Lecture 14 Monte Carlo Sampling

Lei Li and Yuxiang Wang UCSB

Why MC Sampling?

- Goal: Generate samples from a distribution p(x)
- Important in physics, economics, statistics, and CS.

Application of MC

- Bayesian inference:
 - Compute Expectation

$$E[f(x)] = \int f(x)p(x)dx$$

– Used in EM alg.

Bayesian optimization

_ find optimal: $\arg \max f(x)$

X

Monte Carlo Principle

- Goal: to estimate $E[f(x)] = \int f(x)p(x)dx$
- sample x1, ... xN (iid) from a distribution p(x), $1 \frac{N}{N}$

• compute
$$\hat{s} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

• By strong law of large numbers

$$\hat{s} \xrightarrow[N \to \infty]{a.s.} E[f(x)]$$

The estimate is unbiased

 $E[\hat{s}] = E[f(x)]$ • $Var[\hat{s}] = \frac{Var(f)}{N} = O(\frac{1}{N})$

- p(x) may not be possible to efficiently sample from
 - e.g. Cauchy distribution
 - a posterior distribution p(z|x) without closed form
 - p(x) may be un-normalized
- The samples might not be i.i.d.
 - as in MCMC

MC Sampling methods

- Rejection sampling
- Importance sampling
- Markov chain Monte Carlo (MCMC)
 - Metropolis-Hastings sampling
 - Gibbs sampling
 - Hamiltonian Monte Carlo (HMC)
 - Langevin Monte Carlo
- Sequential Monte Carlo
 - Particle filter

Rejection Sampling

- Instead of directly sample from p(x), sample from q(x)
- Repeat:
 - 1. sample $x_i \sim q(x)$ 2. sample $u \sim U[0,1]$ 3. if $u < \frac{p(x_i)}{Mq(x_i)}$, then accept x_i , otherwise reject. (M is constant)

Limitation of Rejection Sampling

- Need to compute the upper bound of ratio p(x)/q(x), not always possible
- Acceptance rate is small if M is large
- Acceptance rate exponentially small when dimensionality is large.

Importance Sampling

Sampling from proposal distribution q(x)

• Compute importance weight $w(x) = \frac{p(x)}{q(x)}$

• Estimate
$$\hat{s}_{IS} = \frac{1}{N} \sum_{i=1}^{N} w(x_i) f(x_i)$$

Importance Sampling

- p(x) can be un-normalized, need reweighing ==> Sampling Importance Resampling
- proposal q(x) must be non-zero when p(x)>0
- Theorem: $E[\hat{s}_{IS}] = E[f(x)]$ (unbiased) $\hat{s}_{IS} \xrightarrow[N \to \infty]{a.s.} E[f(x)] = \int f(x)p(x)dx$

How to choose proposal for Importance Sampling?

 Find one that minimizes the variance of the estimator

$$Var_{q(x)}[\hat{s}] = E_{q(x)}[f(x)^2 w((x)^2] - E[f(x)]^2$$

- Theorem:
 - the variance is minimal when choosing the following optimal importance distribution

$$q^*(x) = \frac{|f(x)| p(x)}{\int |f(x)| p(x) dx}$$

not always possible to directly sample from.

Sampling Importance Re-sampling

- Sampling $x_1 \dots x_N$ from proposal distribution q(x)
- Compute importance weight $w(x) = \frac{p(x)}{q(x)}$ • Compute normalized weight $\hat{w}_i = \frac{w_i}{\sum_j w_j}$
- Sampling $\tilde{x}_1 \dots \tilde{x}_N$ with replacement from $\{x_1 \dots x_N\}$ with probability $\{\hat{w}_i\}$

Markov chain Monte Carlo

Markov chain

• Markov chain $p(x_{n+1} | x_1 ... x_n) = p(x_{n+1} | x_n)$

- Transition probability: $T(x_n, x_{n+1}) = p(x_{n+1} | x_n)$
- A distribution h(x) is **stationary** if $h(x) = \int T(x', x)h(x')dx'$

Example

State transition graph (probabilistic finite state machine) 0.1 1.0 Transition prob. $T = \begin{bmatrix} 0 & 1.0 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$ **S**₂ 0.4 0.9 0.6 S_3

Detailed Balance and Reversible chain

• Markov chain $p(x_{n+1} | x_1 ... x_n) = p(x_{n+1} | x_n)$

 Sufficient condition (but not necessary) for stationary is *detailed balance* property

$$h(x)T(x,x') = h(x')T(x',x)$$

 A Markov chain satisfying detailed balance property is reversible

Example of Stationary distribution

$$T = \begin{bmatrix} 0 & 1.0 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

$$(0.22, 0.41, 0.37) \begin{bmatrix} 0 & 1.0 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix} = (0.22, 0.41, 0.37)$$

Markov chain Monte Carlo

- Main idea:
 - construct a Markov chain, so that its stationary distribution is our target distribution
 - starting from some initial samples, keep updating the samples from Markov chain according to transition prob.
 - as we sample sufficiently large steps, the samples will converge to stationary distribution (under certain condition, e.g. ergodic)

Metropolis-Hastings Algorithm

- 1. start from an initial sample x0,
- 2. Iterate:

(1) sample x_{new} from a proposal $q(x \mid x_t)$

(2) compute acceptance ratio

$$A(x_{new}, x_n) = \min\left(1, \frac{p(x_{new})q(x_n | x_{new})}{p(x_n)q(x_{new} | x_n)}\right)$$

(3) sample $u \sim U(0,1)$

(4) if $u < A(x_{new}, x_n)$, (accept) $x_{n+1} \leftarrow x_{new}$ (5) otherwise $x_{n+1} = x_n$ (reject)

Correctness of MH algorithm

- Theorem:
 - The transition kernel of the Markov chain defined by MH algorithm satisfy detailed balance condition.
 - Therefore p(x) is the stationary distribution of this Markov chain
- What is the transition kernel?

$$T(x, y) = q(y | x)A(y, x) + \delta(x = y)(1 - r(x))$$
$$r(x) = \int q(y | x)A(y, x)dy$$

Example: sampling Chi-squared distribution

Example 2: Mixture of Gaussian

Example 2: Mixture of Gaussian

Gibbs sampling

- Special case of MCMC
- Sampling two variables x1, x2,
- if we choose proposal distribution to be $q(x_1^{new} | x_1^{old}, x_2^{old}) = p(x_1 | x_2^{old})$ $q(x_2^{new} | x_1^{old}, x_2^{old}) = p(x_2 | x_1^{old})$
- Much easier to implement if the conditional probability can be calculated.
- In practice, use collapsed Gibbs sampling

More advanced MCMC

- Reversible jump MCMC
 - if we have varying numbers of variables to sample (i.e. the dimensionality changes)
 - see [Peter Green, 1995]
- Hamiltonian Monte Carlo
 - use gradient information to perform deterministic sampling over one sampling pass

Monte Carlo EM

- Iterate until convergence
 - 1. E step: use X, current θ , and a proposal distribution q, to sample from $p(z_{1..N} | x_{1..N}; \theta)$
 - 2. M step, maximization over samples $\theta \leftarrow \underset{\theta}{\operatorname{argmax}} E_{p(z_{1..N}|x_{1..N};\theta_{old})} \log p(x_n, z_n | \theta)$

Sequential Monte Carlo

General State Space Model

Goal:

To have an online Bayesian algorithm that can track $p(\theta | y_1..y_T)$

Challenge:

Simultaneous estimation of static parameters and dynamic variables for nonlinear dynamics and nonGaussian noises 29

An (extremely) Simplified Example

$$x_t = \sin(\theta x_{t-1}) + v_t, \ v_t \sim N(0, \sigma^2)$$
$$y_t = x_t + w_t, \ w_t \sim N(0, \sigma_{obs}^2)$$

Observation: $y_1...y_T$ To estimate θ $p(\theta | y_1..y_T)$

(Sequential importance sampling with re-sampling)

• At time tick t=1,

- Sample $x_1 \sim p(x_1)$, get N particles x_1^i .

- At time tick t=1,
 - Sample $x_1 \sim p(x_1)$, get N particles x_1^i .
 - Weight each particle with $w^i = p(y_1 | x_1^i)$
 - Resample x₁ⁱ w.r.t. weight wⁱ

- At time tick t=1,
 - Sample $x_1 \sim p(x_1)$, get N particles x_1^i .
 - Weight each particle with $w^i = p(y_1 | x_1^i)$
 - Resample x₁ⁱ w.r.t. weight wⁱ
- At time tick t > 1,
 - Sample $x_t \sim f_{\theta}(x_t | x_{t-1})$, get N particles

- At time tick t=1,
 - Sample $x_1 \sim p(x_1)$, get N particles x_1^i .
 - Weight each particle with $w^i = p(y_1 | x_1^i)$
 - Resample x₁ⁱ w.r.t. weight wⁱ
- At time tick t > 1,
 - Sample $x_t \sim f_{\theta}(x_t | x_{t-1})$, get N particles
 - Weight each particle with $w^i = p(y_t | x_t^i)$
 - Resample w.r.t. weight wⁱ

Particle Filter does not work for static variable (parameter)

Summary

- Monte Carlo sampling is very useful if the density is hard to compute
- MCMC: construct a Markov chain with the target distribution being its stationary distribution
- Metropolis-Hastings algorithm

Convex Optimization