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• Goal: Generate samples from a distribution 
p(x) 

• Important in physics, economics, statistics, 
and CS.
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Why MC Sampling?



• Bayesian inference:  
– Compute Expectation 

 

– Used in EM alg.  
• Bayesian optimization 

– find optimal: 

E[ f(x)] = ∫ f(x)p(x)dx

arg max
x

f(x)
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Application of MC



• Goal: to estimate  

• sample x1, … xN (iid) from a distribution p(x),  

• compute  

• By strong law of large numbers 

E[ f(x)] = ∫ f(x)p(x)dx

̂s =
1
N

N

∑
i=1

f(xi)

̂s a.s.

N→∞
E[ f(x)]
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Monte Carlo Principle



• The estimate is unbiased 
 

•

E[ ̂s] = E[ f(x)]

Var[ ̂s] =
Var( f )

N
= O(

1
N

)
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Theorem



• p(x) may not be possible to efficiently 
sample from  
– e.g. Cauchy distribution 
– a posterior distribution p(z|x) without closed 

form 
– p(x) may be un-normalized 

• The samples might not be i.i.d. 
• as in MCMC
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Challenges



• Rejection sampling 
• Importance sampling 
• Markov chain Monte Carlo (MCMC) 

– Metropolis-Hastings sampling 
– Gibbs sampling 
– Hamiltonian Monte Carlo (HMC) 
– Langevin Monte Carlo 

• Sequential Monte Carlo 
– Particle filter 

7

MC Sampling methods



• Instead of directly sample from p(x), 
sample from q(x) 

• Repeat: 
1. sample  

2. sample  

3. if , then accept , otherwise 

reject. (M is constant)

xi ∼ q(x)
u ∼ U[0,1]

u <
p(xi)

Mq(xi)
xi
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Rejection Sampling

Mq(x)

p(x)

x



• Need to compute the upper bound of ratio 
p(x)/q(x), not always possible 

• Acceptance rate is small if M is large 
• Acceptance rate exponentially small when 

dimensionality is large.
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Limitation of Rejection Sampling



• Sampling from proposal distribution q(x) 

• Compute importance weight  

• Estimate 

w(x) =
p(x)
q(x)

̂sIS =
1
N

N

∑
i=1

w(xi)f(xi)
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Importance Sampling



• p(x) can be un-normalized, need 
reweighing ==> Sampling Importance Re-
sampling 

• proposal q(x) must be non-zero when 
p(x)>0 

• Theorem:   (unbiased) E[ ̂sIS] = E[ f(x)]

̂sIS
a.s.

N→∞
E[ f(x)] = ∫ f(x)p(x)dx
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Importance Sampling



• Find one that minimizes the variance of the 
estimator 

 

• Theorem: 
• the variance is minimal when choosing the 

following optimal importance distribution 

 

• not always possible to directly sample from.

Varq(x)[ ̂s] = Eq(x)[ f(x)2w((x)2] − E[ f(x)]2

q*(x) =
| f(x) |p(x)

∫ | f(x) |p(x)dx
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How to choose proposal for 
Importance Sampling?



• Sampling  from proposal distribution 
q(x) 

• Compute importance weight  

•
Compute normalized weight  

• Sampling  with replacement from 
 with probability 

x1…xN

w(x) =
p(x)
q(x)

ŵi =
wi

∑j wj

x̃1…x̃N
{x1…xN} {ŵi}
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Sampling Importance Re-sampling



Markov chain Monte Carlo



• Markov chain  

• Transition probability: 
 

• A distribution  is stationary if 

p(xn+1 |x1…xn) = p(xn+1 |xn)

T(xn, xn+1) = p(xn+1 |xn)
h(x)

h(x) = ∫ T(x′ , x)h(x′ )dx′ 
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Markov chain

x1 x2 x3 x4
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Example

s1 s2

s3

1.0 0.1

0.9
0.6

0.4 T =
0 1.0 0
0 0.1 0.9

0.6 0.4 0

State transition graph 
(probabilistic finite state machine)

Transition prob.



• Markov chain  

• Sufficient condition (but not necessary) for 
stationary is detailed balance property 

 
• A Markov chain satisfying detailed balance 

property is reversible

p(xn+1 |x1…xn) = p(xn+1 |xn)

h(x)T(x, x′ ) = h(x′ )T(x′ , x)
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Detailed Balance and Reversible chain

x1 x2 x3 x4



• (0.22, 0.41, 0.37)
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Example of Stationary distribution

T =
0 1.0 0
0 0.1 0.9

0.6 0.4 0

(0.22,0.41,0.37)
0 1.0 0
0 0.1 0.9

0.6 0.4 0
= (0.22,0.41,0.37)



• Main idea:  
– construct a Markov chain, so that its stationary 

distribution is our target distribution 
– starting from some initial samples, keep 

updating the samples from Markov chain 
according to transition prob.  

– as we sample sufficiently large steps, the 
samples will converge to stationary distribution 
(under certain condition, e.g. ergodic)

19

Markov chain Monte Carlo

x1 x2 x3 x4



1. start from an initial sample x0, 
2. Iterate: 

(1) sample  from a proposal  
(2) compute acceptance ratio 

 

(3) sample  
(4) , (accept)  

(5) otherwise  (reject)

xnew q(x |xt)

A(xnew, xn) = min (1,
p(xnew)q(xn |xnew)
p(xn)q(xnew |xn) )

u ∼ U(0,1)
 if u < A(xnew, xn) xn+1 ← xnew

xn+1 = xn
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Metropolis-Hastings Algorithm



• Theorem: 
– The transition kernel of the Markov chain defined 

by MH algorithm satisfy detailed balance condition.  
– Therefore p(x) is the stationary distribution of this 

Markov chain 
• What is the transition kernel? 

 T(x, y) = q(y |x)A(y, x) + δ(x = y)(1 − r(x))

r(x) = ∫ q(y |x)A(y, x)dy
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Correctness of MH algorithm
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Example: sampling Chi-squared 
distribution

proposal: N(x, 0.5^2)

trace plot, to examine the behavior
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Example 2: Mixture of Gaussian

proposal: N(x, 1.0)
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Example 2: Mixture of Gaussian

proposal: N(x, 0.2^2)



• Special case of MCMC 
• Sampling two variables x1, x2,  
• if we choose proposal distribution to be 

 
• Much easier to implement if the conditional 

probability can be calculated.  
• In practice, use collapsed Gibbs sampling

q(xnew
1 |xold

1 , xold
2 ) = p(x1 |xold

2 )
q(xnew

2 |xold
1 , xold

2 ) = p(x2 |xold
1 )
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Gibbs sampling



• Reversible jump MCMC 
– if we have varying numbers of variables to 

sample (i.e. the dimensionality changes) 
– see [Peter Green, 1995] 

• Hamiltonian Monte Carlo 
– use gradient information to perform 

deterministic sampling over one sampling 
pass
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More advanced MCMC



• Iterate until convergence 
1. E step: use X, current , and a proposal 

distribution q, to sample from 
 

2. M step, maximization over samples

𝜃

𝑝(𝑧1..𝑁 |𝑥1..𝑁; 𝜃)

𝜃 ← argmax
𝜃

𝐸𝑝(𝑧1..𝑁|𝑥1..𝑁;𝜃𝑜𝑙𝑑)log𝑝(𝑥𝑛,  𝑧𝑛 |𝜃)
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Monte Carlo EM



Sequential Monte Carlo
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General State Space Model
Goal: 
To have an online 
Bayesian algorithm that 
can track 
p(θ|y1..yT) 

Challenge: 
Simultaneous estimation 
of static parameters and 
dynamic variables for 
nonlinear dynamics and 
nonGaussian noises

noise
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An (extremely) Simplified Example

Observation: y1…yT 

To estimate θ 
p(θ|y1..yT)



• At time tick t=1, 
– Sample x1 ~ p(x1), get N particles x1

i.

particles

p(x)

x
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Particle filter  
(Sequential importance sampling with re-sampling)



• At time tick t=1, 
– Sample x1 ~ p(x1), get N particles x1

i. 

– Weight each particle with wi = p(y1 | x1
i) 

– Resample x1
i w.r.t. weight wi
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Particle filter

resample



• At time tick t=1, 
– Sample x1 ~ p(x1), get N particles x1

i. 

– Weight each particle with wi = p(y1 | x1
i) 

– Resample x1
i w.r.t. weight wi 

• At time tick t > 1, 
– Sample xt ~ fθ(xt |xt-1), get N particles 
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Particle filter



• At time tick t=1, 
– Sample x1 ~ p(x1), get N particles x1

i. 

– Weight each particle with wi = p(y1 | x1
i) 

– Resample x1
i w.r.t. weight wi 

• At time tick t > 1, 
– Sample xt ~ fθ(xt |xt-1), get N particles  

– Weight each particle with wi = p(yt | xt
i) 

– Resample w.r.t. weight wi
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Particle filter
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Particle Filter does not work for static 
variable (parameter)

Mean of particles (θ)

time

true value

estimated



• Monte Carlo sampling is very useful if the 
density is hard to compute 

• MCMC: construct a Markov chain with the 
target distribution being its stationary 
distribution 

• Metropolis-Hastings algorithm
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Summary



• Convex Optimization
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Next Up


