
Lecture 15
Convex Optimization

Lei Li,  Yu-Xiang Wang

(some slides from my convex optimization class, 
originally taught by Ryan Tibshirani in CMU)
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Announcements

• Modification to the schedule
• Two lectures on statistical learning theory replaced by 

Reinforcement Learning.  

• Now three lectures on RL.

• No more lectures on theory of deep learning (because it 
depends on statistical learning theory)
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Plan today

• Review of what we have learned so far

• An optimization view to ML
• Modeling with optimization

• Convex optimization basics
• Convex Set
• Convex functions
• Examples
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Review:  We have learned a lot of 
concepts in ML from this course

• MLP
• Transformers
• VAE
• LSTM
• ConvNet
• Decision Trees
• Linear classifier
• Linear regression
• Logistic regression
• K-means
• Gaussian Mixture 

Models

• PCA

• Probabilistic PCA
• CRF

• Linear dynamical systems
• Directed Graphical Model

• Undirected graphical 
models

• Gradient descent
• Kalman filter
• Expectation 

Maximization
• Regularization
• Loss function
• Risk
• Empirical risk
• Sample complexity
• Iteration complexity
• Holdout
• Cross Validation
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Review:   machine learning basics

• Data

• Hypothesis from  

• Loss function

• Learning algorithms:   How to solve ERM or 
empirical risks minimization.

(x1, y1), ..., (xn, yn) 2 X ⇥ Y
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Review:  Modeling --- formulate a 
problem to be solved by ML
• Feature engineering

• Discriminative modeling: specifying hypothesis 
class

• Generative modeling: specifying the joint 
distribution
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Quiz:  Are these ML models 
discriminative or generative?

• MLP
• Transformers
• VAE
• LSTM
• ConvNet
• Decision Trees
• Linear classifier
• Linear regression
• Logistic regression
• K-means
• Gaussian Mixture 

Models

• PCA

• Probablistic PCA
• CRF

• Linear dynamical systems
• Directed Graphical Model

• Undirected graphical 
models
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Review: Discriminative vs 
Generative Modeling

Discriminative / deterministic Generative / Probabilistic

Modeling

Learning

Inference

Does this unification work for unsupervised learning too?

Regularization vs Prior?
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One way of another, we are dealing 
with optimization problems at the 
end of the day.
• What we learned so far is mostly about how we 

translate conceptual ideas into a rigorous 
optimization problem.

• Two thoughts:
1. How to solve these optimization problems?
2. Why not model with optimization directly?

Optimization in Machine Learning and Statistics

Optimization problems underlie nearly everything we do in Machine
Learning and Statistics. In many courses, you learn how to:

translate into P : min
x2D

f(x)

Conceptual idea Optimization problem

Examples of this? Examples of the contrary?

This course: how to solve P , and why this is a good skill to have

13
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Why not directly use off-the-shelf 
optimization packages (e.g., 
cplex,gurobi, scipy.optimize )?Presumably, other people have already figured out how to solve

P : min
x2D

f(x)

So why bother? Many reasons. Here’s three:

1. Di↵erent algorithms can perform better or worse for di↵erent
problems P (sometimes drastically so)

2. Studying P through an optimization lens can actually give you
a deeper understanding of the statistical procedure

3. Knowledge of optimization can actually help you create a new
P that is even more interesting/useful

Optimization moves quickly as a field. But there is still much room
for progress, especially its intersection with ML and Stats
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You need to know whether they are applicable.  
You need to know whether they are guaranteed to find the solutions.
You need to know how quickly they find the solution, so as to set hyperparameters.
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Advantages of modeling with 
optimization
• No need to deal with probabilities / MLE / 

conditional independences
• Directly optimize quantities of interest
• Encode structures /domain knowledge / design 

choices as part of the optimization problem
• Design loss functions
• Design regularization functions
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Example:  Image denoising
Example: algorithms for the 2d fused lasso

The 2d fused lasso or 2d total variation denoising problem:

min
✓

1

2

nX

i=1

(yi � ✓i)
2 + �

X

(i,j)2E

|✓i � ✓j |

This fits a piecewise constant function over an image, given data
yi, i = 1, . . . , n at pixels. Here � � 0 is a tuning parameter

3
4

5
6

7

True image Data Solution

15
12



Example: Housing price prediction 
on a map
• Intuition:
• Maybe neighbors on the 

map are likely to have 
similar housing prices?

https://www.visualcapitalist.com/interactive-map-price-per-
square-foot-us-housing-markets/
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Example: Movie Recommendation
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Example: Robust PCA
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Example: Dictionary Learning
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Example:  L1 Trend filtering

• How to design regularization terms that promote 
piecewise polynomial structures with a small 
number of knots?
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Example: Topic models

• Latent Dirichlet Allocation

• From an optimization point-of-view
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How to solve these optimization 
problems? 
• If convex,  there are generic tools, and many 

algorithms with guarantees

• If not-convex:
• Or we can try solving it anyways with greedy local search 

algorithms

• There are often “convex relaxation”

19



Revisit the example: What are 
some algorithms for solving it

Example: algorithms for the 2d fused lasso

The 2d fused lasso or 2d total variation denoising problem:

min
✓

1

2

nX

i=1

(yi � ✓i)
2 + �

X

(i,j)2E

|✓i � ✓j |

This fits a piecewise constant function over an image, given data
yi, i = 1, . . . , n at pixels. Here � � 0 is a tuning parameter

3
4

5
6

7

True image Data Solution

15
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Our problem: min
✓

1

2

nX

i=1

(yi � ✓i)
2 + �

X

(i,j)2E

|✓i � ✓j |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)

16
21



Our problem: min
✓

1

2

nX

i=1

(yi � ✓i)
2 + �

X

(i,j)2E

|✓i � ✓j |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)

16
22



Our problem: min
✓

1

2

nX

i=1

(yi � ✓i)
2 + �

X

(i,j)2E

|✓i � ✓j |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)

16
23



Our problem: min
✓

1

2

nX

i=1

(yi � ✓i)
2 + �

X

(i,j)2E

|✓i � ✓j |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)

16
24



What is our conclusion here?
• Is the “Alternating Direction Method of Multipliers” (ADMM) a 

better method than proximal gradient descent or coordinate 
descent?

• In fact, different algorithms perform better / worse in different 
situations.  

• I won’t be able to teach you all of these. But if I offer convex
optimization again at some point, you should consider registering. 

What’s the message here?

So what’s the right conclusion here?

Is the alternating direction method of multipliers (ADMM) method
simply a better method than proximal gradient descent, coordinate
descent? ... No

In fact, di↵erent algorithms will perform better or worse in di↵erent
situations. We’ll learn details throughout the course

In the 2d fused lasso problem:

• Special ADMM: fast (structured subproblems)

• Proximal gradient: slow (poor conditioning)

• Coordinate descent: slow (large active set)

17
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Plan today

• Review of what we have learned so far

• An optimization view to ML
• Modeling with optimization

• Convex optimization basics
• Convex Set
• Convex functions
• Examples
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Convex sets and functions

Convex set: C ✓ Rn such that

x, y 2 C =) tx + (1 � t)y 2 C for all 0  t  124 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every a�ne set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form ✓1x1 + · · · + ✓kxk, where ✓1 + · · · + ✓k = 1 and
✓i � 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with a�ne
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with ✓i the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {✓1x1 + · · · + ✓kxk | xi 2 C, ✓i � 0, i = 1, . . . , k, ✓1 + · · · + ✓k = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ✓
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose ✓1, ✓2, . . .

Convex function: f : Rn ! R such that dom(f) ✓ Rn convex, and

f(tx + (1 � t)y)  tf(x) + (1 � t)f(y) for all 0  t  1

and all x, y 2 dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn ! R is convex if dom f is a convex set and if for all x,
y 2 dom f , and ✓ with 0  ✓  1, we have

f(✓x + (1 � ✓)y)  ✓f(x) + (1 � ✓)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x 6= y
and 0 < ✓ < 1. We say f is concave if �f is convex, and strictly concave if �f is
strictly convex.

For an a�ne function we always have equality in (3.1), so all a�ne (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is a�ne.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x 2 dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph. 2327



Convex optimization problems

Optimization problem:

min
x2D

f(x)

subject to gi(x)  0, i = 1, . . . m

hj(x) = 0, j = 1, . . . r

Here D = dom(f) \
Tm

i=1 dom(gi) \
Tp

j=1 dom(hj), common
domain of all the functions

This is a convex optimization problem provided the functions f
and gi, i = 1, . . . m are convex, and hj , j = 1, . . . p are a�ne:

hj(x) = aTj x + bj , j = 1, . . . p

24
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Quick refresh of your memory on 
your knowledge from high school

• What is the objective function?

• What is the optimal objective function value?

• What is the optimal solution?

min
x2R

x2 � 4x+ 9
<latexit sha1_base64="IcHlN7YRHc9qGLnXI8I9zb9hG44=">AAACCnicbZDLSsNAFIYn9VbrLerSzWgRBLEkpaDuim5cVrEXaGKYTCft0MkkzEykJWTtxldx40IRtz6BO9/GaZuFVn8Y+PjPOcw5vx8zKpVlfRmFhcWl5ZXiamltfWNzy9zeackoEZg0ccQi0fGRJIxy0lRUMdKJBUGhz0jbH15O6u17IiSN+K0ax8QNUZ/TgGKktOWZ+05IuZeOHMqdEKmB76c3WQZHd1V4AmsjeHzumWWrYk0F/4KdQxnkanjmp9OLcBISrjBDUnZtK1ZuioSimJGs5CSSxAgPUZ90NXIUEumm01MyeKidHgwioR9XcOr+nEhRKOU49HXnZF05X5uY/9W6iQrO3JTyOFGE49lHQcKgiuAkF9ijgmDFxhoQFlTvCvEACYSVTq+kQ7DnT/4LrWrF1nxdK9cv8jiKYA8cgCNgg1NQB1egAZoAgwfwBF7Aq/FoPBtvxvustWDkM7vgl4yPb4EdmXA=</latexit><latexit sha1_base64="IcHlN7YRHc9qGLnXI8I9zb9hG44=">AAACCnicbZDLSsNAFIYn9VbrLerSzWgRBLEkpaDuim5cVrEXaGKYTCft0MkkzEykJWTtxldx40IRtz6BO9/GaZuFVn8Y+PjPOcw5vx8zKpVlfRmFhcWl5ZXiamltfWNzy9zeackoEZg0ccQi0fGRJIxy0lRUMdKJBUGhz0jbH15O6u17IiSN+K0ax8QNUZ/TgGKktOWZ+05IuZeOHMqdEKmB76c3WQZHd1V4AmsjeHzumWWrYk0F/4KdQxnkanjmp9OLcBISrjBDUnZtK1ZuioSimJGs5CSSxAgPUZ90NXIUEumm01MyeKidHgwioR9XcOr+nEhRKOU49HXnZF05X5uY/9W6iQrO3JTyOFGE49lHQcKgiuAkF9ijgmDFxhoQFlTvCvEACYSVTq+kQ7DnT/4LrWrF1nxdK9cv8jiKYA8cgCNgg1NQB1egAZoAgwfwBF7Aq/FoPBtvxvustWDkM7vgl4yPb4EdmXA=</latexit><latexit sha1_base64="IcHlN7YRHc9qGLnXI8I9zb9hG44=">AAACCnicbZDLSsNAFIYn9VbrLerSzWgRBLEkpaDuim5cVrEXaGKYTCft0MkkzEykJWTtxldx40IRtz6BO9/GaZuFVn8Y+PjPOcw5vx8zKpVlfRmFhcWl5ZXiamltfWNzy9zeackoEZg0ccQi0fGRJIxy0lRUMdKJBUGhz0jbH15O6u17IiSN+K0ax8QNUZ/TgGKktOWZ+05IuZeOHMqdEKmB76c3WQZHd1V4AmsjeHzumWWrYk0F/4KdQxnkanjmp9OLcBISrjBDUnZtK1ZuioSimJGs5CSSxAgPUZ90NXIUEumm01MyeKidHgwioR9XcOr+nEhRKOU49HXnZF05X5uY/9W6iQrO3JTyOFGE49lHQcKgiuAkF9ijgmDFxhoQFlTvCvEACYSVTq+kQ7DnT/4LrWrF1nxdK9cv8jiKYA8cgCNgg1NQB1egAZoAgwfwBF7Aq/FoPBtvxvustWDkM7vgl4yPb4EdmXA=</latexit><latexit sha1_base64="IcHlN7YRHc9qGLnXI8I9zb9hG44=">AAACCnicbZDLSsNAFIYn9VbrLerSzWgRBLEkpaDuim5cVrEXaGKYTCft0MkkzEykJWTtxldx40IRtz6BO9/GaZuFVn8Y+PjPOcw5vx8zKpVlfRmFhcWl5ZXiamltfWNzy9zeackoEZg0ccQi0fGRJIxy0lRUMdKJBUGhz0jbH15O6u17IiSN+K0ax8QNUZ/TgGKktOWZ+05IuZeOHMqdEKmB76c3WQZHd1V4AmsjeHzumWWrYk0F/4KdQxnkanjmp9OLcBISrjBDUnZtK1ZuioSimJGs5CSSxAgPUZ90NXIUEumm01MyeKidHgwioR9XcOr+nEhRKOU49HXnZF05X5uY/9W6iQrO3JTyOFGE49lHQcKgiuAkF9ijgmDFxhoQFlTvCvEACYSVTq+kQ7DnT/4LrWrF1nxdK9cv8jiKYA8cgCNgg1NQB1egAZoAgwfwBF7Aq/FoPBtvxvustWDkM7vgl4yPb4EdmXA=</latexit>
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What about?

• What is the optimal solution? How to work it out?

• Can we reformulate it in a standard form?

min
x2[0,1]

x2 � 4x+ 9
<latexit sha1_base64="0SOJ8P0I7xgj6oHoqjGeAlG/K+s=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiCF5ISkHdFd24rGAvkMQwmU7aoZNJmJlIS+jKja/ixoUibn0Gd76N0zYLbf1h4OM/53Dm/EHCqFSW9W0UFhaXlleKq6W19Y3NLXN7pynjVGDSwDGLRTtAkjDKSUNRxUg7EQRFASOtoH89rrceiJA05ndqmBAvQl1OQ4qR0pZv7rsR5X42cCmHjnVieyM4uK/AU1gdwONL3yxbZ9ZEcB7sHMogV903v9xOjNOIcIUZktKxrUR5GRKKYkZGJTeVJEG4j7rE0chRRKSXTc4YwUPtdGAYC/24ghP390SGIimHUaA7I6R6crY2Nv+rOakKL7yM8iRVhOPpojBlUMVwnAnsUEGwYkMNCAuq/wpxDwmElU6upEOwZ0+eh2blzNZ8Wy3XrvI4imAPHIAjYINzUAM3oA4aAINH8AxewZvxZLwY78bHtLVg5DO74I+Mzx+YS5aZ</latexit><latexit sha1_base64="0SOJ8P0I7xgj6oHoqjGeAlG/K+s=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiCF5ISkHdFd24rGAvkMQwmU7aoZNJmJlIS+jKja/ixoUibn0Gd76N0zYLbf1h4OM/53Dm/EHCqFSW9W0UFhaXlleKq6W19Y3NLXN7pynjVGDSwDGLRTtAkjDKSUNRxUg7EQRFASOtoH89rrceiJA05ndqmBAvQl1OQ4qR0pZv7rsR5X42cCmHjnVieyM4uK/AU1gdwONL3yxbZ9ZEcB7sHMogV903v9xOjNOIcIUZktKxrUR5GRKKYkZGJTeVJEG4j7rE0chRRKSXTc4YwUPtdGAYC/24ghP390SGIimHUaA7I6R6crY2Nv+rOakKL7yM8iRVhOPpojBlUMVwnAnsUEGwYkMNCAuq/wpxDwmElU6upEOwZ0+eh2blzNZ8Wy3XrvI4imAPHIAjYINzUAM3oA4aAINH8AxewZvxZLwY78bHtLVg5DO74I+Mzx+YS5aZ</latexit><latexit sha1_base64="0SOJ8P0I7xgj6oHoqjGeAlG/K+s=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiCF5ISkHdFd24rGAvkMQwmU7aoZNJmJlIS+jKja/ixoUibn0Gd76N0zYLbf1h4OM/53Dm/EHCqFSW9W0UFhaXlleKq6W19Y3NLXN7pynjVGDSwDGLRTtAkjDKSUNRxUg7EQRFASOtoH89rrceiJA05ndqmBAvQl1OQ4qR0pZv7rsR5X42cCmHjnVieyM4uK/AU1gdwONL3yxbZ9ZEcB7sHMogV903v9xOjNOIcIUZktKxrUR5GRKKYkZGJTeVJEG4j7rE0chRRKSXTc4YwUPtdGAYC/24ghP390SGIimHUaA7I6R6crY2Nv+rOakKL7yM8iRVhOPpojBlUMVwnAnsUEGwYkMNCAuq/wpxDwmElU6upEOwZ0+eh2blzNZ8Wy3XrvI4imAPHIAjYINzUAM3oA4aAINH8AxewZvxZLwY78bHtLVg5DO74I+Mzx+YS5aZ</latexit><latexit sha1_base64="0SOJ8P0I7xgj6oHoqjGeAlG/K+s=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiCF5ISkHdFd24rGAvkMQwmU7aoZNJmJlIS+jKja/ixoUibn0Gd76N0zYLbf1h4OM/53Dm/EHCqFSW9W0UFhaXlleKq6W19Y3NLXN7pynjVGDSwDGLRTtAkjDKSUNRxUg7EQRFASOtoH89rrceiJA05ndqmBAvQl1OQ4qR0pZv7rsR5X42cCmHjnVieyM4uK/AU1gdwONL3yxbZ9ZEcB7sHMogV903v9xOjNOIcIUZktKxrUR5GRKKYkZGJTeVJEG4j7rE0chRRKSXTc4YwUPtdGAYC/24ghP390SGIimHUaA7I6R6crY2Nv+rOakKL7yM8iRVhOPpojBlUMVwnAnsUEGwYkMNCAuq/wpxDwmElU6upEOwZ0+eh2blzNZ8Wy3XrvI4imAPHIAjYINzUAM3oA4aAINH8AxewZvxZLwY78bHtLVg5DO74I+Mzx+YS5aZ</latexit>
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Local minima are global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible—x 2 D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(x)  f(y) for all feasible y, kx � yk2  ⇢,

then
f(x)  f(y) for all feasible y

This is a very useful
fact and will save us
a lot of trouble!
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●

●

Convex Nonconvex
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In summary: why convexity?

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis

Reminder: a convex optimization problem is of
the form

min
x2D

f(x)

subject to gi(x)  0, i = 1, . . . m

hj(x) = 0, j = 1, . . . r

where f and gi, i = 1, . . . m are all convex, and
hj , j = 1, . . . r are a�ne. Special property: any
local minimizer is a global minimizer

●

●

●

●

●

●

●

●

●

●
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Convex sets

Convex set: C ✓ Rn such that

x, y 2 C =) tx + (1 � t)y 2 C for all 0  t  1

In words, line segment joining any two elements lies entirely in set24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every a�ne set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form ✓1x1 + · · · + ✓kxk, where ✓1 + · · · + ✓k = 1 and
✓i � 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with a�ne
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with ✓i the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {✓1x1 + · · · + ✓kxk | xi 2 C, ✓i � 0, i = 1, . . . , k, ✓1 + · · · + ✓k = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ✓
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose ✓1, ✓2, . . .

Convex combination of x1, . . . xk 2 Rn: any linear combination

✓1x1 + . . . + ✓kxk

with ✓i � 0, i = 1, . . . k, and
Pk

i=1 ✓i = 1. Convex hull of a set C,
conv(C), is all convex combinations of elements. Always convex
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Examples of convex sets

• Trivial ones: empty set, point, line

• Norm ball: {x : kxk  r}, for given norm k · k, radius r

• Hyperplane: {x : aTx = b}, for given a, b

• Halfspace: {x : aTx  b}

• A�ne space: {x : Ax = b}, for given A, b

29
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• Polyhedron: {x : Ax  b}, where inequality  is interpreted
componentwise. Note: the set {x : Ax  b, Cx = d} is also a
polyhedron (why?)32 2 Convex sets

a1 a2

a3

a4

a5

P

Figure 2.11 The polyhedron P (shown shaded) is the intersection of five
halfspaces, with outward normal vectors a1, . . . . , a5.

when it is bounded). Figure 2.11 shows an example of a polyhedron defined as the
intersection of five halfspaces.

It will be convenient to use the compact notation

P = {x | Ax � b, Cx = d} (2.6)

for (2.5), where

A =

�

��
aT
1
...

aT
m

�

�� , C =

�

��
cT
1
...

cT
p

�

�� ,

and the symbol � denotes vector inequality or componentwise inequality in Rm:
u � v means ui  vi for i = 1, . . . , m.

Example 2.4 The nonnegative orthant is the set of points with nonnegative compo-
nents, i.e.,

Rn
+ = {x � Rn | xi � 0, i = 1, . . . , n} = {x � Rn | x � 0}.

(Here R+ denotes the set of nonnegative numbers: R+ = {x � R | x � 0}.) The
nonnegative orthant is a polyhedron and a cone (and therefore called a polyhedral
cone).

Simplexes

Simplexes are another important family of polyhedra. Suppose the k + 1 points
v0, . . . , vk 2 Rn are a�nely independent, which means v1 � v0, . . . , vk � v0 are
linearly independent. The simplex determined by them is given by

C = conv{v0, . . . , vk} = {✓0v0 + · · · + ✓kvk | ✓ ⌫ 0, 1T ✓ = 1}, (2.7)

• Simplex: special case of polyhedra, given by conv{x0, . . . xk},
where these points are a�nely independent. The canonical
example is the probability simplex,

conv{e1, . . . en} = {w : w � 0, 1Tw = 1}
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Operations preserving convexity

• Intersection: the intersection of convex sets is convex

• Scaling and translation: if C is convex, then

aC + b = {ax + b : x 2 C}

is convex for any a, b

• A�ne images and preimages: if f(x) = Ax + b and C is
convex then

f(C) = {f(x) : x 2 C}

is convex, and if D is convex then

f�1(D) = {x : f(x) 2 D}

is convex
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Convex functions

Convex function: f : Rn ! R such that dom(f) ✓ Rn convex, and

f(tx + (1 � t)y)  tf(x) + (1 � t)f(y) for 0  t  1

and all x, y 2 dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn ! R is convex if dom f is a convex set and if for all x,
y 2 dom f , and ✓ with 0  ✓  1, we have

f(✓x + (1 � ✓)y)  ✓f(x) + (1 � ✓)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x 6= y
and 0 < ✓ < 1. We say f is concave if �f is convex, and strictly concave if �f is
strictly convex.

For an a�ne function we always have equality in (3.1), so all a�ne (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is a�ne.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x 2 dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.

In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

f concave () �f convex
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Important modifiers:

• Strictly convex: f
�
tx + (1 � t)y

�
< tf(x) + (1 � t)f(y) for

x 6= y and 0 < t < 1. In words, f is convex and has greater
curvature than a linear function

• Strongly convex with parameter m > 0: f � m
2 kxk22 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex ) strictly convex ) convex

(Analogously for concave functions)
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Examples of convex functions

• Univariate functions:
I Exponential function: eax is convex for any a over R
I Power function: xa is convex for a � 1 or a  0 over R+

(nonnegative reals)
I Power function: xa is concave for 0  a  1 over R+
I Logarithmic function: log x is concave over R++

• A�ne function: aTx + b is both convex and concave

• Quadratic function: 1
2x

TQx + bTx + c is convex provided that
Q ⌫ 0 (positive semidefinite)

• Least squares loss: ky � Axk22 is always convex (since ATA is
always positive semidefinite)
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• Norm: kxk is convex for any norm; e.g., `p norms,

kxkp =

 
nX

i=1

xp
i

!1/p

for p � 1, kxk1 = max
i=1,...n

|xi|

and also operator (spectral) and trace (nuclear) norms,

kXkop = �1(X), kXktr =
rX

i=1

�r(X)

where �1(X) � . . . � �r(X) � 0 are the singular values of
the matrix X
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• Indicator function: if C is convex, then its indicator function

IC(x) =

(
0 x 2 C

1 x /2 C

is convex

• Support function: for any set C (convex or not), its support
function

I⇤C(x) = max
y2C

xT y

is convex

• Max function: f(x) = max{x1, . . . xn} is convex
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Key properties of convex functions

• A function is convex if and only if its restriction to any line is
convex

• Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(x, t) 2 dom(f) ⇥ R : f(x)  t}

is a convex set

• Convex sublevel sets: if f is convex, then its sublevel sets

{x 2 dom(f) : f(x)  t}

are convex, for all t 2 R. The converse is not true
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• First-order characterization: if f is di↵erentiable, then f is
convex if and only if dom(f) is convex, and

f(y) � f(x) + rf(x)T (y � x)

for all x, y 2 dom(f). Therefore for a di↵erentiable convex
function rf(x) = 0 () x minimizes f

• Second-order characterization: if f is twice di↵erentiable, then
f is convex if and only if dom(f) is convex, and r2f(x) ⌫ 0
for all x 2 dom(f)

• Jensen’s inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E[X])  E[f(X)]
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Operations preserving convexity

• Nonnegative linear combination: f1, . . . fm convex implies
a1f1 + . . . + amfm convex for any a1, . . . am � 0

• Pointwise maximization: if fs is convex for any s 2 S, then
f(x) = maxs2S fs(x) is convex. Note that the set S here
(number of functions fs) can be infinite

• Partial minimization: if g(x, y) is convex in x, y, and C is
convex, then f(x) = miny2C g(x, y) is convex
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Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to
C under an arbitrary norm k · k:

f(x) = max
y2C

kx � yk

Let’s check convexity: fy(x) = kx � yk is convex in x for any fixed
y, so by pointwise maximization rule, f is convex

Now let C be convex, and consider the minimum distance to C:

f(x) = min
y2C

kx � yk

Let’s check convexity: g(x, y) = kx � yk is convex in x, y jointly,
and C is assumed convex, so apply partial minimization rule
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More operations preserving convexity

• A�ne composition: if f is convex, then g(x) = f(Ax + b) is
convex

• General composition: suppose f = h � g, where g : Rn ! R,
h : R ! R, f : Rn ! R. Then:
I f is convex if h is convex and nondecreasing, g is convex
I f is convex if h is convex and nonincreasing, g is concave
I f is concave if h is concave and nondecreasing, g concave
I f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

f 00(x) = h00(g(x))g0(x)2 + h0(g(x))g00(x)
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• Vector composition: suppose that

f(x) = h
�
g(x)

�
= h

�
g1(x), . . . gk(x)

�

where g : Rn ! Rk, h : Rk ! R, f : Rn ! R. Then:
I f is convex if h is convex and nondecreasing in each

argument, g is convex
I f is convex if h is convex and nonincreasing in each

argument, g is concave
I f is concave if h is concave and nondecreasing in each

argument, g is concave
I f is concave if h is concave and nonincreasing in each

argument, g is convex

49

47



Example: log-sum-exp function

Log-sum-exp function: g(x) = log(
Pk

i=1 ea
T
i x+bi), for fixed ai, bi,

i = 1, . . . k. Often called “soft max”, as it smoothly approximates
maxi=1,...k (aTi x + bi)

How to show convexity? First, note it su�ces to prove convexity of
f(x) = log(

Pn
i=1 exi) (a�ne composition rule)

Now use second-order characterization. Calculate

rif(x) =
exi

Pn
`=1 ex`

r2
ijf(x) =

exi

Pn
`=1 ex`

1{i = j} � exiexj

(
Pn

`=1 ex`)2

Write r2f(x) = diag(z) � zzT , where zi = exi/(
Pn

`=1 ex`). This
matrix is diagonally dominant, hence positive semidefinite
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Next lecture:  Support Vector 
Machines

• You will learn about why is SVM
• “Max-margin”
• The notorious “Kernel trick” in ML

• Also some hammers from convex optimization
• Optimality (KKT) conditions
• Lagrange Duality
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