
Lecture 6 
Convolutional Neural

Networks
Lei Li and Yuxiang Wang

UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj’s 11485 and

Mu Li & Alex Smola’s 157 courses on Deep Learning, with
modification

1

• Single artificial neuron to mimic biological
neurons

– each with simple operations

• Logistic Regression and its limitation

• Feedforward neural network (multilayer

perceptron)

– Massive combination of simple units

• Successful example of FFN

– Deep&Wide model for recommendation system

• Computing Gradient for FFN — backpropagation
2

Recap

• also known as multilayer
perceptron (MLP)

• Layers are connected
sequentially

• Each layer has full-connection
(each unit is connected to all
units of next layer)

– Linear project followed by

– an element-wise nonlinear

activation function

• There is no connection from

output to input

3

Feedforward Neural Net (FFN)

h1

h2

learning rate eta.

1. set initial parameter

2. for epoch = 1 to maxEpoch or until converge:

3. random_shuffle data

4. for each data batch (x, y):

5. compute error err(f(x;) - y) using forward

6. compute gradient using backpropagation

7. total_g += g

8. update = - eta * total_g / batch_size

θ ← θ0

θ

g =
∂err(θ)

∂θ

θ θ

4

Learning FFN: Stochastic Gradient
Descent

• Input: dimensional vector

• Set:

– , is the width of the 0th (input) layer

– ;

• For layer

– For

‣

‣

• Output:

–

𝐷 𝐱 = [𝑥𝑗, 𝑗 = 1…𝐷]

𝐷0 = 𝐷
𝑦(0)

𝑗 = 𝑥𝑗, 𝑗 = 1…𝐷 𝑦(𝑘=1…𝑁)
0 = 𝑥0 = 1

𝑘 = 1…𝑁
𝑗 = 1…𝐷𝑘

𝑧(𝑘)
𝑗 =

𝐷𝑘−1

∑
𝑖=0

𝑤(𝑘)
𝑖,𝑗 𝑦(𝑘−1)

𝑖

𝑦(𝑘)
𝑗 = 𝑓𝑘(𝑧(𝑘)

𝑗)

𝑌 = 𝑦(𝑁)
𝑗 , 𝑗 = 1. . 𝐷𝑁

5

Forward “Pass”

Dk is the size of the kth layer

• Output layer :

– For

‣

‣ for each j

• For layer

– For

‣

‣

‣ for each j

(𝑁)
𝑖 = 1…𝐷𝑁
∂ℓ

∂z(N)
i

= f′￼N(z(N)
i)

∂ℓ
∂ ̂y(N)

i∂ℓ
∂w(N)

ij
= y(N−1)

i
∂ℓ

∂z (N)
j

𝑘 = 𝑁 − 1 𝑑𝑜𝑤𝑛𝑡𝑜 1
𝑖 = 1…𝐷𝑘

∂ℓ
∂y(k−1)

i
= ∑

j

w(k)
ij

∂ℓ
∂z(k)

j
∂ℓ

∂z (k)
i

= f′￼k(z
(k)
i)

∂ℓ
∂y(k)

i∂ℓ
∂w(k)

ij
= y(k−1)

i
∂ℓ

∂z (k)
j

6

Backward Pass

Called “Backpropagation” because 
the derivative of the loss is 
propagated “backwards” through 
the network

Backward weighted combination of
next layer

Backward equivalent of activation

Very analogous to the forward pass:

• A fundamental class of models for image
recognition

• Vast applications:

– Autonomous driving vehicle

– Image search

– E-commerce recommendation

– Face identification (iphone faceID)

7

Why Learning CNN?

8

Visual Search

9

Answering question about image

Q: What is the
color of the cake?

A: red

Q: what are
there hanging
up?

A: umbrellas

Q: what is the
color of the bus?

A: yellow

ABC-CNN

[Chen, Wang et al 2015]

10

Autonomous Driving in 2015

Convolution

• Use a good camera

• RGB image has 36M

elements

• What is the size of a

FFN with a single
hidden layer (100
hidden units)?

• How to reduce
parameter size?

12

Problem: Classifying Dog and Cat Images

13

Where
is
Waldo?

• Translation
Invariance

• Locality

14

Two Principles

• Input image: a matrix with size (h, w)

• Projection weights: a 4-D tensors (h,w) by

(h’,w’)

V is re-indexes W such as that

Tensor is a generalization of matrix

hi,j = ∑
k,l

wi,j,k,lxk,l = ∑
a,b

vi,j,a,bxi+a,j+b

vi,j,a,b = wi,j,i+a,j+b

15

Full Projection in Tensor Form

• A shift in x also leads to a shift in h

• v should not depend on (i,j). Fix via

vi,j,a,b = va,b

16

Idea #1 - Translation Invariance

hi,j = ∑
a,b

va,bxi+a,j+b

hi,j = ∑
a,b

vi,j,a,bxi+a,j+b

• We shouldn’t look very far from x(i,j) in
order to assess what’s going on at h(i,j)

• Outside range parameters
vanish

17

Idea #2 - Locality
hi,j = ∑

a,b

va,bxi+a,j+b

|a | , |b | > Δ
va,b = 0

hi,j =
Δ

∑
a=−Δ

Δ

∑
b=−Δ

va,bxi+a,j+b

• input matrix

• kernel matrix

• b: scalar bias

• output matrix

• W and b are learnable parameters

X : nh × nw

W : kh × kw

Y : (nh − kh + 1) × (nw − kw + 1)
Y = X ⋆ W + b

yi, j =
h

∑
a=1

w

∑
b=1

wa,bxi+a, j+b

18

2-D Convolution Layer

19

Examples
Edge Detection

Sharpen

Gaussian Blur

(wikipedia)

20

Examples

(Rob Fergus)

Padding and Stride

• Given a 32 x 32 input image

• Apply convolutional layer with

5 x 5 kernel

– 28 x 28 output with 1 layer

– 4 x 4 output with 7 layers

• Shape decreases faster with
larger kernels

– Shape reduces from to nh × nw

(nh − kh + 1) × (nw − kw + 1)
22

Padding

Padding adds rows/columns around input

23

Padding

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0

• Padding rows and columns, output
shape will be

• A common choice is and

– Odd : pad on both sides

– Even : pad on top, on bottom

ph pw

(nh − kh + ph + 1) × (nw − kw + pw + 1)

24

Padding

ph = kh − 1 pw = kw − 1

kh ph /2

kh ⌈ph /2⌉ ⌊ph /2⌋

• Padding reduces shape linearly with
#layers

– Given a 224 x 224 input with a 5 x 5 kernel,

needs 44 layers to reduce the shape to 4 x 4

– Requires a large amount of computation

25

Stride

• Stride is the #rows/#columns per slide

26

Stride

Strides of 3 and 2 for height and width

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8
0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6

• Given stride for the height and stride
for the width,  
the output shape is

• With and

• If input height/width are divisible by strides
27

Stride
sh sw

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

ph = kh − 1 pw = kw − 1

⌊(nh + sh − 1)/sh⌋ × ⌊(nw + sw − 1)/sw⌋

(nh /sh) × (nw /sw)

Multiple Channels

• Color image may have three RGB
channels

• Converting to grayscale loses information

29

Multiple Input Channels

• Color image may have three RGB
channels

• Converting to grayscale loses information

30

Multiple Input Channels

• Input is a tensor

• Have a kernel for each channel, and then

sum results over channels

31

Multiple Input Channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

• input tensor

• kernel tensor

• output

32

Multiple Input Channels
X : ci × nh × nw

W : ci × kh × kw

Y : mh × mw

Y =
ci

∑
i=0

Xi,:,: ⋆ Wi,:,:

• No matter how many inputs channels, so
far we always get single output channel

• We can have multiple 3-D kernels, each
one generates a output channel

• Input

• Kernel

• Output

33

Multiple Output Channels

X : ci × nh × nw

W : co × ci × kh × kw

Y : co × mh × mw

Yi,:,: = X ⋆ Wi,:,:,:

for i = 1,…, co

• Each output channel may recognize a
particular pattern

• Input channels kernels recognize and
combines patterns in inputs

34

Multiple Input/Output Channels

 is a popular choice. It doesn’t
recognize spatial patterns, but fuse channels. 

Equal to a dense layer with input and  
 weight.

kh = kw = 1

nhnw × ci
co × ci

35

1 x 1 Convolutional Layer

• Input

• Kernel

• Bias

• Output

• Complexity (number of floating point operations

FLOP)

• 10 layers, 1M examples: 10PF  
(CPU: 0.15 TF = 18h, GPU: 12 TF = 14min)

36

2-D Convolution Layer Summary
X : ci × nh × nw

W : co × ci × kh × kw

Y : co × mh × mw

Y = X ⋆ W + BB : co

O(cicokhkwmhmw)ci = co = 100
kh = hw = 5

mh = mw = 64

1GFLOP

Pooling Layer

• Convolution is sensitive to position

– Detect vertical edges

• We need some degree of invariance to
translation

– Lighting, object positions, scales, appearance

vary among images

38

Pooling

X Y

0 output
with 1

• Returns the maximal value in the sliding
window

39

2-D Max Pooling

max(0,1,3,4) = 4

• Returns the maximal value in the sliding
window

40

2-D Max Pooling

Conv output 2 x 2 max poolingVertical edge detection

Tolerant to
1 pixel

• Pooling layers have similar
padding and stride as
convolutional layers

• No learnable parameters

• Apply pooling for each input

channel to obtain the
corresponding output
channel 
 
#output channels = #input
channels

41

Padding, Stride, and Multiple Channels

• Max pooling: the strongest pattern signal in
a window

• Average pooling: replace max with mean in
max pooling

– The average signal strength in a window

42

Average Pooling

Max pooling Average pooling

• https://edstem.org/us/courses/22801/
lessons/45024/slides/257680

43

Quiz

LeNet Architecture

45

Handwritten Digit Recognition
An instance of optical character recognition (OCR)

• Centered and scaled

• 50,000 training data

• 10,000 test data

• 28 x 28 images

• 10 classes

46

MNIST

47

Y. LeCun, L.
Bottou, Y.
Bengio, P.
Haffner, 1998

Gradient-
based learning
applied to
document
recognition

48

Expensive if we have
many outputs

conv

(5 x 5)

conv

(5 x 5)avg pool

(2 x 2)

stride 2

49

LeNet-5

Layer #channels kernel
size stride activation feature

map size
Input 32 x 32 x 1

Conv 1 6 5 x 5 1 tanh 28 x 28 x 6
Avg Pooling 1 2 x 2 2 14 x 14 x 6

Conv 2 16 5 x 5 1 tanh 10 x 10 x 16
Avg Pooling 2 2 x 2 2 5 x 5 x 16

Conv 3 120 5 x 5 1 tanh 120
FC 1 84
FC 2 10

class LeNet(nn.Module):

 def __init__(self):

 super(LeNet, self).__init__()

 self.model = nn.Sequential(

 nn.Conv2d(in_channels = 1, out_channels = 6, kernel_size = 5, stride = 1,
padding = 0),

 nn.Tanh(),

 nn.AvgPool2d(kernel_size = 2, stride = 2),

 nn.Conv2d(in_channels = 6, out_channels = 16, kernel_size = 5, stride = 1,
padding = 0),

 nn.Tanh(),

 nn.AvgPool2d(kernel_size = 2, stride = 2),

 nn.Conv2d(in_channels = 16, out_channels = 120, kernel_size = 5, stride =
1, padding = 0),

 nn.Flatten(),

 nn.Linear(120, 84),

 nn.Tanh(),

 nn.Linear(84, 10))

 def forward(self, x):

 y = self.model(x)

 return y

50

LeNet in Pytorch

• Convolutional layer

– Reduced model capacity compared to dense

layer

– Efficient at detecting spatial pattens

– High computation complexity

– Control output shape via padding, strides and

channels

• Max/Average Pooling layer

– Provides some degree of invariance to
translation

51

Recap

AlexNet

53

ImageNet (2010)

Images Color images
with nature
objects

Gray image for
hand-written
digits

Size 469 x 387 28 x 28

examples

1.2 M 60 K

classes 1,000 10

• AlexNet won ImageNet
competition in 2012

• Deeper and bigger LeNet

• Key modifications

– Dropout (regularization)

– ReLu (training)

– MaxPooling

• Paradigm shift for computer
vision

54

AlexNet

Features
learned by a

CNN

Softmax
regression

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. 2012

55

AlexNet Architecture

LeNetAlexNet

Larger kernel size,
stride because of the
increased image size,

and more output
channels.

Larger pool size,
change to max pooling

56

AlexNet Architecture

LeNet

AlexNet

More output
channels.

3 additional 
convolutional

layers

57

AlexNet Architecture

LeNetAlexNet

Increase hidden
size  

from 120 to 4096

1000 classes
output

• Change activation function from sigmoid to ReLu 
(no more vanishing gradient)

• Add a dropout layer after two hidden FFN layers 
(better robustness / regularization)

• Data augmentation

58

More Tricks

• Create additional training data with existing
data

59

Data Augmentation

ReLU: rectified linear unit

60

ReLU Activation

ReLU(x) = max(x,0)

• For every input , Dropout producesxi

x′￼i = {
0 with probablity p

xi

1 − p otherise

61

Dropout Layer

62

AlexNet

63

Complexity

#parameters FLOP
AlexNet LeNet AlexNet LeNet

Conv1 35K 150 101M 1.2M
Conv2 614K 2.4K 415M 2.4M

Conv3-5 3M 445M
Dense1 26M 0.48M 26M 0.48M
Dense2 16M 0.1M 16M 0.1M

Total 46M 0.6M 1G 4M
Increase 11x 1x 250x 1x

64

ImageNet Results: ILSVRC Winners

0

7.5

15

22.5

30

2010 2011 2012 2013 2014 2015 2016 2017

16.4

25.8

28.2

ILSVRC Top-5 Error

AlexNet

VGG

• AlexNet is deeper and
bigger than LeNet to get
performance

• Go even bigger &
deeper?

• Options

– More dense layers  

(too expensive)

– More convolutions

– Group into blocks

66

VGG

• Deeper vs. wider?

– 5x5 convolutions

– 3x3 convolutions (more)

– Deep & narrow better

• VGG block

– 3x3 convolutions (pad 1) 

(n layers, m channels)

– 2x2 max-pooling  

(stride 2)

67

VGG Blocks

Part of
AlexNetVGG block

• Multiple VGG blocks
followed by dense
layers

• Vary the repeating
number to get different
architectures, such as
VGG-16, VGG-19, …

68

VGG Architecture
AlexNetVGG

• LeNet (1995)

– 2 convolution + pooling layers

– 2 hidden dense layers

• AlexNet

– Bigger and deeper LeNet

– ReLu, Dropout, preprocessing

• VGG

– Bigger and deeper AlexNet (repeated VGG

blocks)
69

Going Deeper

Residual Networks
Best paper CVPR 2016

71

Does adding layers improve accuracy?

? ✔︎

• Adding a layer
changes function  
class

• We want to add to
the function class

• ‘Taylor expansion' 
style
parametrization

72

Residual Networks

f(x) = x + g(x)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition. 2016

73

ResNet Block in detail

74

Code
an essential block of layers which forms resnets
class ResBlock(nn.Module):
 #in_channels -> input channels,int_channels->intermediate channels
 def __init__(self,in_channels,int_channels,identity_downsample=None,stride=1):
 super(ResBlock,self).__init__()
 self.expansion = 4
 self.conv1 = nn.Conv2d(in_channels,int_channels,kernel_size=1,stride=1,padding=0)
 self.bn1 = nn.BatchNorm2d(int_channels)
 self.conv2 = nn.Conv2d(int_channels,int_channels,kernel_size=3,stride=stride,padding=1)
 self.bn2 = nn.BatchNorm2d(int_channels)
 self.conv3 = nn.Conv2d(int_channels,int_channels*self.expansion,kernel_size=1,stride=1,padding=0)
 self.bn3 = nn.BatchNorm2d(int_channels*self.expansion)
 self.relu = nn.ReLU()
 self.identity_downsample = identity_downsample
 self.stride = stride

 def forward(self,x):
 identity = x.clone()
 x = self.conv1(x)
 x = self.bn1(x)
 x = self.relu(x)
 x = self.conv2(x)
 x = self.bn2(x)
 x = self.relu(x)
 x = self.conv3(x)
 x = self.bn3(x)
 #the so called skip connections
 if self.identity_downsample is not None:
 identity = self.identity_downsample(identity)
 x += identity
 x = self.relu(x)
 return x

• Loss occurs at last layer

• Last layers learn quickly

• Data is inserted at first layer

• Input layers change - everything

changes

• Last layers need to relearn many times

• Slow convergence

• This is like covariate shift

• The distribution of each layer shift

across over training process

75

Batch Normalization
loss

data

• For each layer, compute mean
and variance 
 
 
 
and adjust it separately

• and are learnable parametersγ β
76

Batch Normalization
loss

data

µB =
1

|B|
X

i2B

xi and �2
B =

1

|B|
X

i2B

(xi � µB)
2 + ✏

xi+1 = �
xi � µB

�B
+ �

Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. 2015

77

This was the original motivation …

• Doesn’t really reduce covariate shift (Lipton et al.,
2018)

• Regularization by noise injection

– Random shift per minibatch

– Random scale per minibatch

• No need to mix with dropout (both are capacity control)

• Ideal minibatch size of 64 to 256

78

What Batch Norms really do

xi+1 = γ
xi − ̂μB

̂σB
+ β

Empiric
al mean

Empiric
al

Random
offset

Random
scale

torch.nn.BatchNorm1d(num_features)

torch.nn.BatchNorm2d(num_features)

>>> m = nn.BatchNorm2d(100)

>>> input = torch.randn(20, 100, 32, 32)

>>> output = m(input)

79

Code

• Downsample per module
(stride=2)

• Enforce some nontrivial
nonlinearity per module (via
1x1 convolution)

• Stack up in blocks

80

ResNet Module

Stride 2

Multiple

• Same block structure as e.g. VGG
or GoogleNet

• Residual connection to add to
expressiveness

• Pooling/stride for dimensionality
reduction

• Batch Normalization for capacity
control

… train it at scale …
81

Putting it all together

def _make_layer(self,block,num_res_blocks,int_channels,stride):
 identity_downsample = None
 layers = []
 if stride!=1 or self.in_channels != int_channels*4:
 identity_downsample = nn.Sequential(nn.Conv2d(self.in_channels,int_channels*4,
 kernel_size=1,stride=stride),
 nn.BatchNorm2d(int_channels*4))
layers.append(ResBlock(self.in_channels,int_channels,identity_downsample,stride))
 #this expansion size will always be 4 for all the types of ResNets
 self.in_channels = int_channels*4
 for i in range(num_res_blocks-1):
 layers.append(ResBlock(self.in_channels,int_channels))
 return nn.Sequential(*layers)

82

ResNet in Pytorch

https://medium.datadriveninvestor.com/cnn-
architectures-from-scratch-c04d66ac20c2

83

Deeper is better

0

1.5

3

4.5

6

ResNet-34 50 101 152

4.494.6

5.25
5.6

ILSVRC Top-5 Error

84

ImageNet Results: ILSVRC Winners

0

7.5

15

22.5

30

2010 2011 2012 2013 2014 2015 2016 2017

3.57

6.7

11.7

16.4

25.8

28.2

ILSVRC Top-5 Error

AlexNet

ResNet

• ResNet won the champion for ILSVRC
2015

• The ResNet paper won the best paper
award from CVPR 2016 (one of the leading
CV conferences)

• Kaimin He won multiple best papers.

85

Notes

• Exploring Simple Siamese Representation
Learning. CVPR Best Paper Honorable
Mention, 2021

• Group Normalization. ECCV Best Paper
Honorable Mention, 2018

• Mask R-CNN. ICCV Best Paper Award (Marr
Prize), 2017

• Focal Loss for Dense Object Detection. ICCV
Best Student Paper Award, 2017

• Deep Residual Learning for Image Recognition.
CVPR Best Paper Award, 2016

• Single Image Haze Removal using Dark
Channel Prior. CVPR Best Paper Award, 2009

86

Papers of Kaimin He

The first
publication

from Kaimin He

• Your manager assigns a task for you: build
a system to automatically select the cover
photo for a short video on Tiktok

• Please discuss in groups how you plan to
build the system

87

Discussion

• Building blocks

– Convolution

– Stride

– Padding

– Channel

– Pooling

– Dropout

– Batch Norm

– Residual connection

• Data Augmentation

• Deeper is better — but still efficient

88

Summary

