Lecture 8 Transformer

Lei Li and Yuxiang Wang UCSB

Recap

- Tokenization for Text
 Byte-Pair Encoding
- CNN language model
 temporal convolution
- Recurrent Neural Network
- Long-short term memory

 input, forget, and output gates
- Gated recurrent units

Long-Short Term Memory (LSTM)

- Adaptively memorize short and long term information
- Input gate, forget gate, output gate

$$\begin{split} i_{t+1} &= \sigma(M_{ix}x_{t+1} + M_{ih}h_t + b_i) \\ f_{t+1} &= \sigma(M_{fx}x_{t+1} + M_{fh}h_t + b_f) \\ o_{t+1} &= \sigma(M_{ox}x_{t+1} + M_{oh}h_t + b_o) \end{split}$$

$$a_{t+1} = \tanh(M_{cx}x_{t+1} + M_{ch}h_t + b_a)$$

$$c_{t+1} = f_{t+1} \otimes c_t + i_{t+1} \otimes a_{t+1}$$

$$h_{t+1} = o_{t+1} \otimes \tanh(c_{t+1})$$

3

Hochreiter & Schmidhuber. Long Short-Term Memory, 1997 Gers et al. Learning to Forget: Continual Prediction with LSTM. 2000

Outline

- Encoder-decoder framework
- Attention
- Transformer
- Application in Machine Translation
- Pre-training Language Model
- Sequence Labelling

Encoder-Decoder Paradigm

A generic formulation for many tasks

Encoder-Decoder Paradigm

Graduate student reading Text-to-Image Generation papers on beach

Sequence-toSeq Learning

 Machine translation as directly learning a function mapping from source sequence to target sequence

Source: 天 气很 好 Decoder: LSTM

$$P(Y|X) = \prod P(y_t|y_{< t}, x)$$

Training loss: Cross-Entropy

$$l = -\sum_{n} \sum_{t} \log f_{\theta}(x_{n}, y_{n,1}, \dots, y_{n,t-1})$$

Teacher-forcing during training.

(pretend to know groundtruth for prefix)

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Limitation of RNN/LSTM

- No full context (only oneside)
 - Bidirectional LSTM encoder could alleviate
 - But still no long context
- Sequential computation in nature (encoder)
 - not possible to parallelize the computation
- Vanishing gradient

Source: 天 气很 好 Decoder: LSTM

Motivation for New Network Architecture

- Full context and parallel: use Attention in both encoder and decoder
- no recurrent

Attention

Each output token depends on input tokens differently

A context vector c represents the related source context for current predicting word. $\alpha_{mj} = \operatorname{Softmax}(D(g_m, h_{1...n})) = \frac{\exp(D(g_m, h_j))}{\sum_{k} \exp(D(g_m, h_k))}$ $c_m = \sum \alpha_{mj} h_j$ j $D(g_m, h_i) = g_m \cdot h_i$ The probability of word y_i is computed as: $p(y_m) = \text{Softmax}(W \cdot \begin{bmatrix} g_m \\ c_m \end{bmatrix} + b)$

Transformer

Vaswani et al. Attention is All You Need. 2017

Transformer Multi-head Attention

- C layers of encoder (=6)
- D layers of decoder (=6)

Scaled Dot-Product Attention

Multi-head Attention

- Instead of one vector for each token
- break into multiple heads
- each head perform attention

Head_{*i*} = Attention(
$$QW_i^Q, KW_i^K, VW_i^V$$
)

 $MultiHead(Q, K, V) = Concat(Head_1, Head_2, ..., Head_h)W^o$

Multi-head Attention

sent len x sent len

sent len x dim

=

Alammar, The Illustrated Transformer

Self-Attention for Decoder

• Maskout right side before softmax (-inf)

Feedforward Net

- FFN(x) = max(0,x · W₁ + b₁) · W₂ + b₂
- internal dimension size = 2048 (in Vaswani 2017)

Residual Connection and Layer Normalization

- Residual Connection
- Make it zero mean and unit variance within layer
- Post-norm
- Pre-norm

Embedding

- Token Embedding: 512 (base), 1024 (large)
 - Shared (tied) input and output embedding
- Positional Embedding:
 - to distinguish words in different position, Map position labels to embedding, dimension is same as Tok Emb

$$PE_{pos,2i} = \sin(\frac{pos}{1000^{2i/d}})$$
$$PE_{pos,2i+1} = \cos(\frac{pos}{1000^{2i/d}})$$

Transformer

Vaswani et al. Attention is All You Need. 2017

Training Loss

$$P(Y|X) = \prod_{n} P(y_t|y_{
Training loss: Cross-Entropy
$$l = -\sum_{n} \sum_{t} \log f_{\theta}(x_n, y_{n,1}, \dots, y_{n,t-1})$$

Teacher-forcing during training.
(pretend to know groundtruth for prefix)
(preten$$

Training

- Dropout
 - Applied to before residual
 - and to embedding, pos emb.
 - p=0.1 ~ 0.3
- Label smoothing
 - 0.1 probability assigned to non-truth
- Vocabulary:
 - En-De: 37K using BPE
 - En-Fr: 32k word-piece (similar to BPE)

Label Smoothing

- Assume $y \in \mathbb{R}^n$ is the one-hot encoding of label $y_i = \begin{cases} 1 & \text{if belongs to class } i \\ 0 & \text{otherwise} \end{cases}$
- Approximating 0/1 values with softmax is hard
- The smoothed version

 $y_i = \begin{cases} 1 - \epsilon & \text{if belongs to class } i \\ \epsilon/(n-1) & \text{otherwise} \end{cases}$

– Commonly use $\epsilon = 0.1$

Training

- Batch
 - group by approximate sentence length
 - still need shuffling
- Hardware
 - one machine with 8 GPUs (in 2017 paper)
 - base model: 100k steps (12 hours)
 - large model: 300k steps (3.5 days)
- Adam Optimizer
 - increase learning rate during warmup, then decrease

$$\eta = \frac{1}{\sqrt{d}} \min(\frac{1}{\sqrt{t}}, \frac{t}{\sqrt{t_0^3}})$$

ADAM

$$\begin{split} m_{t+1} &= \beta_1 m_t - (1 - \beta_1) \,\nabla \ell(x_t) \\ v_{t+1} &= \beta_2 v_t + (1 - \beta_2) (\nabla \ell(x_t))^2 \\ \hat{m}_{t+1} &= \frac{m_{t+1}}{1 - \beta_1^{t+1}} \\ \hat{v}_{t+1} &= \frac{v_{t+1}}{1 - \beta_2^{t+1}} \\ x_{t+1} &= x_t - \frac{\eta}{\sqrt{\hat{v}_{t+1}} + \epsilon} \hat{m}_{t+1} \end{split}$$

- A single model obtained by averaging the last 5 checkpoints, which were written at 10-minute interval (base)
- decoding length: within source length + 50

Machine Translation

Many possible translation, which is better?

SpaceX周三晚间进行了一次发射任务,将四名毫无航天经验 的业余人士送入太空轨道。

SpaceX launched a mission Wednesday night to put four amateurs with no space experience into orbit.

SpaceX conducted a launch mission on Wednesday night, sending four amateurs with no aerospace experience into space orbit.

SpaceX conducted a launch mission Wednesday night that sent four amateurs with no spaceflight experience into orbit. SpaceX carried out a launch mission on Wednesday night to put four amateurs without Aerospace experience into orbit.

BLEU

- Measuring the precision of n-grams
 - Precision of n-gram: percentage of tokens in output sentences

 $p_n = \frac{num.of.correct.token.ngram}{total.output.ngram}$

- Penalize for brevity
 - if output is too short

$$-bp = min(1, e^{1-r/c})$$

- BLEU= $bp \cdot (\prod p_i)^{\frac{1}{4}}$
- Notice BLEU is computed over the whole corpus, not on one sentence

Ref: A SpaceX rocket was launched into a space orbit Wednesday evening.

- System A: SpaceX launched a mission Wednesday evening into a space orbit.
- System B: A rocket sent SpaceX into orbit Wednesday.

Ref: A SpaceX rocket was launched into a space orbit Wednesday evening.

System A: SpaceX launched a mission Wednesday evening into a space orbit.

	Precision	$bp=e^{1-12/11}=0.91$
Unigram	9/11 	BLEU=0.91*(9/11 * 4/10 * 2/9 * 1/8) ^{1/4}
Bigram	4/10	=28.1%
Trigram	2/9	
Four-gram	1/8	31

Sequence Decoding

Autoregressive Generation

greedy decoding: output the token with max next token prob

But, this is not necessary the best

Inference

- Now already trained a model θ
- Decoding/Generation: Given an input sentence x, to generate the target sentence y that maximize the probability $P(y | x; \theta)$

$$\operatorname{argmax}_{y} P(y | x) = f_{\theta}(x, y)$$

- Two types of error
 - the most probable translation is bad \rightarrow fix the model
 - search does not find the most probably translation \rightarrow fix the search
- Most probable translation is not necessary the highest BLEU one!

Decoding

•
$$\underset{y}{\operatorname{argmax}} P(y | x) = f_{\theta}(x, y)$$

- naive solution: exhaustive search
 - too expensive
- Beam search
 - (approximate) dynamic programming

Beam Search

- start with empty S
- at each step, keep k best partial sequences
- expand them with one more forward generation
- collect new partial results and keep top-k
Beam Search (pseudocode)

```
best_scores = []
add \{[0], 0.0\} to best_scores # 0 is for beginning of sentence token
for i in 1 to max_length:
 new_seqs = PriorityQueue()
  for (candidate, s) in best_scores:
    if candidate[-1] is EOS:
        prob = all - inf
        prob[EOS] = 0
      else:
      prob = using model to take candidate and compute next token
probabilities (logp)
    pick top k scores from prob, and their index
    for each score, index in the top-k of prob:
      new_candidate = candidate.append(index)
      new score = s + score
      if not new_seqs.full():
```

Beam Search

Machine Translation using Seq2seq and Transformer

LSTM Seq2Seq w/ Attention

Jean et al. On Using Very Large Target Vocabulary for Neural Machine Translation. 2015

Performance with Model Ensemble

Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015

Results on WMT14

Madal	BL	EU	Training Co	Training Cost (FLOPs)		
WIOUEI	EN-DE	EN-DE EN-FR		EN-FR		
ByteNet [15]	23.75					
Deep-Att + PosUnk [32]		39.2		$1.0\cdot 10^{20}$		
GNMT + RL [31]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$		
ConvS2S [8]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$		
MoE [26]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot10^{21}$		
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$		
Transformer (base model)	27.3	38.1	3.3 •	10^{18}		
Transformer (big)	28.4	41.0	$2.3 \cdot$	10^{19}		

Effectiveness of Choices

- num. head-
- dim of key
- num layers
- hid dim
- ffn dim
- dropout
- pos emb

		N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$params \times 10^6$
Ών	base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
Cy					1	512	512				5.29	24.9	
	(A)				4	128	128				5.00	25.5	
orc	(Л)				16	32	32				4.91	25.8	
CI 2					32	16	16				5.01	25.4	
	(D)					16					5.16	25.1	58
	(Б)					32					5.01	25.4	60
		2									6.11	23.7	36
		4									5.19	25.3	50
		8									4.88	25.5	80
	(C)		256			32	32				5.75	24.5	28
			1024			128	128				4.66	26.0	168
				1024							5.12	25.4	53
				4096							4.75	26.2	90
								0.0			5.77	24.6	
	(D)							0.2			4.95	25.5	
h	(D)								0.0		4.67	25.3	
J									0.2		5.47	25.7	
	(E)		posi	tional er	nbeda	ling ins	stead of	f s inuso i	ds		4.92	25.7	
	big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Deep Transformer

- 30 ~ 60 encoder
- 12 decoder
- dynamic linear combination of layers (DLCL)
 - or. deeply supervised
 - combine output from all layers

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Model		Param.	Batch $(\times 4096)$	Updates	[†] Times	BLEU	Δ
Vasw	Vaswani et al. (2017) (Base)		1	1	reference	27.3	_
Bapna et	al. (2018)-deep (Base, 16L)	137M	-	-	-	28.0	-
Vasv	vani et al. (2017) (Big)		1	3	$-3x^{3x^{}}$	$-\bar{2}8.4$	
Che	en et al. (2018a) (Big)	379M	16	[†] 0.075	1.2x	28.5	-
Н	e et al. (2018) (Big)	†210M	1	-	-	29.0	-
Sha	aw et al. (2018) (Big)	[†] 210M	1	3	3x	29.2	-
Do	Dou et al. (2018) (Big)		1	-	-	29.2	-
0	Ott et al. (2018) (Big)		14	0.25	3.5x	29.3	-
	Transformer (Base)	62M	1	1	1x	27.5	reference
	Transformer (Big)	211M	1	3	3x	28.8	+1.3
post-norm	Transformer-deep (Base, 20L)	106M	2	0.5	1x	failed	failed
	DLCL (Base)	- 62M	1	1	<u>1</u> x	$\bar{2}7.6$	$+\bar{0}.\bar{1}$
	DLCL-deep (Base, 25L)	121M	2	0.5	1x	29.2	+1.7
	Transformer (Base)	62M	1	1	1 x	27.1	reference
	Transformer (Big)	211M	1	3	3x	28.7	+1.6
pre-norm	Transformer-deep (Base, 20L)	106M	2	0.5	1x	28.9	+1.8
	DLCL (Base)	<u> </u>	1	1	<u>1</u> x	27.3	+0.2
	DLCL-deep (Base, 30L)	137M	2	0.5	1x	29.3	+2.2

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Model	Param.	newstest17	newstest18	$\Delta_{avg.}$
Wang et al. (2018a) (post-norm, Base)	102.1M	25.9	-	-
pre-norm Transformer (Base)	102.1M	25.8	25.9	reference
pre-norm Transformer (Big)	292.4M	26.4	27.0	+0.9
pre-norm DLCL-deep (Base, 25L)	161.5M	26.7	27.1	+1.0
pre-norm DLCL-deep (Base, 30L)	177.2M	26.9	27.4	+1.3

Table 4: BLEU scores [%] on WMT'18 Chinese-English translation.

Wang et al. Learning Deep Transformer Models for Machine Translation, 2019.

Hot Topics in MT

- Parallel Decoding (e.g. NAT, GLAT, DAT,...)
- Low-resource MT
- Unsupervised MT
- Multilingual NMT, Zero-shot NMT
- Speech-to-text translation
 - (Offline) ST
 - Streaming ST

Pre-training Language Models

Contextual Representations

 Problem: Word embeddings are applied in a context free manner open a bank account on the river bank

[0.3, 0.2, -0.8, ...]

 Solution: Train contextual representations on text corpus [0.9, -0.2, 1.6, ...] [-1.9, -0.4, 0.1, ...]
 open a bank account on the river bank

Bidirectional Context

 How to learn a "deeply bidirectional" model? What happens if we just replace an LSTM with a transformer?

ELMo (Language Modeling) visited Madagyesterday.

BERT visited Madag.yesterday

John visited Madagascar yesterda

Transformer LMs have to be "onesided" (only attend to previous tokens), not what we want

Masked Language Modeling

- How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling
- BERT formula: take a chunk of text, predict 15% of the tokens
 - For 80% (of the 15%), replace the input token with [MASK]
 - For 10%, replace w/ random
 - For 10%, keep same (why?)

John visited [MASK] yesterday John visited of yesterday John visited Madagascar yesterday

Next "Sentence" Prediction

- Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next
- BERT objective: masked LM (CE) + next sentence prediction

NotNext	Madagascar	enjoyed	like	
↑	↑	↑	Ť	
	Transf	ormer		

		7	Fransformer				
[CLS] John	visited	[MASK]	yesterday	and	really	all it	[SEP
I like Madon	na.						

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019

BERT Architecture

- BERT Base: 12 Transformer encoder layers, 768-dim, 12 heads. Total params = 110M
- BERT Large: 24 layers, 1024dim, 16 heads. Total params = 340M
- Vocabulary: 30k wordpiece
- Positional embeddings and segment embeddings
- Data: Wikipedia (2.5B words + BookCorpus (800M words)

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019

Unified model across NLP Tasks

- CLS token is used to provide classification decisions
- Sentence pair tasks (entailment): feed both sentences into BERT
- BERT can also do tagging by predicting tags at each word piece

What can BERT do?

[CLS] A boy plays in the snow [SEP] A boy is outside MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

- How does BERT model this sentence pair stuff?
- Transformers can capture interactions between the two sentences, even though the NSP objective doesn't really cause this to happen

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019

What can BERT NOT do?

- Does not give sentence probability
- BERT cannot generate text (at least not in an obvious way)
 - Not an autoregressive model, can do weird things like stick a [MASK] at the end of a string, fill in the mask, and repeat
- Masked language models are intended to be used primarily for "understanding/ analysis" tasks (NLU)

Fine-tuning BERT

Fine-tune for 1-3 epochs, batch size 2-32, learning rate
 2e-5 - 5e-5
 Large changes to weights up

(b) Single Sentence Classification Tasks: SST-2, CoLA

- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
 Smaller changes to weights
- Smaller changes to weights lower down in the

transformer

Small LR and short fine-tuning schedule mean weights don't

57

 change much
 More complex "triangular learning rate" schemes
 exist

Fine-tuning BERT

Pretraining	Adaptation	NER CoNLL 2003	SA SST-2	Nat. lan MNLI	g. inference SICK-E	Semantic SICK-R	textual si MRPC	milarity STS-B
Skip-thoughts	*	-	81.8	62.9	-	86.6	75.8	71.8
	*	91.7	91.8	79.6	86.3	86.1	76.0	75.9
ELMo	٠	91.9	91.2	76.4	83.3	83.3	74.7	75.5
	∆=∳-ॐ	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4
	*	92.2	93.0	84.6	84.8	86.4	78.1	82.9
BERT-base	٠	92.4	93.5	84.6	85.8	88.7	84.8	87.1
	∆=∳-ॐ	0.2	0.5	0.0	1.0	2.3	6.7	4.2

 BERT is typically better if the whole network is finetuned, unlike ELMo

> Peters, Ruder, Smith. To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks (2019)

Evaluation: GLUE

Corpus	Train	Test	Task	Metrics	Domain					
	Single-Sentence Tasks									
CoLA SST-2	8.5k 67k	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews					
			Similarity and	l Paraphrase Tasks						
MRPC STS-B QQP	3.7k 7k 364k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions					
			Infere	ence Tasks						
MNLI QNLI RTE WNLI	393k 105k 2.5k 634	20k 5.4k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia news, Wikipedia fiction books					

Wang et al. GLUE. 2019

Results

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- Huge improvements over prior work (even compared to ELMo)
- Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019

Improving BERT

 Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them epoch 2 epoch 1

... John visited Madagascar yesterday ...

Whole word masking: don't mask out parts of words

... _John _visited _Mada gas car yesterday ...

Liu et al. (2019) 61

RoBERTa

- "Robustly optimized BERT" incorporating some of these tricks
- 160GB of data instead of 16 GB

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95 .3
+ additional data (§3.2)	160 GB	8K	100K	94.0/87.7	89.3	95 .6
+ pretrain longer	160 GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160 GB	8K	500K	94.6/89.4	90.2	96.4
$\frac{\text{BERT}_{\text{LARGE}}}{\text{with BOOKS} + \text{WIKI}}$	1 3GB	256	1 M	90.9/81.8	86.6	93.7

New training + more data = better performance

Liu et al. (2019) 62

BERT/MLMs

- There are lots of ways to train these models!
- Key factors:
 - Big enough model
 - Big enough data
 - Well-designed "self-supervised" objective (something like language modeling). Needs to be a hard enough problem!

Other Pre-trained LM

- GPT (GPT-2, GPT-3)
 - Transformer decoder only
- T5
 - Transformer encoder-decoder
 - with many tasks
- BART
 - Transformer encoder-decoder, with denoising training

Sequence Labelling

Understanding Query Intention

Noodle house near Santa Barbara [Keyword] [Location]

How to go from <u>Santa Barbara</u> to <u>Log Angeles</u> ? [Origin] [Destination]

Sequence Labelling

Named entity recognition

date Location In <u>April 1775</u> fighting broke out between <u>Massachusetts</u> militia units and <u>British</u> regulars at <u>Lexington</u> and <u>Concord</u>. <u>Geo-Political</u>

Sequence Labelling

- Named entity recognition In April 1775 fighting broke out between Massachusetts militia units and British regulars at Lexington and Concord.
- Semantic role labeling

The excess supply pushed gasoline prices down in that period . subject verb object

• Question Answering: subject parsing Who created Harry Potter ?

Represent the Output Labels

• BIO scheme

O O B-GPE I-GPE O B-PER I-PER O The governor of Santa Barbara is Cathy Murillo . 1640 897 45 1890 78 943 3521 782 533

RNN/LSTM for Sequence Labelling

Bi-LSTM

BERT for Seq-Labeling

Vision Transformer

- Key idea:
 - split image into patches
 - treat each patch as a vector
 - Feed to Transformer encoder (similar to BERT)
 - supervised training with class labels

Summary

- Key components in Transformer
 - Positional Embedding (to distinguish tokens at different pos)
 - Multihead attention
 - Residual connection
 - layer norm
- Transformer is effective for machine translation, and many other tasks
- Pre-training: using unlabeled raw data to train a model
- BERT: masked pre-training
- Transformer code: <u>https://nlp.seas.harvard.edu/</u> 2018/04/03/attention.html

Next Up

Probabilistic Graphical Models

Discussion Topic

- Building a voice dialog interface for Baidu/Google Map
- Voice input
 - use ASR sdk to output transcript (80% acc)
- Queries belong to 3 domains
 - Ibs_poi, Ibs_route, Ibs_nav
- Semantic fields for each domain
 - Different fields for domain
 - Intent (search, open)
 - Keywords, origin, destination, etc.
- 8 million query logs to start with

LBS query intention parsing

- 南宁到防城港白浪滩 Domain: lbs_route
- Origin: 南宁

- from Nanning to Fangchenggang white beach
- Destination: 防城港白浪滩
- 武汉理工大学附近的拉面馆 handmade noodle house Domain: lbs_poi near Wuhan Tech University
- Keywords:拉面馆