Lecture 15
Convex Optimization

Lei Li, Yu-Xiang Wang

(some slides from my convex optimization class,
originally taught by Ryan Tibshirani in CMU)



Announcements

 Modification to the schedule

* Two lectures on statistical learning theory replaced by
Reinforcement Learning.

e Now three lectures on RL.

 No more lectures on theory of deep learning (because it
depends on statistical learning theory)



Plan today

 Review of what we have learned so far

* An optimization view to ML
* Modeling with optimization

e Convex optimization basics
* Convex Set
* Convex functions
 Examples



Review: We have learned a lot of
concepts in ML from this course

e MLP

* Transformers
 VAE

e LSTM

* ConvNet

* Decision Trees

* Linear classifier

* Linear regression
* Logistic regression
* K-means

e Gaussian Mixture
Models

PCA
Probabilistic PCA
CRF

Linear dynamical systems
Directed Graphical Model

Undirected graphical
models

Gradient descent
Kalman filter

Expectation
Maximization

* Regularization
e Loss function

Risk

e Empirical risk

Sample complexity
lteration complexity
Holdout

Cross Validation



Review: machine learning basics

* Data (1, Y1), ooy (Tpy Ypn) € X X Y

e Hypothesis h: X — )Y from H

* Loss function f(h, (xa y))

* Learning algorithms: How to solve ERM or
empirical risks minimization.



Review: Modeling --- formulate a
problem to be solved by ML

* Feature engineering

* Discriminative modeling: specifying hypothesis
class

* Generative modeling: specifying the joint
distribution



Quiz: Are these ML models
discriminative or generative?

© MLP * PCA

" Transformers + Probablistic PCA

T VAL CRF

* LSTM

e ConvNet * Linear dynamical systems
* Decision Trees * Directed Graphical Model
* Linear classifier e Undirected graphical

* Linear regression models

* Logistic regression
* K-means

* Gaussian Mixture
Models



Review: Discriminative vs
Generative Modeling

- Discriminative / deterministic Generative / Probabilistic

Modeling
Learning

Inference

Does this unification work for unsupervised learning too?

Regularization vs Prior?



One way of another, we are dealing
with optimization problems at the
end of the day.

* What we learned so far is mostly about how we
translate conceptual ideas into a rigorous
optimization problem.

translate I'? I into P : min f(x)
- x€D

Conceptual idea Optimization problem

* Two thoughts:
1. How to solve these optimization problems?
2. Why not model with optimization directly?



Why not directly use off-the-shelf
optimization packages (e.g.,
cplex,gurobi, scibv.ontimize )?

P . géil]% f(x)

You need to know whether they are applicable.
You need to know whether they are guaranteed to find the solutions.

You need to know how quickly they find the solution, so as to set hyperparameters.

1. Different algorithms can perform better or worse for different
problems P (sometimes drastically so)

2. Studying P through an optimization lens can actually give you
a deeper understanding of the statistical procedure

3. Knowledge of optimization can actually help you create a new
P that is even more interesting/useful



Advantages of modeling with

optimization

* No need to deal with probabilities / MLE /
conditional independences

* Directly optimize quantities of interest

* Encode structures /domain knowledge / design
choices as part of the optimization problem
* Design loss functions
* Design regularization functions



Example: Image denoising

The 2d fused lasso or 2d total variation denoising problem:

n

o1
min 52( +>\Z 60; — 0]
1=1 ( ,] EE
This fits a piecewise constant function over an image, given data
yi, t =1,...,n at pixels. Here A > 0 is a tuning parameter
True image Data Solution

12



Example: Housing price prediction
OoNn a map

* Intuition:

* Maybe neighbors on the
map are likely to have
similar housing prices?

https://www.visualcapitalist.com/interactive-map-price-per-

square-foot-us-housing-markets/
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https://www.visualcapitalist.com/interactive-map-price-per-square-foot-us-housing-markets/

Example: Movie Recommendation
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xample: Rob

ust PCA

(a) Cast shadow and attached shadow are recovered. Region of cast
shadow is now visible, and attached shadow is also filled with mean-
ingful negative values.

(c) Rare corruptions in image acquisition are recovered.




Example: Dictionary Learning



Example: L1 Trend filtering

* How to design regularization terms that promote
piecewise polynomial structures with a small
number of knots?
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Example: Topic models

Q

e Latent Dirichlet Allocation

AN

OO~

6

M

* From an optimization point-of-view
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How to solve these optimization
problems?

* If convex, there are generic tools, and many
algorithms with guarantees

* |If not-convex:

* Or we can try solving it anyways with greedy local search
algorithms

Greed is good: Algorithmic results for sparse approximation
JA Tropp
IEEE Transactions on Information theory 50 (10), 2231-2242

* There are often “convex relaxation”

4129 2004

Just relax: Convex programming methods for identifying sparse signals in noise 1692 2006

JA Tropp
IEEE transactions on information theory 52 (3), 1030-1051



Revisit the example: What are
some algorithms for solving it

Example: algorithms for the 2d fused lasso

The 2d fused lasso or 2d total variation denoising problem:

n

.1 2
win 52(% —6;) —|—)\'Z 60; — 6]
1=1 (i,j)eE
This fits a piecewise constant function over an image, given data
,1=1,...,n at pixels. Here A > 0 is a tuning parameter
True image Data Solution
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. ] 1 - 2
Our problem: min o Z(yz —0;)" + A Z 16; — 0]
i=1 (i,j)eF

Specialized ADMM, 20 it-
erations




. ] 1 - 2
Our problem: min 5 Z(yz —0;)" + A Z 16; — 0]
i=1 (i,j)eF

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations
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. ] 1 - 2
Our problem: min Z(yz —0;)" + A Z 16; — 0]
i=1 (i,j)eF

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles




Our problem:

.1
min —
0

2

n

d wi— 0+ D> 16— 0]

1=1

(1.5)eE

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)
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What is our conclusion here?

* Is the “Alternating Direction Method of Multipliers” (ADMM) a
better method than proximal gradient descent or coordinate
descent?

* In fact, different algorithms perform better / worse in different
situations.

In the 2d fused lasso problem:
® Special ADMM: fast (structured subproblems)
® Proximal gradient: slow (poor conditioning)

® Coordinate descent: slow (large active set)

* | won’t be able to teach you all of these. But if | offer convex
optimization again at some point, you should consider registering.



https://sites.cs.ucsb.edu/~yuxiangw/classes/CS292F-2020Spring/

Plan today

e Convex optimization basics
* Convex Set
* Convex functions
 Examples



Convex sets and functions

Convex set: C' C R"™ such that
r,yceC = te+(1—-t)yeC forall 0 <t <1

O &=

Convex function: f : R™ — R such that dom(f) C R™ convex, and
ftx+ (1 —t)y) <tf(x)+ (1 —t)f(y) forall 0 <t <1
and all z,y € dom(f)

(z, f(x))
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Convex optimization problems

Optimization problem:

min f(x)

xeD
subject to gi(z) <0,i=1,...m

Here D = dom(f) N2, dom(g;) N(;_; dom(h;), common
domain of all the functions

This is a convex optimization problem provided the functions f
and g;,© = 1,...m are convex, and h;,7 = 1,...p are affine:

hj(x):aij—i—bj, j=1,...p
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Quick refresh of your memory on
vour knowledge from high school

min 2 — 4 + 9
rER

* What is the objective function?

* What is the optimal objective function value?

 What is the optimal solution?



What about?

min z° — 4x 4+ 9
xe(0,1]

* What is the optimal solution? How to work it out?

e Can we reformulate it in a standard form?



Local minima are global minima
For convex optimization problems, local minima are global minima

Formally, if x is feasible—x € D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(z) < f(y) for all feasible y, [lz —yll2 < p,

then
f(x) < f(y) for all feasible y

This is a very useful
fact and will save us
a lot of trouble!

IARRNNAY
] TN
FEENRRRRNANY

Hir

Convex Nonconvex
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In summary: why convexity?

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis

Reminder: a convex optimization problem is of
the form

mn @ .

subject to  ¢;(x) <0,i=1,...m

where f and ¢g;, = = 1,...m are all convex, and
hj, 7 =1,...r are affine. Special property: any
local minimizer is a global minimizer
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Convex sets

Convex set: C' C R"™ such that
r,yeC = te+(1—t)yeC forall 0 <t <1

In words, line segment joining any two elements lies entirely in set

O &9

Convex combination of x1,...x;r € R™: any linear combination
O1x1 + ...+ 0z
with 8; > 0,2 =1,...k, and Zle 0; = 1. Convex hull of a set C,

conv(C), is all convex combinations of elements. Always convex
33



Examples of convex sets

Trivial ones: empty set, point, line

Norm ball: {x : ||z|| < r}, for given norm || - ||, radius r
Hyperplane: {z : al'x = b}, for given a,b

Halfspace: {z:alz < b}

Affine space: {z : Ax = b}, for given A,b

34



® Polyhedron: {z : Ax < b}, where inequality < is interpreted
componentwise. Note: the set {z : Az < b,Cx =d} is also a
polyhedron (why?)

a
1 as

as

as

Qg

® Simplex: special case of polyhedra, given by conv{xg,...xx},
where these points are affinely independent. The canonical
example is the probability simplex,

conv{er,...ep} ={w:w>0,1Tw=1}
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Operations preserving convexity

® |ntersection: the intersection of convex sets is convex

® Scaling and translation: if C'is convex, then
aC+b={{ax+b:2¢e€C}

Is convex for any a, b

e Affine images and preimages: if f(z) = Az + b and C'is
convex then
f(C)={f(z):zeC}
Is convex, and if D is convex then

f~Y(D) ={z: f(x) € D}

IS convex
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Convex functions
Convex function: f : R™ — R such that dom(f) C R" convex, and
flte + (1 —t)y) <tf(e) + (1 -1)f(y) for 0<t<1

and all z,y € dom(f)

(y, f(y))
(z, f(x))
In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

f concave <= —f convex
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Important modifiers:

e Strictly convex: f(tz + (1 —1t)y) <tf(x)+ (1 —1t)f(y) for
x#yand 0 <t < 1. In words, f is convex and has greater
curvature than a linear function

e Strongly convex with parameter m > 0: f — 2||z||3 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex = strictly convex = convex

(Analogously for concave functions)
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Examples of convex functions

Univariate functions:

» Exponential function: e** is convex for any a over R

» Power function: z¢ is convex for a > 1 or a < 0 over R
(nonnegative reals)

» Power function: z% is concave for 0 < a <1 over R,

» Logarithmic function: logx is concave over Ry |

Affine function: alx + b is both convex and concave

Quadratic function: %xTQa: + bz + ¢ is convex provided that
Q = 0 (positive semidefinite)

Least squares loss: ||y — Ax||5 is always convex (since AT A is
always positive semidefinite)
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® Norm: ||x|| is convex for any norm; e.g., ¢, norms,

n 1/p
Jllp = (Zxﬁ?) for p> 1, lalleo = max |z
1=1
and also operator (spectral) and trace (nuclear) norms,
r
[ Xlop = 01(X), | X|er = ZUT(X)
i=1

where 01(X) > ... > 0,.(X) > 0 are the singular values of
the matrix X



® |ndicator function: if C' is convex, then its indicator function

0 xeC

lolz) = x x¢C

IS convex

® Support function: for any set C' (convex or not), its support
function
I} (z) = max =
c(w) = max "y

IS convex

® Max function: f(z) = max{zy,...x,} is convex
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Key properties of convex functions

® A function is convex if and only if its restriction to any line is
convex

® Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(x,t) € dom(f) x R: f(x) <t}
IS a convex set

® Convex sublevel sets: if f is convex, then its sublevel sets

{x € dom(f): f(x) < t}

are convex, for all t € R. The converse is not true
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® First-order characterization: if f is differentiable, then f is
convex if and only if dom(f) is convex, and

fly) = f(z) + V@) (y—=)

for all x,y € dom(f). Therefore for a differentiable convex
function Vf(x) =0 <= z minimizes f

® Second-order characterization: if f is twice differentiable, then
f is convex if and only if dom(f) is convex, and V2f(x) = 0
for all € dom(f)

® Jensen's inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E|X]) <E[f(X)]
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Operations preserving convexity

® Nonnegative linear combination: fi,... f,, convex implies
a1 fi+ ...+ amfm convex for any aq,...a,;, >0

® Pointwise maximization: if fs is convex for any s € S, then
f(z) = maxseg fs(x) is convex. Note that the set S here
(number of functions f;) can be infinite

® Partial minimization: if g(x,y) is convex in x,y, and C'is
convex, then f(x) = minyec g(x,y) is convex
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Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to
C' under an arbitrary norm || - ||:

) — Ina r —
() = max [z —y]

Let's check convexity: f,(x) = ||z — y|| is convex in x for any fixed
Y, SO by pointwise maximization rule, f is convex

Now let C' be convex, and consider the minimum distance to C:

f(z) =min ||z —y
yeC

Let's check convexity: g(x,y) = ||z — y|| is convex in x,y jointly,
and C'is assumed convex, so apply partial minimization rule
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More operations preserving convexity

e Affine composition: if f is convex, then g(x) = f(Ax +b) is
convex

® General composition: suppose f = h o g, where g : R" — R,
h:R—R, f:R" — R. Then:

» f is convex if h is convex and nondecreasing, g is convex
» f is convex if h is convex and nonincreasing, g is concave
» f is concave if h is concave and nondecreasing, g concave
» f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

f(z) =h"(g())g'(z)* + 1 (g(z))g" (z)
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® \ector composition: suppose that

f(z) = h(g(z)) = h(g1(2),. .. gr(2))
where g : R® = R¥, h: RF -5 R, f: R* = R. Then:

» f is convex if h is convex and nondecreasing in each
argument, g IS convex

» f is convex if h is convex and nonincreasing in each
argument, g Is concave

» f is concave if h is concave and nondecreasing in each
argument, g Is concave

» f is concave if h is concave and nonincreasing in each
argument, g Is convex



Example: log-sum-exp function
Log-sum-exp function: g(x) = log(Zf:1 e% “+bi) for fixed a;, by,
1 =1,...k. Often called “soft max", as it smoothly approximates

max;—1_k (a; = + b;)

How to show convexity? First, note it suffices to prove convexity of
f(z) =log(>_:_ e*) (affine composition rule)

Now use second-order characterization. Calculate

el
Zezl et
9 6:131' . . eaziexj
- — 1{; = 4} —
Vi (@) = so o Wi = )

(Dopq €™)?

Write V2 f(x) = diag(z) — 2z, where z; = %1 /(>_}_, €**). This
matrix is diagonally dominant, hence positive semidefinite
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Next lecture: Support Vector
Machines

* You will learn about why is SVM
e “Max-margin”
* The notorious “Kernel trick” in ML

* Also some hammers from convex optimization
e Optimality (KKT) conditions
* Lagrange Duality



