + \overline{B}_t$ data. (b) Different scales of $\overline{\mathcal{B}}_s$ data.

Target Domain for Back Translation

 Better to pick monolingual data the same as target domain

BT in Low-resource Setting

- Total training data
- Edunov et al. Understanding Back-translation at Scale. 2018.

Iterative Joint Back Translation

Zhang et al. Joint Training for Neural Machine Translation Models with Monolingual Data. 2018

Probabilistic Model for Parallel and Monolingual MT

- For monolingual $Y_m \in D_v$, treat X as a random variable, $X \sim P(X \mid Y_m; \theta^{\leftarrow})$
- Training with parallel and monolingual corpus $\ell = CE + Expected reconstruction$
 - $\langle X_n, Y_n \rangle \in D$ $\langle X_n, Y_n \rangle \in D$

Cheng et al. Semi-Supervised Learning for Neural Machine Translation. ACL 2016.

 $= \sum \log P(Y_n | X_n; \theta^{\rightarrow}) + \sum \log \sum P(Y_m | X; \theta^{\rightarrow}) P(X | Y_m; \theta^{\leftarrow})$ $Y_m \in D_V$ $X \in V^*$ $\sum \log P(X_n | Y_n; \theta^{\leftarrow}) + \sum \log \sum P(Y | X_m; \theta^{\rightarrow}) P(X_m | Y; \theta^{\leftarrow})$ $Y \in V^*$ $X_m \in D_r$

• SGD

- An instance Monte-Carlo EM
- $\langle X_n, Y_n \rangle \in D$
 - $\langle X_n, Y_n \rangle \in D$

Cheng et al. Semi-Supervised Learning for Neural Machine Translation. ACL 2016.

Training

$\ell = \sum \log P(Y_n | X_n; \theta^{\rightarrow}) + \sum \log \sum P(Y_m | X; \theta^{\rightarrow}) P(X | Y_m; \theta^{\leftarrow})$ $X \in V^*$ $Y_m \in D_V$ $\sum \log P(X_n | Y_n; \theta^{\leftarrow}) + \sum \log \sum P(Y | X_m; \theta^{\rightarrow}) P(X_m | Y; \theta^{\leftarrow})$ $X_m \in D_r \qquad Y \in V^*$ $\frac{\partial \mathcal{E}}{\partial \theta^{\rightarrow}} = \dots + \sum_{Y_m \in D_Y} \sum_{X \in V^*} \frac{P(Y_m | X; \theta^{\rightarrow}) P(X | Y_m; \theta^{\leftarrow})}{\sum_{X' \in V^*} P(Y_m | X'; \theta^{\rightarrow}) P(X' | Y_m; \theta^{\leftarrow})} \frac{\partial \log P(Y_m | X; \theta^{\rightarrow})}{\partial \theta^{\rightarrow}} + \dots$

Alg 1: generate top-k candidates, then compute the gradient.

- $\quad \frac{\partial \mathcal{E}}{\partial \theta^{\rightarrow}} = \dots + \sum_{Y_m \in D_Y} \sum_{X \in V^*} \frac{P(Y_m | X; \theta^{\rightarrow}) P(X | Y_m; \theta^{\leftarrow})}{\sum_{X' \in V^*} P(Y_m | X'; \theta^{\rightarrow}) P(X' | Y_m; \theta^{\leftarrow})} \frac{\partial \log P(Y_m | X; \theta^{\rightarrow})}{\partial \theta^{\rightarrow}} + \dots$
- If instead of top-k, just pick the top-1 beam search result, ==> back-translation
- Back-translation is an instance of Semi-supervised MT Other ways to implement?

Also known as Dual Learning $\ell = \sum P(X|Y_m; \theta^{\leftarrow} (\log P(Y_m|X; \theta^{\rightarrow}) + \log P(X; \theta_X))$ $Y_m \in D_V X \in V^*$

essentially the lower bound of the complete log-

He et al. Dual Learning for Machine Translation. 2016.

likelihood (multiplies with language model probability)

Comparing Backtranslation and Dual Learning

- Back-translation [Sennrich 2016], Cheng 2016, Dual Learning [He 2016], joint backtranslation [Zhang 2018], all have same performance.
- Formulation of Cheng 2016 and Zhang 2018 are the same.

Zheng et al. Mirror-Generative Neural Machine Translation. 2020.²²

Unsupervised Neural Machine Translation

Unsupervised Machine Translation

- Learning without supervision – No parallel corpus, only monolingual data
- Why?
 - many language pairs do not have parallel sentences, or very expensive to create parallel sentences by human – but monolingual data are abundant
- How? Basic idea:
 - Cross-lingual pre-training
 - Weight sharing
 - Iterative Back Translation

Unsupervised Lexicon Induction

- Also called word translation
- Hypothesis: words with the same meaning in two languages share isomorphic embedding space

Spanish

Zhang et al. Adversarial Training for Unsupervised Bilingual Lexicon Induction. 2017

Lexicon Induction: Mapping of the Embedding Space

- To learn a matrix W
- $\arg\min \|XW Y\|_f$
 - closed form solution for this
- How to learn W without aligned word pairs?

Supervised setting (pairs of aligned words available)

Lexicon Induction via Adversarial Training

- But not aligned.
- Using a discriminator to distinguish between – Wx and y
 - A feedforward NN with 1 hidden layers.
- Alternating between
- $\min L_D = -\log D(y) \log(1 D(Wx))$ D
- $\min L_G = -\log D(Wx) \cos(x, W^T Wx)$ W

Zhang et al. Adversarial Training for Unsupervised Bilingual Lexicon Induction. 2017

• x, y are pretrained word embeddings in two languages.

0/1

D

 G^{T}

G

Use this as the word-level translation

method	# seeds	es-en	it-en	ja-zh	tr-en
MonoGiza w/o embeddings	0	0.35	0.30	0.04	0.00
MonoGiza w/ embeddings	0	1.19	0.27	0.23	0.09
ጥእለ	50	1.24	0.76	0.35	0.09
	100	48.61	37.95	26.67	11.15
ΤΛ	50	39.89	27.03	19.04	7.58
	100	60.44	46.52	36.35	17.11
Ours	0	71.97	58.60	43.02	17.18

Zhang et al. Adversarial Training for Unsupervised Bilingual Lexicon Induction. 2017

Find the closest words

- German, and German -> English using word-level translation
- Iterate

pseudo German

Shared Encoder with Dual Decoder

L2 decoder

Training Objective 1: Denoising Autoencoder

- Create a noisy version of source sentence, and reconstruct using encoder-decoder
- Using cross-entropy loss on reconstructed sentence source sentences latent space encoder C(x) $Z_{\rm src}$ deco

Artetxe et al. Unsupervised Neural Machine Translation. 2018 Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018

Training Objective 2: Back-translation

 Back-translate: From target to generate pseudoparallel source sentence

Artetxe et al. Unsupervised Neural Machine Translation. 2018 Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018

- To distinguish between source and target sentence embeddings.
- min $L_D = -\log P_D(0 \text{ or } 1 | \text{emb}(\text{src or tgt}))$

Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018

Unsupervised Neural Machine Translation

Artetxe et al. Unsupervised Neural Machine Translation. 2018

L2 decoder

		Multi30	k-Task1		WMT					
	en-fr	fr-en	de-en	en-de	en-fr	fr-en	de-en	en-de		
Supervised	56.83	50.77	38.38	35.16	27.97	26.13	25.61	21.33		
word-by-word word reordering oracle word reordering	8.54 - 11.62	16.77 - 24.88	15.72 - 18.27	5.39 - 6.79	6.28 6.68 10.12	10.09 11.69 20.64	10.77 10.84 19.42	7.06 6.70 11.57		
Our model: 1st iteration Our model: 2nd iteration Our model: 3rd iteration	27.48 31.72 32.76	28.07 30.49 32.07	23.69 24.73 26.26	19.32 21.16 22.74	12.10 14.42 15.05	11.79 13.49 14.31	11.10 13.25 13.33	8.86 9.75 9.64		

Bidirectional LSTM encoder-decoder

Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018

Does it work?

When does Unsupervised NMT work?

- Similar languages with large monolingual data
- Distant languages are still difficult
- Eg. En-Tr 4.5 (unsupervised) vs. 20 (supervised)

- Monolingual Data. ACL 2016.
- Cheng et al. Semi-Supervised Learning for Neural Machine Translation. ACL 2016.
- Artetxe et al. Unsupervised Neural Machine Translation. 2018 Lample et al. Unsupervised Machine Translation Using Monolingual Corpora Only. 2018
- He et al. Dual Learning for Machine Translation. 2016. Gulcehre et al. On Using Monolingual Corpora in Neural Machine
- Translation. 2015
- Edunov et al. Understanding Back-translation at Scale. 2018.

Sennrich et al. Improving Neural Machine Translation Models with

