# **291K Deep Learning for Machine Translation Basic Neural Networks**

Lei Li UCSB 10/4/2021





- MT as a ML problem
- Basic Neural Net Layers
  - **Positional Embedding**
  - Universal approximation
- Model Training
  - Risk Minimization and Maximum Likelihood Estimation
- Stochastic Optimization methods
  - SGD and Backpropogation
  - Adaptive gradient methods: Adagrad, Adam

#### – Single artificial neuron, Word Embedding, Feed-forward, Softmax,



# What is Machine Learning?

 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E" – [Tom Mitchell, Machine Learning, 1997]







- To find a function f: x -> y
  - Classification: label y is categorical
  - Regression: label y is continuous numerical
- Example:
  - Image classification

    - Output space: y is  $\{1...10\}$  in Cifar-10, or  $\{1...1000\}$  in ImageNet.
  - Text-to-Image generation
    - Input: x is a sentence in  $V^L$ , V is vocabulary, L is length
    - Output: y is  $R^{h \times h \times 3}$

• Input space: x in  $R^{h \times h \times 3}$  is h x h pixels (rgb), so it is a tensor of h x h x 3.



- Text classification: sentence (or document) => label
  - Sentiment prediction
  - Intent classification
  - NLI: natural language inference, logical relation of two sentences
- predict a sequence of labels
  - Machine Translation
  - Dialog response generation
  - Named entity recognition
- Sentence Retrieval/Matching - Comparing similarity of two sequences



# Sequence Generation/Structured Prediction: Given an input, to









- Supervised Learning: if pairs of (x, y) are given Unsupervised Learning: if only x are given, but not y Semi-supervised Learning: both paired data and raw
- data
- Self-supervised Learning:
  - use raw data but construct supervision signals from the data itself
  - e.g. to predict neighboring pixel values for an image – e.g. to predict neighboring words for a sentence

## **Experience E**



# How Experience is Collected?

- Offline/batch Learning:
  - All data are available at training time
  - At inference time: fix the model and predict
- Online Learning:
  - Experience data is collected one (or one mini-batch) at a time (can be either labeled or unlabeled)
  - Incrementally train and update the model, and make predictions on the fly with current and changing model
  - e.g. predicting ads click on search engine
- Reinforcement Learning:
  - A system (agent) is interacting with an environment (or other agents) by making an action – Experience data (reward) is collected from environment.

  - The system learns to maximize the total accumulative rewards.
  - e.g. Train a system to play chess



# Learning w/ various Number of Tasks

- Multi-task learning
  - one system/model to learn multiple tasks simultaneously, with shared or separate Experience, with different performance measures – e.g. training a model that can detect human face and cat face at the same
  - time
- Pre-training & Fine-tuning
  - Pre-training stage: A system is trained with one task, usually with very large easily available data
  - Fine-tuning stage: it is trained on another task of interest, with different (often smaller) data
  - e.g. training an image classification model on ImageNet, then finetune on object detection dataset.







## **Machine Translation as a Machine Learning Task**

Input (Source)

– discrete sequence in source language, V<sub>s</sub>

- Output (Target)
  - discrete sequence in target langauge, V<sub>t</sub>
- Experience E
  - Supervised: parallel corpus, e.g. English-Chinese parallel pairs – Unsupervised: monolingual corpus, e.g. to learn MT with only Tamil text and English text, but no
  - **Eng-Tamil pairs**
  - Semi-supervised: both
- Number of languages involved
  - Bilingual versus Multilingual MT
  - Notice: it can be multilingual parallel data, or multilingual monolingual data
- Measure P

– Human evaluation metric, or Automatic Metric (e.g. BLEU), see previous lecture





# What is Deep Learning

- representing the world as a nested hierarchy of
- Deep learning is a particular kind of machine learning that achieves great power and flexibility by concepts,
- with each concept defined in relation to simpler concepts, and more abstract representations computed in terms of less abstract ones.
  - an Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning, 2016



- that maps from  $x \longrightarrow y$
- simple units

# Neural Networks

## • Given a labeled dataset $\{(x_n, y_n)\}$ , how to train a model

## • Idea: develop a complex model using massive basic



# Inspired by a biological neuron

#### impulses carried toward cell body

#### dendrites

#### nucleus

cell body



- Image credit:
- http://cs231n.github.io/neural-networks-1/



# **A single Artificial Neuron**



# Activation function $\sigma$

## Input: $x \in \mathbb{R}^d$ Weight: $w \in \mathbb{R}^d, b \in \mathbb{R}$ Output: $y = \sigma(w \cdot x + b)$





#### Activation function is nonlinear



## **Activation functions**



# **Activation functions**



$$\text{GELU}(x) = 0.5x \left( 1 + \tanh\left(\sqrt{2/\pi}(x+0.0447)\right) \right)$$



## softmax(x)

Useful for modeling probability (in classification task)

$$)_{i} = \frac{e^{x_{i}}}{\sum_{j} e^{x_{j}}}$$



# **Running Example: Predicting Sentiment**

#### Given a sentence, to predict sentiment label: positive, neural, negative

This movie is great



 $\left( \right)$ 2



#### Word Embedding: Discrete Input to Continuous Representation





how large is the lookup table? V·d Typical: V=30kd=100









- For simplicity: start from single word input Input:  $x \in \mathbb{R}^d$ Weight:  $w \in \mathbb{R}^d, b \in \mathbb{R}$ Output:  $o = \text{Softmax}(w \cdot x + b) \in \mathbb{R}^3$
- $O_1, O_2, O_3$  representing probabilities of positive, neutral, and negative labels The prediction is chosen by

$$y = \underset{i}{\operatorname{argmax}} o_i$$

## Single-Layer Neural Net



#### great



# **Multi-layer Feed-forward Neural Net**

- also known as multilayer perceptron
- $x \in \mathbb{R}^d$
- $h_1 = \sigma(w_1 \cdot x + b_1) \in \mathbb{R}^{d_1}$
- $h_2 = \sigma(w_2 \cdot h_1 + b_2) \in \mathbb{R}^{d_2}$
- $o = \text{Softmax}(w_3 \cdot h_2 + b_3) \in \mathbb{R}^3$ Parameters
  - $\theta = \{w_1, b_1, w_2, b_2, w_3, b_3\}$





# Sentence with Variable Length

 Pooling Layer Element-wise operation to cmpress variable length vectors into a fixed-size vector Average pooling  $h^{next} = \frac{1}{L} \sum_{i} h_i$  Max pooling  $h^{next} = \max h_{i,j}$ 



# **Order Matters — Positional Embedding**

- The same word appearing at different position in a sentence may have different function/semantics
- The movie is great <---> movie is the great <---> great the is movie ?
- Map position labels to embedding

$$PE_{pos,2i} = \sin\left(\frac{pos}{1000^{2i/d}}\right)$$

$$PE_{pos,2i+1} = \cos\left(\frac{pos}{1000^{2i/d}}\right)$$

$$\prod_{i=1}^{n} + \prod_{i=1}^{n} +$$













# Full Model

- The whole network represents a function  $f(x;\theta): V^* \to \mathbb{R}^3$  The parameter set
  - $\theta = \{emb, w_1, w_2, \dots\}$

Pos





# **Universal Approximation**

- What is the representation power of NN?
- Theorem: Feedforward neural network with at least one hidden layer (with many units) can approximate any Borel measurable function to arbitrary accuracy. [Hornik et al 1989]
- But not without hidden layer!



- Given data  $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- A function f as defined by a neural network (can be generalized to other model)
- Find the best parameter  $\theta$  to fit the data
- How to define best fit?
  - Several principled approaches





# **Empirical Risk Minimization**

- For a function  $f(x; \theta)$ , and a data distribution  $(x, y) \sim P$
- Define (expected) risk function

 $R(\theta)$ 

 $\ell(\hat{y}, y)$  is the loss function/distance defined on predicted and actual outcomes

• Empirical risk:

 $R_{\rho}(\theta)$ 

i.e. expected risk under empirical distribution that puts 1/N probability mass on each data sample

• Under ERM framework,  $\hat{\theta} \leftarrow \operatorname{argmin} R_e(\theta)$ 

$$f(x; \theta) = \int \ell(f(x; \theta), y) dP$$

$$P) = \frac{1}{N} \sum_{n} \ell(f(x_n; \theta), y_n)$$





# **Empirical Risk Minimization**

 ERM provides a very generic way to define and find best-fit parameters

$$R_e(\theta) = \frac{1}{N} \sum_n \ell(f(x_n; \theta), y_n)$$

- Many ways to define loss function  $\ell(f, y)$
- Commonly used:

\_ Square loss for regression:  $\ell(f, y) = \frac{1}{2} |f - y|_2^2$ 

# Cross-entropy for classification: $\ell(f, y) = -\sum y_i \log f_i$ , y is one-hot vector



# Cross Entropy (CE)

## Cross-entropy $H(p,q) = -\sum p_k \log q_k$ $\boldsymbol{k}$

- Average number of bits needed to represent message in q, while the actual message is distributed in p OR. roughly the information gap between p and q + (some
- const)
- Minimizing cross-entropy == diminishing the information gap  $H(y_i, f(x_i)) = -\sum y_{i,k} \log f$
- Ideal case  $f(x_i)_{y_i} ==> 1.0$

$$f(x_i)_k = -\log f(x_i)_{y_i}$$







## Minimizing cross-entropy

- The whole network represents a function  $f(x; \theta) : V^* \to \mathbb{R}^3$
- The parameter set  $\theta = \{emb, w_1, w_2, \dots\}$  $\theta \leftarrow \operatorname{argmin} R_e(\theta)$

# $= -\frac{1}{N} \sum_{n} \sum_{j} y_{n,j} \log f(x_n; \theta)$



# **Alternatively: Maximum Likelihood Estimation**

- Consider f as a conditional distribution of y given x
- Given  $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$
- To find a  $\theta$  that best describe data, i.e.  $\theta$  defines a conditional distribution under which the data is most probable
- $\hat{\theta} \leftarrow \operatorname{argmax} \log L(\theta)$  $L(\theta) = \prod P(f(x_n; \theta) = y_n)$

$$x_n(x_n)$$





## MLE Example For the simple neural model $\hat{\theta} \leftarrow \operatorname{argmax} \log L(\theta)$ $L(\theta) = \int P(f(x_n; \theta) = y_n | x_n) = \int f(x_n; \theta)_j^{y_{n,j}}$ n İ N $f(x_n; \theta)$ $y_n$ 0 0.2 0.3 0.5



# **Risk minimization and MLE**

 Discussion: Is minimizing maximizing likelihood?
 Under what condition?

## Discussion: Is minimizing cross-entropy equivalent to



- Given a risk function, how to estimate the optimal parameter for a model?
- $\theta^* = \operatorname{argmin} \frac{1}{N} \sum_{N}^{N} \ell(f(x_n; \theta), y_n)$ n=1
- Stochastic optimization algorithms for large-scale data





# Optimization

- Consider a generic function minimization problem  $\min f(x)$  where  $f : \mathbb{R}^d \to \mathbb{R}$  $\boldsymbol{X}$
- In general, no closed-form solution for the equation.
- Iterative update algorithm

 $X_{t+1}$ 

- so that  $f(x_{t+1}) \ll f(x_t)$
- How to find  $\Delta$

• Optimal condition:  $\nabla f|_x = 0$ , where i-th element of  $\nabla f|_x$  is  $\frac{\partial f}{\partial x_i}$ 

$$\leftarrow x_t + \Delta$$



# **Taylor approximation** $|_{x} + \frac{1}{2} \Delta x^{T} \nabla^{2} f|_{x} \Delta x + \cdots$

$$f(x + \Delta x) = f(x) + \Delta x^T \nabla f$$

 Theorem: if f is twice-differentiable and has continuous derivatives around x, for any small-enough  $\Delta x$ , there is

$$f(x + \Delta x) = f(x) + \Delta x^T \nabla f$$

- is the Hessian at z which lies on the line connecting x and  $x + \Delta x$
- First-order and second-order Taylor approximation result in gradient descent and Newton's method

 $|_{x} + \frac{1}{2} \Delta x^{T} \nabla^{2} f|_{z} \Delta x, \text{ where } \nabla^{2} f|_{z}$ 





# **Gradient Descent**

- $f(x_t + \Delta x) \approx f(x_t) + \Delta x^T \nabla f|_{x_t}$
- To make  $\Delta x^T \nabla f|_{\chi}$  smallest
- $\Rightarrow \Delta x$  in the opposite direction of  $\nabla f|_{x_{t}}$  i.e.  $\Delta x = -\nabla f|_{x_{t}}$
- Update rule:  $x_{t+1} = x_t \eta \nabla f|_{\chi_t}$
- $\eta$  is a hyper-parameter to control the learning rate





# **Stochastic Gradient Descent**

Gradient descent requires calculating over full data.

$$\theta_{t+1} = \theta_t - \frac{\eta}{N} \sum_{n=1}^{N} \nabla_{\theta} \ell($$

 $\mathbf{N}$ 

 Instead of full gradient, evaluate and update on random minibatch of data samples Bt

$$\theta_{t+1} = \theta_t - \frac{\eta}{|B_t|} \sum_{n \in B} \nabla$$

 $(f(x_n; \theta_t), y_n)$ 

 $'_{\theta} \ell(f(x_n; \theta_t), y_n))$ 







#### [credit: gif from 3blue1brown]

## SGD: Illustration



## Newton's Method

•  $f(x_t + \Delta x) \approx f(x_t) + \Delta x^T \nabla f|_{x_t} + \frac{1}{2} \Delta x^T \nabla^2 f|_{x_t} \Delta x$ • Let gradient  $g_t = \nabla f|_{x_t}$ , Hessian  $H_t = \nabla^2 f|_{x_t}$ 

- Let  $\frac{\partial f(x_t + \Delta x)}{\partial \Delta x} = 0$

updated on stochastic minibatch for large data

# $x_{t+1} = x_t - \eta \cdot H_t^{-1} \cdot g_t$



# **Convergence Rate versus Computation Cost** Under some condition (Lipschitz continuous), GD converges with $O(\frac{1}{T})$ , or $O(\frac{1}{\epsilon})$ to achieve error within

 $\boldsymbol{\epsilon}$ 

- SGD converges with  $O(\frac{1}{\sqrt{T}})$ 
  - per-iteration computation cost.

Newton's method has better convergence, but higher



# **Computing Gradient for Neural Net**

- Forward and back-propagation Suppose y=f(x), z=g(y), therefore z=g(f(x)) • Use the chain rule,  $\nabla g(f(x))|_{x} = (\nabla f|_{x})^{T} \cdot \nabla g|_{y}$
- For a neural net and its loss  $\ell(\theta)$
- First compute gradient with respect to last layer then using chain-rule to back propagate to second last, and so on



## Accelerate SGD

- $\theta_{t+1} = \theta_t \eta \cdot g_t$ , where  $g_t$  is the gradient
- Adaptive step-size  $\eta$  for each dimension of parameters
- Adaptive gradients

AdaGrad: 
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{v_t}} \odot g_t$$
, w

moments

Adam: 
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{v_t}} \odot m_t$$
,

where momentum  $m_t = \beta \cdot m_{t-1} + (1 - \gamma v_t)$  $v_t = \gamma v_{t-1} + (1 - \gamma v_t)$ 



$$(1 - \beta) \cdot g_t$$
  
 $\gamma)g_t^2$ 



- Pytorch
- Tensorflow
- PaddlePaddle
- Define the computation graph of a model
  - Already provide a library of basic layers
  - along with automatic gradient calculation
  - with many loss functions





# Simple Text Classification in Pytorch

from torch import nn

class TextClassificationModel(nn.Module):

- def init (self, vocab size, embed dim, num class): super(TextClassificationModel, self). \_init\_\_() self.embedding = nn.EmbeddingBag(vocab size, embed dim, sparse=True) self.fc = nn.Linear(embed dim, num class) self.init weights()
- def init weights(self): initrange = 0.5self.embedding.weight.data.uniform (-initrange, initrange) self.fc.weight.data.uniform (-initrange, initrange) self.fc.bias.data.zero ()
- def forward(self, text, offsets): embedded = self.embedding(text, offsets) return self.fc(embedded)

https://github.com/pytorch/tutorials/blob/master/beginner\_source/text\_sentiment\_ngrams\_tutorial.py







 Gradient clipping avoid explode/overflow

#### torch.nn.utils.clip\_grad\_norm\_(model.parameters(), 0.1)





## Chap 6 of DL book.

