291K Machine Learning

Lecture 12 Undirected Graphical Models

Lei Li and Yu-xiang Wang UCSB

Part of slides borrowed from Alex Smola

Recap

- Gaussian Mixture Models
- Expectation-Maximization
- Linear Dynamical Systems
 - Forward-backward algorithm (Kalman filter, Kalman smoothing)

Understanding Query Intent

Building a conversational assistant for Google Map?

Noodle house near Santa Barbara [Keyword] [Location]

How to go from <u>Santa Barbara</u> to <u>Log Angeles</u> ? [Origin] [Destination]

Sequence Labelling problem

Label Independent?

- Are y_i y_j independent
 given x₁, ..., x_m?
- But neighboring labels are correlated

How to go from **Santa Barbara** to Log Angeles ?

Markov Random Fields

 Using undirected graphs to represent probability distributions of random variables

 \setminus Normalizing term, also partition function

MRF

 A Markov Random Field is a probability distribution p over variables x₁...x_n defined by an undirected graph G, s.t.

$$p(x_1, \dots x_n) = \frac{1}{Z} \prod_{c \in C(G)} \phi_c(x_c)$$

7

- *Z* is the partition function (normalizing constant)
- C: max-cliques

Independence in MRF

Key Concept Observing nodes makes remainder conditionally independent

Example

ij

Image Denoising

Li&Huttenlocher, ECCV'08

Hammersley-Clifford Theorem

- Set of distributions that factorize according to the graph – F
- Set of distributions that respect conditional independencies implied by graphseparation – I
- F 🗲 🔶 |

Directed vs. Undirected

- Causal description
- Normalization automatic
- Intuitive
- Requires knowledge of dependencies
- Conditional independence tricky (dseparation)

- Noncausal description (correlation only)
- Intuitive
- Easy modeling
- Normalization difficult
- Conditional independence easy to read off (graph connectivity)

Exponential Family

Density function

$$p(x;\theta) = \exp\left(\langle \phi(x), \theta \rangle - g(\theta)\right)$$

where $g(\theta) = \log \sum_{x'} \exp\left(\langle \phi(x'), \theta \rangle\right)$

Log partition function generates cumulants

$$\partial_{\theta} g(\theta) = \mathbf{E} \left[\phi(x) \right]$$

 $\partial_{\theta}^2 g(\theta) = \operatorname{Var} \left[\phi(x) \right]$

• g is convex (second derivative is p.s.d.)

Log Partition Function

 $p(x|\theta) = e^{\langle \phi(x), \theta \rangle - g(\theta)}$

 $g(\theta) = \log \sum_{x} e^{\langle \phi(x), \theta \rangle}$

Unconditional model

 $\partial_{\theta} g(\theta) = rac{\sum_{x} \phi(x) e^{\langle \phi(x), \theta \rangle}}{\sum_{x} e^{\langle \phi(x), \theta \rangle}} =$

$$=\sum_{x}\phi(x)e^{\langle\phi(x),\theta
angle-g(heta)}$$

$$\begin{split} p(y|\theta,x) &= e^{\langle \phi(x,y),\theta \rangle - g(\theta|x)} & \text{Conditional model} \\ g(\theta|x) &= \log \sum_{y} e^{\langle \phi(x,y),\theta \rangle} \\ \partial_{\theta}g(\theta|x) &= \frac{\sum_{y} \phi(x,y) e^{\langle \phi(x,y),\theta \rangle}}{\sum_{y} e^{\langle \phi(x,y),\theta \rangle}} = \sum_{y} \phi(x,y) e^{\langle \phi(x,y),\theta \rangle - g(\theta|x)} \end{split}$$

Estimation

- Conditional log-likelihood $\log p(y|x;\theta) = \langle \phi(x,y),\theta\rangle g(\theta|x)$
- Log-posterior (Gaussian Prior)

$$\log p(\theta|X,Y) = \sum_{i} \log(y_i|x_i;\theta) + \log p(\theta) + \text{const.}$$
$$= \left\langle \sum_{i} \phi(x_i,y_i), \theta \right\rangle - \sum_{i} g(\theta|x_i) - \frac{1}{2\sigma^2} \|\theta\|^2 + \text{const.}$$

First order optimality conditions

maxent

model

$$\sum_{i} \phi(x_i, y_i) = \sum_{i} \mathbf{E}_{y|x_i} \left[\phi(x_i, y) \right] + \frac{1}{\sigma^2} \theta$$

expensive

prio

Exponential Clique Decomposition

$$p(x) = \prod_{c} \psi_c(x_c)$$

Theorem: Clique decomposition holds in sufficient statistics $\phi(x) = (\dots, \phi_c(x_c), \dots)$ and $\langle \phi(x), \theta \rangle = \sum_c \langle \phi_c(x_c), \theta_c \rangle$ Corollary: we only need expectations on cliques $\mathbf{E}_x[\phi(x)] = (\dots, \mathbf{E}_{x_c} [\phi_c(x_c)], \dots)$

Conditional Random Fields

Conditional Random Fields

- Compute distribution over marginal and adjacent labels
- Take conditional expectations
- Take update step (batch or online)
- More general techniques for computing normalization via message passing ...

Combining NN and CRF

BiLSTM+CRF

Training BERT-CRF

- Labels: K
- A: transition matrix (K x K)
- Using dynamic programming to compute the log-partition function

Decoding

- Forward pass to compute last hidden layer from BERT
- Using Viterbi algorithm to compute max prob. label seq

 Building query intent parsing for Baidu Map

Next up

- Approximate Inference
 - Variational Inference
 - Sampling