
165B
Machine Learning

Logistic Regression
Lei Li (leili@cs)

UCSB
Acknowledgement: Slides borrowed from Bhiksha Raj’s 11485 and

Mu Li & Alex Smola’s 157 courses on Deep Learning, with
modification

1

• Homework 1 due 11am Jan 12,
– Please prepare your solution PDF using LaTeX (to

make it clear and rigorous)
– Handwritten and scanned image will not be

accepted.
– Submit to Gradescope. (please let me know

immediately if you do not have access)
• Everyone enrolled should submit answer for in-

class quiz.
– Class participation counts 10%.
– Only DSP students are allowed extra time for quiz.

2

Reminder

• Machine learning is the study of machines
that can improve their performance with
more experience

• Linear Regression Model
– Output is linearly dependent on the input

variables
– Minimize squared loss

3

Recap

• Add bias into weights by

• Loss is convex, so the optimal solutions
satisfies

4

Linear Regression

∂
∂w

ℓ(X, y, w) = 0

⇔ w* = (XTX)−1 Xy

X ← [X, 1] w ← [w
b]

ℓ(X, y, w) =
1
n

y − Xw
2

• https://edstem.org/us/courses/16390/
lessons/27551/slides/158899

5

Quiz-3.1

https://edstem.org/us/courses/16390/lessons/27551/slides/158899
https://edstem.org/us/courses/16390/lessons/27551/slides/158899

• Regression estimates a continuous value
• Classification predicts a discrete category

6

Regression vs. Classification

MNIST: classify hand-written digits
(10 classes)

ImageNet: classify
nature objects
(1000 classes)

Cat

Dog

7

Handwriting Recognition
0
1
2
3
4
5
6
7
8
9

?

Optical Character Recognition (OCR)

Classify human protein microscope images
into 28 categories

8

Classifying Protein

https://www.kaggle.com/c/human-protein-atlas-image-classification

Classifying the sentiment of online movie
reviews. (Positive, negative, neutral)

9

Text Classification

Spider-Man is an almost-perfect extension of the experience
of reading comic-book adventures.

The acting is decent, casting is good.

It was a boring! It was a waste of a movie to even be made. It
should have been called a family reunion.

👍

👍

👎

Regression
• Single continuous output
• Natural scale in
• Loss given e.g. in terms

of difference

10

From Regression to Multi-class
Classification

Classification
• Discrete output
• Score should reflect

confidence/uncertainty …

o

x1 x3x2 …

o1

x1 x3x2 …

o2

Square Loss
• One hot encoding per

class

• Train with squared loss
• Largest output wins

11

From Regression to Multi-class
Classification

Classification
• Discrete output
• Score should reflect

confidence/uncertainty …

̂y = argmax
i

oi

y = [y1, y2, …, yn]⊤

yi = {1 if i = y
0 otherwise

o1

x1 x3x2 …

o2

12

But, is there better way to model?

13

Logistic Regression

h1

x1 x3x2 …

h2

o1 o2

Softmax
h = W ⋅ x

softmax(h)i =
exp(hi)

∑j exp(hj)

p(y |h) = softmax(h)y

output: prob. of class y

Softmax

Linear

14

Logistic Regression in Pytorch
class LogisticRegression(torch.nn.Module):
 def __init__(self, input_dim, output_dim):
 super(LogisticRegression, self).__init__()
 self.linear = torch.nn.Linear(input_dim, output_dim)

 def forward(self, x):
 outputs = torch.sigmoid(self.linear(x))
 return outputs

 is the log-likelihood function

Or. equivalent to minimize negative log-likelihood

̂θ = arg max ℒ(θ; D)
ℒ

ℒ(θ; D) =
1
N

N

∑
n=1

log p(yn |xn; θ)

̂θ = arg min ℓ(θ; D) = −
1
N

N

∑
n=1

log p(yn |xn; θ)

15

Maximum Likelihood Estimation

16

Loss for Classification: Cross-Entropy

x

h f

 is a vector (e.g.),
representing predicted distribution

 is the ground-truth label, can be
represented as an one-hot “distribution”
[0,…,0, 1, 0,…,0]

ℒ(θ) =
1
N

N

∑
n=1

ℓ(yn, f(xn); θ)

ℓ(yn, f(xn)) = H(yn, f(xn)) = − log f(xn)yn

f(xn) ∈ 𝑅10

yn

Cross-entropy
𝐻(𝑝, 𝑞) = − ∑

𝑘

𝑝𝑘log𝑞𝑘

17

Maximum Likelihood and Cross-
Entropy

max
1
N

N

∑
n=1

log p(yn |xn; θ) =
1
N

N

∑
n=1

∑
k

yn,k f(xn)k

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− log f(xn)yn

Or equivalently, minimize CE loss

MLE

• Negative log-likelihood (for given label y)

• Cross-Entropy Loss (the true label y is an
one-hot vector)

• Gradient ∂hℓ(y, h) =
exp(h)

∑i exp(hi)
− y

18

Cross-Entropy Loss with Softmax

−log p(y |h) = log∑
i

exp(hi) − hy

ℓ(y, h) = log∑
i

exp(hi) − y⊤h

Difference between true and estimated

19

Quiz-3

Cat 0.6 0.2 0.4

Dog 0.1 0.8 0.05

Tiger 0.3 0 0.55

Compute the cross-entropy loss for the prediction prob.
https://edstem.org/us/courses/16390/lessons/27551/slides/156087

20

Information Theory

Claude Shannon

• Data source producing observations
• How much ‘information’ is in this source?

• Tossing a fair coin - at each step the surprise is
whether it’s heads or tails

• Rolling a fair dice - we have 1 out of 6 outcomes.
This should be more surprising than the coin

• Picture of a white wall vs. picture of a football
stadium
(the football stadium should have more information)

• Measure is minimum number of bits needed

21

Entropy
x1…xn

• Data source producing data with
probability

• Definition

• Coding theorem
Entropy is lower bound on bits (or rather nats -
base e)

• Entropy is concave
22

Entropy

H[p] = − ∑
j

pj log pj

x1…xn
p(x)

2a = eb hence a log 2 = b hence bits =
H[p]
log 2

H[λp + (1 − λ)q] ≥ λH[p] + (1 − λ)H[q]

23

Convex Function

tf(x1) + (1 − t)f(x2) ≥ f (tx1 + (1 − t)x2)
for all , and all 0 < t < 1 x1 ≠ x2

f is convex iff

Convex function is very useful in optimization.

24

Concave Function

tf(x1) + (1 − t)f(x2) ≤ f (tx1 + (1 − t)x2)
for all , and all 0 < t < 1 x1 ≠ x2

f is concave iff

• Fair coin (p = 0.5)

• Biased coin (p = 0.9)

• Dungeons and Dragons (20-sided dice)

25

Entropy (binary form)

H[p] = − 0.5 ⋅ log2 0.5 − 0.5 ⋅ log2 0.5 = 1 bit

H[p] = − 0.9 ⋅ log2 0.9 − 0.1 ⋅ log2 0.1 = 0.47 bit

H[p] = − log2
1
20

= 4.32 bit

• Prefix Code
• m codes with length
• No code c(x) is the prefix for any c(x’),

• The code length of all prefix code <==> Kraft inequality

l1, l2, …, lm

m

∑
i=1

2−li ≤ 1

26

Kraft Inequality

a → 0
b → 01
c → 011
d → 0111

a → 0
b → 10
c → 110
d → 111

27

Prefix Codes on Binary Trees
∅

0 1

0 1 0 1

0 1

path from root represent code
Prefix code:
only leaf node can be code word

(code word can not be ancestor
of another code node)

• be the length of
longest codeword

• A codeword at length has
 descendants

• How many descendants in
total?

lmax

li
2lmax−li

∑
i

2lmax−li ≤ 2lmax

Proof of Kraft Inequality
∅

0 1

0 1 0 1

0 1

• Conversely, if satisfy Kraft
inequality, then we can

• explicitly construct prefix code recursively
• Pick set of {x} with smallest l(x) and generate

code
• Use leftovers and break them up into sets of

weight
• Give each of them prefix and rescale by

l1, l2, …, lm

29

Proof Kraft Inequality

2l(x)

2−l(x)

• Forward part

30

Kraft Inequality

a → 0 1
2

b → 10 1
4

c → 110 1
8

d → 11110 1
32

110001010

• Backwards part
lengths (1, 2, 3, 5)

• Pick 1
• Use code ‘0’ for it
• Use prefix ‘1’ for the rest
• Remaining set is (1, 2, 4)
• Pick 1

• Use code ‘0’ for it (thus ’10’)
• Use prefix ‘1’ for the rest
• Remaining set is (1,3)

• Entropy is lower bound on expected number of bits

• Proof:

E[#bits] − H(p) = ∑
i

pili − ∑ pi log 1/pi

= KL(p | |q) + log
1

∑j 2−lj
≥ 0

qi =
2−li

∑j 2−lj

31

Optimal expected code length

E[#bits] = ∑
j

pjlj ≥ H2[p] = − ∑
j

pj log2 pj

• Entropy is lower bound on expected number of bits

• Generate prefix code with length
This is within 1 bit of optimal code
Kraft inequality shows that such a thing exists.

• Combine data in k-tuples to encode (within 1/k bit
of optimal)

32

Optimal expected code length

E[#bits] = ∑
j

pjlj ≥ H2[p] = − ∑
j

pj log2 pj

l(x) = ⌈log2 p(x)⌉

∑
x

2−⌈−log2 p(x)⌉ ≤ ∑
x

2log2 p(x) = ∑
x

p(x) = 1

D[p∥q] = ∫ dp(x)log
p(x)
q(x)

= ∫ dp(x)[−log q(x)] − [−log p(x)]

• Distance between distributions (e.g. truth &
estimate)
Number of extra bits when using the wrong code

• Nonnegativity of KL Divergence

33

Kullback-Leibler Divergence

Optimal bitsInefficient bits

D[p∥p] = ∫ dp(x)log
p(x)
p(x)

= 0

D[p∥q] = − ∫ dp(x)log
q(x)
p(x)

≥ − log∫ dp(x)
q(x)
p(x)

= 0

Jensen Inequality
log is concave

• Cross entropy loss

• Cross entropy loss for softmax

• Kullback Leiber divergence

34

Minimizing Cross-Entropy is equivalent
to Minimizing the KL divergence!

ℓ(y, h(x)) = log∑
i

exp(h(x)i) − y⊤h(x)

D(q∥p(̂y |x)) = D(q∥softmax(h(x)))

= ∑
i

qi log qi − qi log softmax(h(x))i

= − H[q] + log∑
i

exp(h(x)i) − ∑
i

qih(x)i

Independent of h()x

ℓ(y, x) = H(y, f(x)) = − log f(x)y

• The smallest number of bits to encode
message is lower-bounded by entropy

• Minimizing cross entropy is equivalent to
minimizing Kullback-Leibler Divergence

35

Recap

• Given a training set of input-
output pairs

– and may both be vectors
• To find the model parameters

such that the model produces the
most accurate output for each
training input

– Or a close approximation of it
• Learning the parameter of a

neural network is an instance!
– The network architecture is given

D = {(xn, yn)}N
n=1

xn yn

𝑦

𝑿

36

The Learning Problem

• The expected risk is the average risk (loss)
over the entire (x, y) data space

• The empirical risk: average loss over the
samples (using empirical data distribution)

R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))] = ∫ ℓ(y, f(x; θ))dP(x, y)

Remp(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

37

The Empirical risk

• Ideally, we want to minimize the expected
risk
– but, unknown data distribution …

• Instead, given a training set of empirical
data

• Minimize the empirical risk over training data

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

38

The general learning framework:
Empirical Risk Minimization (ERM)

• Ideally, we want to minimize the expected
risk
– but, unknown data distribution …

• Instead, given a training set of empirical
data

• Minimize the empirical risk over training data

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

39

The general learning framework:
Empirical Risk Minimization (ERM)

Note : Its really a measure of error, but using standard
terminology, we will call it a “Loss”

Note 2: The empirical risk is only an empirical approximation
to the true risk , which is our ultimate
optimization objective

Note 3: For a given training set the loss is only a function of

L(θ)
R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))]

θ

• Finding the parameter to minimize the
empirical risk over training data

• This is an instance of function optimization
problem
• Many algorithms exist (following lectures)

θ

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

40

The Training Problem

• The empirical risk (loss) is determined by
the loss function

• Cross entropy loss is one common loss for
classification

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− log f(xn)yn

41

Defining the Training Objective

• Hinge loss
- Binary classification:

When ground-truth y is +1,
prediction <0 lead to larger
penalty
- Multi-class

ℓ(y, ̂y) = max(0,1 − y ̂y)

̂y

ℓ(y, ̂y) = ∑
k≠y

max(0,1 − ̂yy + ̂yk)

42

Other Loss for Classification

• General framework to formulate a learning
task is through empirical risk minimization
(ERM)

• Minimizing cross-entropy is a realization of
ERM

43

Recap

• Multilayer Perceptron / Feedforward
Network

• More on neural networks as universal
approximators
– And the issue of depth in networks

• How to train neural network from data

44

Next Up

