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• Single artificial neuron to mimic biological 
neurons

– each with simple operations


• Logistic Regression and its limitation

• Feedforward neural network (multilayer 

perceptron)

– Massive combination of simple units


• Successful example of FFN

– Deep&Wide model for recommendation system


• Computing Gradient for FFN — backpropagation
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Recap



• also known as multilayer 
perceptron (MLP) 


• Layers are connected 
sequentially


• Each layer has full-connection 
(each unit is connected to all 
units of next layer)


– Linear project followed by

– an element-wise nonlinear 

activation function

• There is no connection from 

output to input
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Feedforward Neural Net (FFN)

h1

h2



learning rate eta.

1. set initial parameter 

2. for epoch = 1 to maxEpoch or until converge:

3.   random_shuffle data 

4.   for each data batch (x, y):

5.     compute error err(f(x; ) - y) using forward


6.     compute gradient  using backpropagation


7.     total_g += g

8.   update  =  - eta * total_g / batch_size

θ ← θ0

θ

g =
∂err(θ)

∂θ

θ θ
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Learning FFN: Stochastic Gradient 
Descent



• Input: dimensional vector 


• Set:

– ,  is the width of the 0th (input) layer

– ;        

• For layer 

– For 


‣

‣

• Output:

–

𝐷  𝐱 = [𝑥𝑗,   𝑗 = 1…𝐷]

𝐷0 = 𝐷
𝑦(0)

𝑗 = 𝑥𝑗,   𝑗 = 1…𝐷 𝑦(𝑘=1…𝑁)
0 = 𝑥0 = 1

𝑘 = 1…𝑁
𝑗 = 1…𝐷𝑘

𝑧(𝑘)
𝑗 =

𝐷𝑘−1

∑
𝑖=0

𝑤(𝑘)
𝑖,𝑗 𝑦(𝑘−1)

𝑖

𝑦(𝑘)
𝑗 = 𝑓𝑘(𝑧(𝑘)

𝑗 )

𝑌 = 𝑦(𝑁)
𝑗 ,  𝑗 = 1. . 𝐷𝑁

5

Forward “Pass”

Dk is the size of the kth layer



• Output layer  :

– For 


‣

‣  for each j

• For layer 

– For 


‣

‣

‣  for each j

(𝑁)
𝑖 = 1…𝐷𝑁
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ij
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j

6

Backward Pass

Called “Backpropagation” because 
the derivative of the loss is 
propagated “backwards” through 
the network

Backward weighted combination of 
next layer

Backward equivalent of activation

Very analogous to the forward pass:



• A fundamental class of models for image 
recognition


• Vast applications:

– Autonomous driving vehicle

– Image search

– E-commerce recommendation

– Face identification (iphone faceID)
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Why Learning CNN?
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Visual Search
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Answering question about image

Q: What is the 
color of the cake?

A: red

Q: what are 
there hanging 
up?

A: umbrellas

Q: what is the 
color of the bus?

A: yellow

ABC-CNN

[Chen, Wang et al 2015]
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Autonomous Driving in 2015



Convolution



• Use a good camera

• RGB image has 36M 

elements 

• What is the size of a 

FFN with a single 
hidden layer (100 
hidden units)?


• How to reduce 
parameter size?
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Problem: Classifying Dog and Cat Images
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Where 
is 
Waldo?



• Translation 
Invariance


• Locality 
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Two Principles



• Input image: a matrix with size (h, w)

• Projection weights: a 4-D tensors (h,w) by 

(h’,w’)





V is re-indexes W such as that 


Tensor is a generalization of matrix

hi,j = ∑
k,l

wi,j,k,lxk,l = ∑
a,b

vi,j,a,bxi+a,j+b

vi,j,a,b = wi,j,i+a,j+b
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Full Projection in Tensor Form



• A shift in x also leads to a shift in h

• v should not depend on (i,j). Fix via 

vi,j,a,b = va,b
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Idea #1 - Translation Invariance

hi,j = ∑
a,b

va,bxi+a,j+b

hi,j = ∑
a,b

vi,j,a,bxi+a,j+b



• We shouldn’t look very far from x(i,j) in 
order to assess what’s going on at h(i,j)


• Outside range                      parameters 
vanish
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Idea #2 - Locality
hi,j = ∑

a,b

va,bxi+a,j+b

|a | , |b | > Δ
va,b = 0

hi,j =
Δ

∑
a=−Δ

Δ

∑
b=−Δ

va,bxi+a,j+b



• input matrix 


• kernel matrix 

• b: scalar bias

• output matrix 

 






• W and b are learnable parameters 

X : nh × nw

W : kh × kw

Y : (nh − kh + 1) × (nw − kw + 1)
Y = X ⋆ W + b

yi, j =
h

∑
a=1

w

∑
b=1

wa,bxi+a, j+b
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2-D Convolution Layer
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Examples
Edge Detection

Sharpen

Gaussian Blur

(wikipedia)
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Examples

(Rob Fergus)



Padding and Stride



• Given a 32 x 32 input image

• Apply convolutional layer with 

5 x 5 kernel 

– 28 x 28 output with 1 layer

– 4 x 4 output with 7 layers 


• Shape decreases faster with 
larger kernels  

– Shape reduces from  to nh × nw

(nh − kh + 1) × (nw − kw + 1)
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Padding



Padding adds rows/columns around input

23

Padding

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0



• Padding  rows and  columns, output 
shape will be 



• A common choice is                   and


– Odd     : pad         on both sides

– Even     : pad           on top,           on bottom

ph pw

(nh − kh + ph + 1) × (nw − kw + pw + 1)
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Padding

ph = kh − 1 pw = kw − 1

kh ph /2

kh ⌈ph /2⌉ ⌊ph /2⌋



• Padding reduces shape linearly with 
#layers 

– Given a 224 x 224 input with a 5 x 5 kernel, 

needs 44 layers to reduce the shape to 4 x 4

– Requires a large amount of computation
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Stride



• Stride is the #rows/#columns per slide
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Stride

Strides of 3 and 2 for height and width

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8
0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6



• Given stride     for the height and stride     
for the width,  
the output shape is 


• With                   and


• If input height/width are divisible by strides
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Stride
sh sw

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

ph = kh − 1 pw = kw − 1

⌊(nh + sh − 1)/sh⌋ × ⌊(nw + sw − 1)/sw⌋

(nh /sh) × (nw /sw)



Multiple Channels



• Color image may have three RGB 
channels


• Converting to grayscale loses information
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Multiple Input Channels



• Color image may have three RGB 
channels


• Converting to grayscale loses information
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Multiple Input Channels



• Input is a tensor

• Have a kernel for each channel, and then 

sum results over channels
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Multiple Input Channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56



•                         input tensor

•                         kernel tensor

•                     output

32

Multiple Input Channels
X : ci × nh × nw

W : ci × kh × kw

Y : mh × mw

Y =
ci

∑
i=0

Xi,:,: ⋆ Wi,:,:



• No matter how many inputs channels, so 
far we always get single output channel


• We can have multiple 3-D kernels, each 
one generates a output channel


• Input

• Kernel

• Output 
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Multiple Output Channels

X : ci × nh × nw

W : co × ci × kh × kw

Y : co × mh × mw

Yi,:,: = X ⋆ Wi,:,:,:

for i = 1,…, co



• Each output channel may recognize a 
particular pattern


• Input channels kernels recognize and 
combines patterns in inputs
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Multiple Input/Output Channels



 is a popular choice. It doesn’t 
recognize spatial patterns, but fuse channels. 

Equal to a dense layer with  input and                           
 weight.

kh = kw = 1

nhnw × ci
co × ci
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1 x 1 Convolutional Layer



• Input

• Kernel

• Bias        

• Output

• Complexity (number of floating point operations 

FLOP)


• 10 layers, 1M examples: 10PF  
(CPU: 0.15 TF = 18h, GPU: 12 TF = 14min)
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2-D Convolution Layer Summary
X : ci × nh × nw

W : co × ci × kh × kw

Y : co × mh × mw

Y = X ⋆ W + BB : co

O(cicokhkwmhmw)ci = co = 100
kh = hw = 5

mh = mw = 64

1GFLOP



Pooling Layer



• Convolution is sensitive to position

– Detect vertical edges


• We need some degree of invariance to 
translation

– Lighting, object positions, scales, appearance 

vary among images
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Pooling 

X Y

0 output 
with 1 



• Returns the maximal value in the sliding 
window
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2-D Max Pooling

max(0,1,3,4) = 4



• Returns the maximal value in the sliding 
window
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2-D Max Pooling

Conv output 2 x 2 max poolingVertical edge detection

Tolerant to 
1 pixel 



• Pooling layers have similar 
padding and stride as 
convolutional layers


• No learnable parameters

• Apply pooling for each input 

channel to obtain the 
corresponding output 
channel 
 
#output channels = #input 
channels
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Padding, Stride, and Multiple Channels



• Max pooling: the strongest pattern signal in 
a window


• Average pooling: replace max with mean in 
max pooling

– The average signal strength in a window
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Average Pooling

Max pooling Average pooling



• https://edstem.org/us/courses/22801/
lessons/45024/slides/257680
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Quiz



LeNet Architecture
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Handwritten Digit Recognition
An instance of optical character recognition (OCR)



• Centered and scaled 

• 50,000 training data

• 10,000 test data

• 28 x 28 images

• 10 classes
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MNIST
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Y. LeCun, L. 
Bottou, Y. 
Bengio, P. 
Haffner, 1998

Gradient-
based learning 
applied to 
document 
recognition
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Expensive if we have 
many outputs

conv

(5 x 5)

conv

(5 x 5)avg pool


(2 x 2)

stride 2
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LeNet-5

Layer #channels kernel 
size stride activation feature 

map size
Input 32 x 32 x 1

Conv 1 6 5 x 5 1 tanh 28 x 28 x 6
Avg Pooling 1 2 x 2 2 14 x 14 x 6

Conv 2 16 5 x 5 1 tanh 10 x 10 x 16
Avg Pooling 2 2 x 2 2 5 x 5 x 16

Conv 3 120 5 x 5 1 tanh 120
FC 1 84
FC 2 10



class LeNet(nn.Module):


  def __init__(self):

    super(LeNet, self).__init__()

    self.model = nn.Sequential(

      nn.Conv2d(in_channels = 1, out_channels = 6, kernel_size = 5, stride = 1, 
padding = 0),

      nn.Tanh(),

      nn.AvgPool2d(kernel_size = 2, stride = 2),

      nn.Conv2d(in_channels = 6, out_channels = 16, kernel_size = 5, stride = 1, 
padding = 0),

      nn.Tanh(),

      nn.AvgPool2d(kernel_size = 2, stride = 2),

      nn.Conv2d(in_channels = 16, out_channels = 120, kernel_size = 5, stride = 
1, padding = 0),

      nn.Flatten(),

      nn.Linear(120, 84),

      nn.Tanh(),

      nn.Linear(84, 10))


  def forward(self, x):

    y = self.model(x)

    return y
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LeNet in Pytorch



• Convolutional layer

– Reduced model capacity compared to dense 

layer

– Efficient at detecting spatial pattens

– High computation complexity

– Control output shape via padding, strides and 

channels

• Max/Average Pooling layer


– Provides some degree of invariance to 
translation
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Recap



AlexNet
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ImageNet (2010)

Images Color images 
with nature 
objects

Gray image for 
hand-written 
digits

Size 469 x 387 28 x 28 
# 
examples

1.2 M 60 K

# classes 1,000 10



• AlexNet won ImageNet 
competition in 2012


• Deeper and bigger LeNet 

• Key modifications


– Dropout (regularization)

– ReLu (training)

– MaxPooling


• Paradigm shift for computer 
vision
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AlexNet

Features 
learned by a 

CNN

Softmax 
regression

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. 2012
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AlexNet Architecture 

LeNetAlexNet

Larger kernel size, 
stride because of the 
increased image size, 

and more output 
channels.

Larger pool size, 
change to max pooling 
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AlexNet Architecture 

LeNet

AlexNet

More output 
channels.

3 additional 
convolutional  

layers
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AlexNet Architecture 

LeNetAlexNet

Increase hidden 
size  

from 120 to 4096

1000 classes 
output



• Change activation function from sigmoid to ReLu 
(no more vanishing gradient)


• Add a dropout layer after two hidden FFN layers 
(better robustness / regularization)


• Data augmentation
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More Tricks



• Create additional training data with existing 
data
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Data Augmentation



ReLU: rectified linear unit 
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ReLU Activation

ReLU(x) = max(x,0)



• For every input , Dropout producesxi

x′￼i = {
0 with probablity p

xi

1 − p otherise
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Dropout Layer
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AlexNet
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Complexity

#parameters FLOP
AlexNet LeNet AlexNet LeNet

Conv1 35K 150 101M 1.2M
Conv2 614K 2.4K 415M 2.4M

Conv3-5 3M 445M
Dense1 26M 0.48M 26M 0.48M
Dense2 16M 0.1M 16M 0.1M

Total 46M 0.6M 1G 4M
Increase 11x 1x 250x 1x
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ImageNet Results: ILSVRC Winners
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AlexNet



VGG



• AlexNet is deeper and 
bigger than LeNet to get 
performance


• Go even bigger & 
deeper?


• Options

– More dense layers  

(too expensive)

– More convolutions

– Group into blocks
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VGG



• Deeper vs. wider?

– 5x5 convolutions

– 3x3 convolutions (more)

– Deep & narrow better


• VGG block

– 3x3 convolutions (pad 1) 

(n layers, m channels)

– 2x2 max-pooling  

(stride 2)
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VGG Blocks 

Part of 
AlexNetVGG block



• Multiple VGG blocks 
followed by dense 
layers


• Vary the repeating 
number to get different 
architectures, such as 
VGG-16, VGG-19, …
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VGG Architecture 
AlexNetVGG



• LeNet (1995)

– 2 convolution + pooling layers 

– 2 hidden dense layers


• AlexNet

– Bigger and deeper LeNet

– ReLu, Dropout, preprocessing


• VGG

– Bigger and deeper AlexNet (repeated VGG 

blocks)
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Going Deeper



Residual Networks
Best paper CVPR 2016
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Does adding layers improve accuracy?

? ✔︎



• Adding a layer 
changes function  
class


• We want to add to 
the function class


• ‘Taylor expansion' 
style 
parametrization
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Residual Networks

f(x) = x + g(x)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition. 2016
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ResNet Block in detail
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Code
# an essential block of layers which forms resnets
class ResBlock(nn.Module):
  #in_channels -> input channels,int_channels->intermediate channels
  def __init__(self,in_channels,int_channels,identity_downsample=None,stride=1):
    super(ResBlock,self).__init__()
    self.expansion = 4
    self.conv1 = nn.Conv2d(in_channels,int_channels,kernel_size=1,stride=1,padding=0)
    self.bn1 = nn.BatchNorm2d(int_channels)
    self.conv2 = nn.Conv2d(int_channels,int_channels,kernel_size=3,stride=stride,padding=1)
    self.bn2 = nn.BatchNorm2d(int_channels)
    self.conv3 = nn.Conv2d(int_channels,int_channels*self.expansion,kernel_size=1,stride=1,padding=0)
    self.bn3 = nn.BatchNorm2d(int_channels*self.expansion)
    self.relu = nn.ReLU()
    self.identity_downsample =  identity_downsample
    self.stride = stride

  def forward(self,x):
    identity = x.clone()
    x =  self.conv1(x)
    x =  self.bn1(x)
    x = self.relu(x)
    x = self.conv2(x)
    x = self.bn2(x)
    x = self.relu(x)
    x = self.conv3(x)
    x = self.bn3(x)
    #the so called skip connections
    if self.identity_downsample is not None:
      identity = self.identity_downsample(identity)
    x += identity
    x = self.relu(x)
    return x



• Loss occurs at last layer

• Last layers learn quickly


• Data is inserted at first layer

• Input layers change - everything 

changes

• Last layers need to relearn many times

• Slow convergence


• This is like covariate shift

• The distribution of each layer shift 

across over training process
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Batch Normalization
loss

data



• For each layer, compute mean 
and variance 
 
 
 
and adjust it separately


•  and  are learnable parametersγ β
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Batch Normalization
loss

data

µB =
1

|B|
X

i2B

xi and �2
B =

1

|B|
X

i2B

(xi � µB)
2 + ✏

xi+1 = �
xi � µB

�B
+ �

Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift. 2015



77

This was the original motivation …



• Doesn’t really reduce covariate shift (Lipton et al., 
2018)


• Regularization by noise injection


– Random shift per minibatch

– Random scale per minibatch


• No need to mix with dropout (both are capacity control)

• Ideal minibatch size of 64 to 256
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What Batch Norms really do

xi+1 = γ
xi − ̂μB

̂σB
+ β

Empiric
al mean

Empiric
al 

Random 
offset

Random 
scale



torch.nn.BatchNorm1d(num_features)

  


torch.nn.BatchNorm2d(num_features)

>>> m = nn.BatchNorm2d(100)

>>> input = torch.randn(20, 100, 32, 32)

>>> output = m(input)
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Code



• Downsample per module 
(stride=2)


• Enforce some nontrivial 
nonlinearity per module (via 
1x1 convolution)


• Stack up in blocks
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ResNet Module

Stride 2

Multiple




• Same block structure as e.g. VGG 
or GoogleNet


• Residual connection to add to 
expressiveness


• Pooling/stride for dimensionality 
reduction


• Batch Normalization for capacity 
control


… train it at scale …
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Putting it all together



def _make_layer(self,block,num_res_blocks,int_channels,stride):
    identity_downsample =  None
    layers = []
    if stride!=1 or self.in_channels != int_channels*4:
      identity_downsample = nn.Sequential(nn.Conv2d(self.in_channels,int_channels*4,
                                                    kernel_size=1,stride=stride),
                                          nn.BatchNorm2d(int_channels*4)) 
layers.append(ResBlock(self.in_channels,int_channels,identity_downsample,stride))
      #this expansion size will always be 4 for all the types of ResNets
      self.in_channels =  int_channels*4
      for i in range(num_res_blocks-1):
        layers.append(ResBlock(self.in_channels,int_channels))
      return nn.Sequential(*layers)
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ResNet in Pytorch

https://medium.datadriveninvestor.com/cnn-
architectures-from-scratch-c04d66ac20c2
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Deeper is better
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ImageNet Results: ILSVRC Winners
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• ResNet won the champion for ILSVRC 
2015


• The ResNet paper won the best paper 
award from CVPR 2016 (one of the leading 
CV conferences)


• Kaimin He won multiple best papers.
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Notes



• Exploring Simple Siamese Representation 
Learning. CVPR Best Paper Honorable 
Mention, 2021


• Group Normalization. ECCV Best Paper 
Honorable Mention, 2018


• Mask R-CNN. ICCV Best Paper Award (Marr 
Prize), 2017


• Focal Loss for Dense Object Detection. ICCV 
Best Student Paper Award, 2017


• Deep Residual Learning for Image Recognition. 
CVPR Best Paper Award, 2016


• Single Image Haze Removal using Dark 
Channel Prior. CVPR Best Paper Award, 2009
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Papers of Kaimin He

The first 
publication 

from Kaimin He



• Your manager assigns a task for you: build 
a system to automatically select the cover 
photo for a short video on Tiktok


• Please discuss in groups how you plan to 
build the system
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Discussion



• Building blocks 

– Convolution

– Stride

– Padding

– Channel

– Pooling

– Dropout

– Batch Norm

– Residual connection


• Data Augmentation

• Deeper is better — but still efficient
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Summary


