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• Multilingual NMT 
• Architecture for MNMT 

– Multilingual Vocabulary 
• Reducing multilingual interference 

– adapters for MNMT

Outline
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• NMT requires large amount of parallel 
bilingual data 

• Parallel data, However, very expensive/
non-trivial to obtain 
– Low resource language pairs (e.g., English-to-

Tamil) 
– Low resource domains (e.g., social network) 
– but additional monolingual data on source side 

and/or target side. can we do reasonably well? 
• Rich resource setting: in addition to 

parallel data (~10s millions), much 
larger monolingual data, can we further 
improve?

Corpus Size in Languages
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[Arivazhagan et al., 2019]



• Bilingual NMT: one model for each translation direction  
• Multilingual NMT: Develop one model to translate 

between all language pairs.  
• Why? 

– Model-side: Languages with rich resource could benefit those with 
low resource 
‣ Similar languages share tokens  

– Serving-side: only one model deployment versus of many deployments. Simpler 
workload and job management and scheduling.  
– Many languages would have much few requests but still need to occupy the 

servers. 

Multilingual Neural Machine Translation
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• Many-to-one: 
– Many source language to a target language  
– Usually the target is English 

• One-to-Many: 
– One source language to many target languages 
– Usually the source is English 

• Many-to-many: 
– Many source language to many target languages 
– Should include non-English pairs (often low-resource or zero-resource 

setting), very challenging! 
• Which is simpler?

MNMT Categorization
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• Regular: 
– Testing language appeared during training (but not the sentence) 

• Exotic (Unseen) pair 
– Both the testing source language and target language appeared in the training, but the 

source-target pair never appeared in the training 
– Also known as zero-shot MNMT 

• Exotic (Unseen) source 
– Testing source language never occur in the training 

• Exotic (Unseen) target 
– Testing target language never occur in the training 

• Exotic (Unseen) full 
– Neither the source language nor the target language for testing occur in the training 
– Is it even possible? Yes, for the pre-train fine-tuning paradigm. 

MNMT at Testing Time
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• Language-specific encoding (@en@car, @de@automobile) 
• But hard to learn a joint embedding. 
• Challenge:  

– large vocabulary (twice many) 
– how does the model know it is to translate into German or French?

A single model for Multilingual NMT
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Encoder Decoder
I like singing and dancing J’adore chanter et danser

chanter et danserJ’adore

BOS

Ha et al. Toward Multilingual Neural Machine Translation with Universal Encoder and Decoder. 2016



• One model can translate 
between many languages. 

• Language Tag is used to 
indicate the source and 
target language.  

• Vocabulary is built jointly

Multilingual Machine Translation - Language Tag
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Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

Encoder Decoder
I like singing and dancing<EN id> J’adore chanter et danser<FR id>

J’adore chanter et danser

https://aclanthology.org/Q17-1024.pdf


• Single joint vocabulary [Johnson 2017] 
– combine all corpus together, and apply BPE 

• Soft-decoupled encoding [Wang et al 2019] 
• Even better: learned vocabulary [Xu 2021], (later in 

class)

Vocabulary
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• LSTM-s2s: 
– 8 layer LSTM 

encoder, 1st layer 
bidirectional 

– 8 layer LSTM 
decoder with 
attention 

• Combine De-En 
and Fr-En to train 
a joint NMT 

• One model to 
translate two 
directions

Google’s MNMT System

10Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

https://aclanthology.org/Q17-1024.pdf


• One-to-many 
is more 
difficult than 
many-to-one 
MNMT 

•

Google’s MNMT System

11Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

https://aclanthology.org/Q17-1024.pdf


• Combining multiple source 
languages and multiple 
target languages together 
will degrade the performance 
a bit, but still surprising to 
see one model work as well 
for many-to-many English-
centric pairs. ß

Google’s MNMT
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English-centric Many-to-Many

Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

https://aclanthology.org/Q17-1024.pdf


• Training 12 language pairs 
together

Google’s MNMT

13Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

https://aclanthology.org/Q17-1024.pdf


• Bilingual pivot 
• Multilingual joint 
• What is missing 

in the table? 
– Multilingual pivot 

•

Google’s MNMT Zero-shot
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zero-shot

no longer zero-shot, since additional 
Pt-Es pairs are used.

Johnson et al. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. 2017

https://aclanthology.org/Q17-1024.pdf


• MNMT is worse than 
pivot on zero-shot 
directions

Google’s MNMT Zero-shot
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zero-shot



Source Language Tag or target Language Tag?
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Encoder Decoder
I like singing and dancing<EN id> J’adore chanter et danser<FR id>

Strategy Source sentence Target sentence

Original Hello World! ¡Hola Mundo
T-ENC __es__ Hello World! ¡Hola Mundo
T-DEC Hello World! __es__  ¡Hola Mundo

S-ENC-T-ENC __en__  __es__  Hello World! ¡Hola Mundo
S-ENC-T-DEC __en__ Hello World! __es__  ¡Hola Mundo

Wu et al. Language Tags Matter for Zero-Shot Neural Machine Translation 2021. 



Language Tag Does not Affect Performance on Supervised Directions
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Supervised directions: The directions which has been seen 
together in the training time.

Wu et al. Language Tags Matter for Zero-Shot Neural Machine Translation 2021. 



Target Language Tag on Encoder Strategy Gets Best Zero-Shot Performance
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Zero-shot directions: The directions between known languages 
that the model has never seen together at training time.

Wu et al. Language Tags Matter for Zero-Shot Neural Machine Translation 2021. 



Does sentence have similar emb. representation?
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• {Ja, Ko} -> En 
• Japanese: 私は東京⼤学の学⽣です。 → I am a 

student at Tokyo University.  
• Korean: 나=hb  X>쿄 Q>학cF 학QyDu이니다. → I 

am a student at Tokyo University.  
• Japanese/Korean: 私は東京⼤学PMeyQD입d= 다. → 

I am a student of Tokyo University. 

Mixed Source Language can still be Translated
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• En -> {Ja, Ko} 
• Either generate 

Japanese or Korean

Mixed Decoder for Target Language
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• Model: Transformer-base (6e6d, 512) ==> 
mTransformer 

• Data: TED-talk, 59 languages, 116 directions 

Multilingual NMT with mTransformer

22Aharoni et al. Massively Multilingual Neural Machine Translation. 2019



Unfortunate mTransformer does not work for Many-to-Many En-X

23Aharoni et al. Massively Multilingual Neural Machine Translation. 2019



• mTransformer 
– 6e6d, 1024 -> 8192 
– 473m parameters 

• 103 Languages (inc. En) 
– 64k vocab

Even More Languages

24Aharoni et al. Massively Multilingual Neural Machine Translation. 2019



More language trained together, but 
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mTransformer Zero-shot Performance
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• Data: 25 billion sentence pairs 
in 103 languages 

• Model: mTransformer with 
375million params (larger than 
Transformer-big)

Bigger Data

27Arivazhagan et al. Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. 2019



• sample data prob w.r.t 
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p

1
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Sampling of Data

28



• mTransformer:  
– 400m, 1.3B wide (12e12d), 1.3B deep (24e24d)  
– Deep is better than wide!

Bigger Model
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• mTransformer boosts performance on low-resource 
languages but not high-resource 

• Zero-shot directions are not usable yet.

Limitation

30Arivazhagan et al. Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges. 2019



MT w/ Adapter



• Insufficient model capacity 
– the sharing model capacity has to be split for different translation 

directions

Parameter Interference issue for MNMT

32
Bilingual Multilingual



• deep mTransformer  
– 12e12d +2BLEU 

• language-aware layer normalization +2~3BLEU 
– each language has its own normalization 

• language-aware linear transformation 
– the output of encoder is transformed with a language-specific 

matrix 
• Online back translation (+up to 10BLEU) 
• Evaluated on OPUS100: 55M sentence pairs 
•

Language Aware mTransformer

33Zhang et al. Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation. 2020



• For each layer, adding 
language-specific module 

• z  ̃=LNT(zi).  
• h =relu(W z  ̃)  
• x =Wh + z 
• Could be used for both 

domain adaptation and 
MNMT 

• Joint training the whole 
architecture

Multilingual NMT with Serial Adapter

34Bapna & Firat, Simple, Scalable Adaptation for Neural Machine Translation, 2019



• on rich-resource lang. 
• But serial-adapter is not 

plug-and-play 
– Joint training mTransformer+SA 

will be better than training 
mTransformer, fix, and train 
adapter. 

– Adapter has tight integration 
with the main architecture. 

Serial Adapter improves Multilingual Translation
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• Which adapter will remove noise?
Counter Interference
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• Design rationale: 
– process before multilingual 

interference is introduce in each 
layer  

• Embedding adapter 
• Parallel layer adapter 
• Training: 

– Pretrain mTransformer on 
multilingual data 

– Fix mTransformer and train 
parallel adapters on specific 
language pairs 

Parallel Adapter - CIAT
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• mTransformer 
could be worse 
than bilingual 
Transformer 

• Both serial adapter 
and parallel 
adapter (CIAT) 
improves 
mTransformer 

• Parallel even beat 
bilingual 
Transformer! Serial 
adapter does not.

Comparing MNMT w/ Adapters

38

18

23

28

33

38

IWSLT X-En
IWSLT En-X

OPUS100 X-En
OPUS100 En-X

WMT6 X-En
WMT6 En-X

Bilingual mTransformer MulLlingual KD Serial Adapter CIAT

Zhu et al. Counter-Interference Adapter for Multilingual Machine Translation. 2021



• Upper decoder layer adapter is more important
Which layer-adapter are more important?
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• Embedding adapter enhance the word embedding 
similarity between language pairs

Embedding Adapter is also important!
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• Improve the performance on MNMT, even beat Bilingual 
NMT 
– Reducing interference among large languages 
– Boost performance on zero-shot setting 

• With a fraction of overhead 
– Bilingual Transformer-big: N x 242m 
– mTransformer: 242m 
– mTransformer+Serial Adapter: 242m + N x 12.6m 
– mTransformer+parallel adapter (CIAT): 242m + N x 12.6~27.3m 

• Plug-and-play: CIAT only needs to finetune adapter

Benefit of MNMT w/ Adapter

41



Exploiting Model Capacity with 
Language-specific Subnet



• Challenge: Performance degradation for rich-resource 
– caused by Parameter Interference 

Challenge of Multilingual NMT

43

En-Tr (0.2m) En-Ta(0.6m) ... En-Zh(20m) En-Fr(36m)

Bilingual MulLlingual
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• Each direction has  
– shared parameters with other directions 
– preserves its language-specific parameters

Language-Specific Sub-network (LaSS)
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Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• For each language pair , a sub-network is 
selected from base model  indicated by a binary 
mask 

si → ti
θ0

Msi→ti ∈ {0,1}|θ|

LaSS overall framework

45

En→Zh

En→Fr

…

Base Model



• Fine-tuning and pruning 
– Fine-tuning on  amplifies important weights and 

diminishes the unimportant weights.
si → ti

How to find language-specific sub-network: Intuition
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Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• Start with a vanilla multilingual model  jointly trained 

on  

• For each language pair , fine-tuning  on 
, respectively 

• Rank the weights in fine-tuned model and prune the 
lowest α percent to obtain 

θ0

{𝒟si→ti}
N

i=1
si → ti θ0

𝒟si→ti

Msi→ti

How to find language-specific masks

47
Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• Further continue to train  through structure-aware 
updating after obtaining  

– Create batch  full of samples from  

– Forward and backward with sub-network 

θ0
Msi→ti

ℬsi→ti si → ti

θsi→ti = {θ j
0 ∣ Mj

si→ti
= 1}

Structure-aware Joint Training

48
Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• LaSS obtains consistent gains for both Transformer-
base and Transformer-big

Efficacy in alleviating Parameter Interference
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Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• LaSS obtains consistent performance gains. 
– IWSLT

Efficacy in alleviating Parameter Interference
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Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



LaSS obtains large gains in zero-shot translation
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Fr → X Results
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• An average of 8.3 BLEU gains on 30 language pairs 
• 26.5 BLEU gains for Fr→Zh

Lin et al. Learning Language Specific Sub-network for Multilingual Machine Translation. 2021



• The same number of parameters, no extra parameter 
• Improved performance on both rich-resource and zero-

shot translation directions. 

Benefits of Language-specific Subnet
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What do we need for larger scale?



• Previous many-to-many MNMT does not work well on 
non-English pairs 

•

Full Many-to-Many MNMT

54
Fan et al. Beyond English-Centric Multilingual Machine Translation. 2021



• WMT — 13 languages 
• WAT — Burmese-English 
• IWSLT — 4 languages 
• FLORES— Sinhala and Nepali <—> English 
• TED—The TED Talks data set4 (Ye et al., 2018) contains translations 

between more than 50 languages; most of the pairs do not include English. 
The evaluation data is n-way parallel and contains thousands of directions.  

• Autshumato— 11-way parallel data set comprising 10 African languages 
and English from the government domain. Half-half split. 

• Tatoeba— 692 test pairs from mixed domains where sentences are 
contributed and translated by volunteers online. The evaluation pairs we 
use from Tatoeba cover 85 different languages. 

100 Langauge Benchmark 
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• CCAligned [El-Kishky et al 2020]  
– use LASER encoder to produce sentence embedding 
– for every Eng sentence, use vector search engine (e.g. FAISS) to 

search candidate aligned sentence by comparing sentence embedding 
– parallel or comparable web-document pairs in 137 languages aligned 

with English.  
• Use language family as bridge to mine  

– non-English pairs 
• Total Training Data: 7.5B parallel sentences, corresponding 

to 2200 directions.  

•

Data mining for parallel corpus
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• Not necessarily fair performance. 
The power of non-English parallel data

57Fan et al. Beyond English-Centric Multilingual Machine Translation. 2021
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