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• MT as a ML problem 
• Basic Neural Net Layers 

– Single artificial neuron, Word Embedding, Feed-forward, Softmax, 
Positional Embedding 

– Universal approximation 
• Model Training 

– Risk Minimization and Maximum Likelihood Estimation 
• Stochastic Optimization methods 

– SGD and Backpropogation 
– Adaptive gradient methods: Adagrad, Adam

Outline
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• A computer program is said to learn from experience E 
with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as 
measured by P, improves with experience E” 

– [Tom Mitchell, Machine Learning, 1997]

What is Machine Learning?
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• To find a function f: x -> y 
– Classification: label y is categorical 
– Regression: label y is continuous numerical 

• Example: 
– Image classification 
‣ Input space: x in  is h x h pixels (rgb), so it is a tensor of h x h x 3.  
‣ Output space: y is {1..10} in Cifar-10, or {1..1000} in ImageNet.  

– Text-to-Image generation 
‣ Input: x is a sentence in , V is vocabulary, L is length 

‣ Output: y is 

Rh×h×3

VL

Rh×h×3

Task T
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• Text classification: sentence (or document) => label 
– Sentiment prediction 
– Intent classification 
– NLI: natural language inference, logical relation of two sentences  

• Sequence Generation/Structured Prediction: Given an input, to 
predict a sequence of labels 
– Machine Translation 
– Dialog response generation 
– Named entity recognition 

• Sentence Retrieval/Matching 
– Comparing similarity of two sequences

Formulation of NLP Tasks

5



• Supervised Learning: if pairs of (x, y) are given  
• Unsupervised Learning: if only x are given, but not y 
• Semi-supervised Learning: both paired data and raw 

data 
• Self-supervised Learning: 

– use raw data but construct supervision signals from the data 
itself 

– e.g. to predict neighboring pixel values for an image 
– e.g. to predict neighboring words for a sentence

Experience E
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• Offline/batch Learning:  
– All data are available at training time 
– At inference time: fix the model and predict  

• Online Learning: 
– Experience data is collected one (or one mini-batch) at a time (can be either labeled or 

unlabeled) 
– Incrementally train and update the model, and make predictions on the fly with current and 

changing model 
– e.g. predicting ads click on search engine 

• Reinforcement Learning: 
– A system (agent) is interacting with an environment (or other agents) by making an action 
– Experience data (reward) is collected from environment. 
– The system learns to maximize the total accumulative rewards. 
– e.g. Train a system to play chess

How Experience is Collected?
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• Multi-task learning 
– one system/model to learn multiple tasks simultaneously, with shared or 

separate Experience, with different performance measures 
– e.g. training a model that can detect human face and cat face at the same 

time 
• Pre-training & Fine-tuning 

– Pre-training stage: A system is trained with one task, usually with very 
large easily available data 

– Fine-tuning stage: it is trained on another task of interest, with different  
(often smaller) data 

– e.g. training an image classification model on ImageNet, then finetune on 
object detection dataset.

Learning w/ various Number of Tasks
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• Input (Source)  
– discrete sequence in source language, Vs 

• Output (Target) 
– discrete sequence in target langauge, Vt 

• Experience E 
– Supervised: parallel corpus, e.g. English-Chinese parallel pairs 
– Unsupervised: monolingual corpus, e.g. to learn MT with only Tamil text and English text, but no 

Eng-Tamil pairs 
– Semi-supervised: both 

• Number of languages involved 
– Bilingual versus Multilingual MT 
– Notice: it can be multilingual parallel data, or multilingual monolingual data 

• Measure P 
– Human evaluation metric, or Automatic Metric (e.g. BLEU), see previous lecture

Machine Translation as a Machine Learning Task

9



• Deep learning is a particular kind of machine learning 
• that achieves great power and flexibility by 

representing the world as a nested hierarchy of 
concepts,  

• with each concept defined in relation to simpler 
concepts, and more abstract representations 
computed in terms of less abstract ones.

What is Deep Learning
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Ian Goodfellow and Yoshua Bengio and Aaron Courville. 
Deep Learning, 2016



• Given a labeled dataset {(xn, yn)}, how to train a model 
that maps from x —> y 

• Idea: develop a complex model using massive basic 
simple units

Neural Networks
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Inspired by a biological neuron

Image credit: 
http://cs231n.github.io/neural-networks-1/



13

A single Artificial Neuron

x1

x2

x3

∑

w1

w2

w3

input
weight Transfer 

function
Activation 
function σ

y

Input:  
Weight:  
Output: 

x ∈ ℝd

w ∈ ℝd, b ∈ ℝ
y = σ(w ⋅ x + b)
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Activation functions
Activation function is nonlinear 

tanh(x) =
e2x − 1
e2x + 1

sigmoid(x) =
1

1 + e−x
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Activation functions

relu(x) = max(0,x) Leaky Relu

GELU(x) = 0.5x (1 + tanh ( 2/π(x + 0.044715x3)))
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Softmax

Useful for modeling 
probability  

(in classification task)

softmax(x)i =
exi

∑j exj
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Running Example: Predicting Sentiment

0 
1 
2

?

Given a sentence, to predict sentiment label: 
positive, neural, negative

This 
movie 

is 
great
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Word Embedding: Discrete Input to Continuous Representation

This 
movie 

is 
great

Vocabulary 
a -> 1 
is -> 8 

this -> 25 
that -> 26 

great -> 532 
movie -> 876 

… 

25 
876 

8 
532

Lookup table 
(id-to-vector)

how large is 
the lookup 

table? 
V·d 

Typical:  
V=30k 
d=100
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Single-Layer Neural Net 

great

For simplicity: start from single word input 
Input:  
Weight:  
Output:  

 representing probabilities of  
positive, neutral, and negative labels 
The prediction is chosen by  

x ∈ ℝd

w ∈ ℝd, b ∈ ℝ
o = Softmax(w ⋅ x + b) ∈ ℝ3

o1, o2, o3

y = argmax
i

oi
x1 x2 x3

o1

x4

o2 o3

1



• also known as multilayer 
perceptron  

 
 

 

 
Parameters 

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

h2 = σ(w2 ⋅ h1 + b2) ∈ ℝd2

o = Softmax(w3 ⋅ h2 + b3) ∈ ℝ3

θ = {w1, b1, w2, b2, w3, b3}

Multi-layer Feed-forward Neural Net

20

x1 x2 x3

o1

x4

o2 o3

h1 h2 h3 h4 h5



• Pooling Layer 
– Element-wise operation to 

cmpress variable length vectors 
into a fixed-size vector 

– Average pooling 

 

– Max pooling 

hnext =
1
L ∑

i

hi

hnext
j = max

i
hi,j

Sentence with Variable Length
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This     movie      is      great   

FFN

Pooling

Linear&Softmax

Emb



• The same word appearing at different position in a 
sentence may have different function/semantics 

• The movie is great   <—>  movie is the great  <—>  
great the is movie ? 

• Map position labels to embedding 

 PEpos,2i = sin(
pos

10002i/d
)

PEpos,2i+1 = cos(
pos

10002i/d
)

Order Matters — Positional Embedding
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This      movie     is     great    
        1              2     3            4

+ + + +



• The whole network 
represents a 
function 

 
• The parameter set 

f(x; θ) : V* → ℝ3

θ = {emb, w1, w2, . . . }
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Full Model

This     movie      is      great   

FFN

Pooling

Linear&Softmax

Emb

Pos



• What is the representation power of NN? 
• Theorem: Feedforward neural network with at least 

one hidden layer (with many units) can approximate 
any Borel measurable function to arbitrary accuracy. 
[Hornik et al 1989] 

• But not without hidden layer!

Universal Approximation
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• Given data  
• A function f as defined by a neural network (can be 

generalized to other model) 
• Find the best parameter  to fit the data 
• How to define best fit? 

– Several principled approaches

D = {(x1, y1), (x2, y2), …, (xN, yN)}

θ

Training a Model
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• For a function , and a data distribution  
• Define (expected) risk function 

 

 is the loss function/distance defined on predicted and actual outcomes 
• Empirical risk: 

 

i.e. expected risk under empirical distribution that puts 1/N probability mass on each 
data sample 

• Under ERM framework, 

f(x; θ) (x, y) ∼ P

R(θ) = ∫ ℓ( f(x; θ), y)dP

ℓ( ̂y, y)

Re(θ) =
1
N ∑

n

ℓ( f(xn; θ), yn)

̂θ ← argmin
θ

Re(θ)

Empirical Risk Minimization
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• ERM provides a very generic way to define and find best-fit 
parameters  

•  

• Many ways to define loss function  
• Commonly used: 

–
Cross-entropy for classification: , y is one-hot vector 

– Square loss for regression: 

Re(θ) =
1
N ∑

n

ℓ( f(xn; θ), yn)

ℓ( f, y)

ℓ( f, y) = − ∑
j

yj log fj

ℓ( f, y) =
1
2

| f − y |2
2

Empirical Risk Minimization
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• Cross-entropy  

• Average number of bits needed to represent message in q, 
while the actual message is distributed in p 

• OR. roughly the information gap between p and q + (some 
const)  

• Minimizing cross-entropy == diminishing the information gap 

•  

• Ideal case  ==> 1.0

𝐻(𝑝, 𝑞) = − ∑
𝑘

𝑝𝑘log𝑞𝑘

𝐻(𝑦𝑖, 𝑓(𝑥𝑖)) = − ∑
𝑘

𝑦𝑖,𝑘log𝑓(𝑥𝑖)𝑘 = − log𝑓(𝑥𝑖)𝑦𝑖

𝑓(𝑥𝑖)𝑦𝑖

Cross Entropy (CE)
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• The whole network 
represents a function 

 
• The parameter set 

 

f(x; θ) : V* → ℝ3

θ = {emb, w1, w2, . . . }
θ ← argmin

θ
Re(θ)

= −
1
N ∑

n
∑

j

yn,j log f(xn; θ)

29

Minimizing cross-entropy

This     movie      is      great   

FFN

Pooling

Linear&Softmax

Emb

Pos

f(x; θ)



• Consider f as a conditional distribution of y given x 
• Given  

• To find a  that best describe data, i.e.  defines a 
conditional distribution under which the data is most 
probable 

D = {(x1, y1), (x2, y2), …, (xN, yN)}
θ θ

̂θ ← argmax log L(θ)

L(θ) = ∏
n

P( f(xn; θ) = yn |xn)

Alternatively: Maximum Likelihood Estimation
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• For the simple neural model 

•

̂θ ← argmax log L(θ)

L(θ) = ∏
n

P( f(xn; θ) = yn |xn) = ∏
n

∏
j

f(xn; θ)yn,j
j

MLE Example
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• Discussion: Is minimizing cross-entropy equivalent to 
maximizing likelihood? 

– Under what condition?

Risk minimization and MLE

32



• Given a risk function, how to estimate the optimal 
parameter for a model? 

 

• Stochastic optimization algorithms 
– for large-scale data

θ* = argmin
1
N

N

∑
n=1

ℓ( f(xn; θ), yn)

Learning the Model
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• Consider a generic function minimization problem 
 

• Optimal condition:  

• In general, no closed-form solution for the equation. 
• Iterative update algorithm  

 

• so that  

• How to find 

min
x

f(x) where f : ℝd → ℝ

∇f |x = 0, where i-th element of ∇f |x  is 
∂f
∂xi

xt+1 ← xt + Δ
f(xt+1) ≪ f(xt)

Δ

Optimization
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•  

• Theorem: if f is twice-differentiable and has continuous 
derivatives around x, for any small-enough , there is 

, where 

is the Hessian at z which lies on the line connecting  and 
 

• First-order and second-order Taylor approximation result in 
gradient descent and Newton’s method

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |x Δx + ⋯

Δx

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |z Δx ∇2f |z

x
x + Δx

Taylor approximation
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•  

• To make  

•  

• Update rule:  

•  is a hyper-parameter to control the learning rate

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt

ΔxT ∇f |xt
 smallest 

⇒ Δx in the opposite direction of ∇f |xt
 i.e. Δx = − ∇f |xt

xt+1 = xt − η∇f |xt

η

Gradient Descent
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• Gradient descent requires calculating over full data.  

•  

• Instead of full gradient, evaluate and update on 
random minibatch of data samples Bt 

•

θt+1 = θt −
η
N

N

∑
n=1

∇θℓ( f(xn; θt), yn)

θt+1 = θt −
η

|Bt | ∑
n∈Bt

∇θℓ( f(xn; θt), yn)

Stochastic Gradient Descent
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SGD: Illustration

38[credit: gif from 3blue1brown]



•  

• Let gradient , Hessian  

• Let  

 
• updated on stochastic minibatch for large data

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt
+

1
2

ΔxT ∇2f |xt
Δx

gt = ∇f |xt
Ht = ∇2f |xt

∂f(xt + Δx)
∂Δx

= 0

xt+1 = xt − η ⋅ H−1
t ⋅ gt

Newton’s Method
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• Under some condition (Lipschitz continuous), GD 

converges with , or  to achieve error within 

 

•
SGD converges with  

• Newton’s method has better convergence, but higher 
per-iteration computation cost.

O(
1
T

) O(
1
ϵ

)

ϵ

O(
1

T
)

Convergence Rate versus Computation Cost
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• Forward and back-propagation 
• Suppose y=f(x), z=g(y), therefore z=g(f(x)) 

• Use the chain rule,  

• For a neural net and its loss  
• First compute gradient with respect to last layer 
• then using chain-rule to back propagate to second last, 

and so on

∇g( f(x)) |x = (∇f |x )T ⋅ ∇g |y

ℓ(θ)

Computing Gradient for Neural Net
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• , where  is the gradient 

• Adaptive step-size  for each dimension of parameters 
• Adaptive gradients 

–
AdaGrad: , where  accumulative second 

moments 

–
Adam: ,  

  where momentum  

                                

θt+1 = θt − η ⋅ gt gt
η

θt+1 = θt −
η
vt

⊙ gt vt =
t

∑
j=1

g2
j

θt+1 = θt −
η
vt

⊙ mt

mt = β ⋅ mt−1 + (1 − β) ⋅ gt

vt = γvt−1 + (1 − γ)g2
t

Accelerate SGD
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• Pytorch 
• Tensorflow 
• PaddlePaddle 
• Define the computation graph of a model 

– Already provide a library of basic layers 
– along with automatic gradient calculation 
– with many loss functions

Neural Network Framework
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from torch import nn

class TextClassificationModel(nn.Module):

    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()

    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()

    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)

Simple Text Classification in Pytorch

44https://github.com/pytorch/tutorials/blob/master/beginner_source/text_sentiment_ngrams_tutorial.py 

https://github.com/pytorch/tutorials/blob/master/beginner_source/text_sentiment_ngrams_tutorial.py


• Gradient clipping 
– avoid explode/overflow 

torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)

Practical Trick
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• Chap 6 of DL book.
Reading
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