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Reminder

« Homework 1 due 11am Jan 12,

— Please prepare your solution PDF using LaTeX (to
make it clear and rigorous)

— Handwritten and scanned image will not be
accepted.

— Submit to Gradescope. (please let me know
immediately if you do not have access)

« Everyone enrolled should submit answer for in-
class quiz.
— Class participation counts 10%.
— Only DSP students are allowed extra time for quiz.



Recap

* Machine learning is the study of machines
that can improve their performance with
more experience

* Linear Regression Model

— Output is linearly dependent on the input
variables

— Minimize squared loss



Linear Regression

* Add bias into weights by

X « [X.1] w< m

£(X,y,W) =l H y — Xw H ’
n

* Loss is convex, so the optimal solutions

satisfies 0
_K(Xa Y, W) =0
OW

o wr = (X"X)" Xy



Quiz-3.1

 https://edstem.org/us/courses/16390/
lessons/27551/slides/158899



https://edstem.org/us/courses/16390/lessons/27551/slides/158899
https://edstem.org/us/courses/16390/lessons/27551/slides/158899

Regression vs. Classification

* Regression estimates a continuous value
» Classification predicts a discrete category

(10 classes) nature objects
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Handwriting Recognition

Optical Character Recognition (OCR)

—
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Classifying Protein

Classify human protein microscope images
into 28 categories

Nucleoplasm
Nuclear membrane
Nucleoli

Nucleoli fibrillar
Nuclear speckles
Nuclear bodies
Endoplasmic reticu
Golgi apparatus
Peroxisomes

O 0 NSO oA WON -2

Endosomes

19. Lysosomes

11. Intermediate fila
12. Actin filaments
13. Focal adhesion si
14. Microtubules

15. Microtubule ends
1A Cvtakinetic hrida

https://www.kaggle.com/c/human-protein-atlas-image-classification



Text Classification

Classifying the sentiment of online movie
reviews. (Positive, negative, neutral)

Spider-Man is an almost-perfect extension of the experience
of reading comic-book adventures.

The acting is decent, casting is good.

It was a boring! It was a waste of a movie to even be made. It
should have been called a family reunion.



From Regression to Multi-class
Classification

Regression Classification
 Single continuous output ° Discrete output
 Natural scale in » Score should reflect

_ _ confidence/uncertainty ..
* Loss given e.g. In terms

of difference @ @




From Regression to Multi-class

Classification
Square Loss Classification
» One hot encoding per ~ * Discrete output
class » Score should reflect

A A L confidence/uncertainty .

={l Q) @
’ 0 otherwise A\

\>
/
* Train with squared loss ' ‘

» Largest output wins @ @ @ Q

A

y = argmax o,

l 11



But, is there better way to model?




Logistic Regression

output: prob. of class y @ @

h=W-Xx
exp(/,) Softmax
softmax(h), = h
ZJ eXp( ])

p(y|h) = softmax(h),

13



Logistic Regression in Pytorch

class LogisticRegression(torch.nn.Module):
def __init_ (self, input_dim, output_dim):
super(LogisticRegression, self).__init__ ()
self.linear = torch.nn.Linear(input_dim, output_dim)

def forward(self, x):
outputs = torch.sigmoid(self.linear(x))

return outputs
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Maximum Likelihood Estimation

A

0 = argmax £ (6; D)
< is the log-likelihood function
|
Z@;D)=— ) lo x,; 0
;D) =— D 1ogp(3,1%,; 0

n=1
Or. equivalent to minimize negative log-likelihood

\ I
0 =argminZ(0;D)=—— ) lo | x,; 0
g min £(6; D) Nz{ 2P0V, 1 %, 0)
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Loss for Classification: Cross-Entropy

® ® @ | -

L) = Z £ (Vo f5,); 6)
(Y S, )) = H(yn fx,)) = — log f(x,),

XX XE:

f(x,) is a vector (e.g. € RY),
representing predicted distribution

y,, is the ground-truth label, can be
represented as an one-hot “distribution”

(0000000000

o,...,0, 1, 0,...,0]

Cross-entropy

— Z plogg,
k

16




Maximum Likelihood and Cross-
Entropy

MLE

1 & I
max N 2 logp(y, | x,;0) = N Z Z yn,kf(xn)k

n=1 n=1 k

Or equivalently, minimize CE loss

] & l
min Z(0) = — > HO,» fo) = = 7 = log f(x,),,
n=1

n=1
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Cross-Entropy Loss with Softmax

* Negative log-likelihood (for given label y)

~logp(y| h) = log Y exp(h) — h,

» Cross-Entropy Loss (the true label y is an
one-hot vector)

£(y,h) =log )’ exp(h) — yTh

0,00 1) = —P_

e Gradient

zl’ exp(hi)

Difference between true and estimated 18




Quiz-3

https://edstem.org/us/courses/16390/lessons/27551/slides/156087
Compute the cross-entropy loss for the prediction prob.

P
NN
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Information Theory

20



Entropy

 Data source producing observations X;...X,

 How much ‘information’ is in this source?

 Tossing a fair coin - at each step the surprise is
whether it's heads or tails

* Rolling a fair dice - we have 1 out of 6 outcomes.
This should be more surprising than the coin

 Picture of a white wall vs. picture of a football
stadium

(the football stadium should have more information)
e Measure is minimum number of bits needed

21



Entropy

Data source producing data X;...x,with
probability p(x)

Definition g, = — ij log p;
j
Coding theorem
Entropy is lower bound on bits (or rather nats -

H
base €) 27 = ¢* hence alog2 = b hence bits = 1 [pz]
0g

H[Ap + (1 — Ag] > AH[p] + (1 — )H|[q]

Entropy is concave

22



Convex Function

f is convex iff
forall0 <7 < 1, and all x; # x,

() + (1= () 2 (05, + (1 = )

Convex function is very useful in optimization.

23



Concave Function

f is concave iff
forall0 <¢< 1, and allx(] * Xy

(o) + (1= 0f(ry) < f (1x, + (1 = 1))

24



Entropy (binary form)

 Fair coin (p =0.5)

H[p] =-0.5-10og,0.5-0.5-10g,0.5 =1 bit

 Biased coin (p =0.9)

Hipl = — 0.9 -10g,0.9 — 0.1 - log, 0.1 = 0.47 bit

* Dungeons and Dragons (20-sided dice)
H[p] = —log, 2—10 = 4.32 bit

25



Kraft Inequality

 Prefix Code

« m codes with length [, ,, ..., [

* No code c(x) is the prefix for any c(x’),

fa -0 a—0

b b — 10

<C 11 c— 110
= 01 d— 111

/
« The code length of all prefix code <==> Kraft inequality

i 2-h<
=1

26



Prefix Codes on Binary Trees

path from root represent code

%
Prefix code:
only leaf node can be code word

(code word can not be ancestor

of another code node) / \ / \

27



Proof of Kraft Inequality

- [ . be the length of

%)
longest codeword / \
» A codeword at length /; has
2lma—li descendants
 How many descendants m/ \ /\
total?
Y 2l < 2l / \
l



Proof Kraft Inequality

» Conversely, if [}, [,, ..., [ satisfy Kraft
Inequality, then we can

o explicitly construct prefix code recursively
e Pick set of {x} with smallest |(x) and generate
code
e Use leftovers and break them up into sets of
weight -
e Give each of them prefix and rescale by 2™

29



Kraft Inequality

* Forward part

« Backwards part
lengths (1, 2, 3, 5)

a—0 3+ Pick 1
< b— 10 " « Use code ‘O’ for it
c— 110 S - Use prefix ‘1’ for the rest
d— 11110 = « Remaining setis (1, 2, 4)
* Pick 1
110001010 » Use code ‘0’ for it (thus ’10’)

» Use prefix ‘1’ for the rest
* Remaining set is (1,3)

30



Optimal expected code length

« Entropy is lower bound on expected number of bits

El#bits] = Y pjl;> Hy[pl = — Y p;log, p;
: .

* Proof: J

El#bits| — H(p) = Y pd;— Y p;log1/p,

1
= KL(p||g) + 1o >0
pllq ngTlf

31



Optimal expected code length

* Entropy is lower bound on expected number of bits
E[#bits] = ijlj > H)[p] = — ij log, p;
- .

J
« Generate prefix code with length (x) = [log, p(x)]
This is within 1 bit of optimal code
Kraft inequality shows that such a thing exists.

Z 2~ [=log, (W] <« Z log, p(x) — Z p(x) =1

X

« Combine data in k-tuples to encode (within 1/k bit
of optimal)

32



Kullback-Leibler Divergence

* Distance between distributions (e.g. truth &
estimate)

Number of extra bits when usmg the wrong code

Dlpllql = Jdp(X)log& dp(x)|=log g(x)| — |~log p(x)]

Inefficient bits Optimal bits

* Nonnegativity of KL Divergence
- Jensen Inequality
Dipllp] = Jdp(x)log% =0 log Is concave

Diplig] = - [dza(x)log@ > logJ dp I _
p(x) p(x)

33



Minimizing Cross-Entropy is equivalent
to Minimizing the KL divergence!

* Cross entropy loss
£(y,x) = H(y, f(x)) = — log f(x),

* Cross entropy loss for softmax
£(y. h(x)) = log ) exp(h(x);) = yTh(x)
» Kullback Leiber divergence
D(qllp(y|x)) = D(q||softmax(h(x)))
= Z g;10og g, — g;log softmax(/(x)),

= — Hlgl +log ) exp(h(x)) — ), g:h(x),
Independent of h()x l l 34



Recap

* The smallest number of bits to encode
message is lower-bounded by entropy

* Minimizing cross entropy is equivalent to
minimizing Kullback-Leibler Divergence

35



The Learning Problem

 Given a training set of input-
output pairs D = {(x,,y,) }2’:1 Y

* To find the model parameters | /‘»‘\'

R | S
such that the model produces (‘\!‘g‘,g,‘&,,‘!}
most accurate output for each =/

— X, and y, may both be vectors

» o0 o0 oo0O0O

training input X

— Or a close approximation of it

* Learning the parameter of a
neural network is an instance!

— The network architecture is given

36



The Empirical risk

* The expected risk is the average risk (loss)
over the entire (X, y) data space

R©O) = Ey yep [£0 fx:0))] = Jf(y,ﬂx; 0))dP(x, )

* The empirical risk: average loss over the
samples (using empirical data distribution)

1
Remp(e) — N Z f(yrv f(xna 9))

37



The general learning framework:
Empirical Risk Minimization (ERM)

* |deally, we want to minimize the expected
risk
— but, unknown data distribution ...

* Instead, given a training set of empirical

_ N
data D = {(x,,y,)}, _;
* Minimize the empirical risk over training data

0 — aremi L(H)—iZK( (x.; 0))
arg an Y, 4 Y, J(X,;

38



The general learning framework:
Empirical Risk Minimization (ERM)

o _ldeall\/ we \want to minimize the exnected

Note : Its really a measure of error, but using standard
terminology, we will call it a "Loss”

Note 2: The empirical risk L(€) is only an empirical approximation

to the true risk R(0) = Eyep [f(y, f(x; 9))] , which is our ultima
optimization objective

Note 3: For a given training set the loss is only a function of 6

| U R uls I1ITIT T A\U ) — (4 \-)/I’Z’J \Jvn, v))
0 NLJ

n

39



The Training Problem

» Finding the parameter 6 to minimize the
empirical risk over training data

D = (@)},
) — argminL(6) = — 3" £, f0x,:0)
argmgm Y 4 Voo J(X,5

* This is an instance of function optimization
problem
« Many algorithms exist (following lectures)

40



Defining the Training Objective

* The empirical risk (loss) is determined by
the loss function

* Cross entropy loss is one common loss for

classification
N

. I < I
min Z(0) = — » HO,, f(5) = = ), = log fix,),,
n=1

n=1

41



Other Loss for Classification

e Hinge loss

- Binary classification:
£(y,y) = max(0,1 — yy)

When ground-truth y 1s +1,
prediction y<O0 lead to larger

penalty
- Multi-class

£(y,9) = Y max(0,1 - §, + H)
kFy

42



Recap

* General framework to formulate a learning

task is through empirical risk minimization
(ERM)

* Minimizing cross-entropy is a realization of
ERM
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Next Up

* Multilayer Perceptron / Feedforward
Network

* More on neural networks as universal
approximators
— And the issue of depth in networks
 How to train neural network from data

44



