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• Homework 1 due 11am Jan 12, 
– Please prepare your solution PDF using LaTeX (to 

make it clear and rigorous) 
– Handwritten and scanned image will not be 

accepted.  
– Submit to Gradescope. (please let me know 

immediately if you do not have access) 
• Everyone enrolled should submit answer for in-

class quiz. 
– Class participation counts 10%. 
– Only DSP students are allowed extra time for quiz. 
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Reminder



• Machine learning is the study of machines 
that can improve their performance with 
more experience 

• Linear Regression Model 
– Output is linearly dependent on the input 

variables 
– Minimize squared loss
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Recap



• Add bias into weights by 
 
 
 

• Loss is convex, so the optimal solutions 
satisfies
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Linear Regression

∂
∂w

ℓ(X, y, w) = 0

⇔ w* = (XTX)−1 Xy

X ← [X, 1] w ← [w
b]

ℓ(X, y, w) =
1
n

y − Xw
2



• https://edstem.org/us/courses/16390/
lessons/27551/slides/158899
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Quiz-3.1

https://edstem.org/us/courses/16390/lessons/27551/slides/158899
https://edstem.org/us/courses/16390/lessons/27551/slides/158899


• Regression estimates a continuous value 
• Classification predicts a discrete category
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Regression vs. Classification

MNIST: classify hand-written digits  
(10 classes)

ImageNet: classify 
nature objects 
(1000 classes)

Cat

Dog
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Handwriting Recognition
0 
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4 
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?

Optical Character Recognition (OCR)



Classify human protein microscope images 
into 28 categories
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Classifying Protein

https://www.kaggle.com/c/human-protein-atlas-image-classification



Classifying the sentiment of online movie 
reviews. (Positive, negative, neutral)
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Text Classification

Spider-Man is an almost-perfect extension of the experience 
of reading comic-book adventures.

The acting is decent, casting is good.

It was a boring! It was a waste of a movie to even be made. It 
should have been called a family reunion.

👍

👍

👎



Regression 
• Single continuous output 
• Natural scale in  
• Loss given e.g. in terms 

of difference 
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From Regression to Multi-class 
Classification

Classification 
• Discrete output 
• Score should reflect 

confidence/uncertainty …

o

x1 x3x2 …

o1

x1 x3x2 …

o2



Square Loss 
• One hot encoding per 

class 

• Train with squared loss 
• Largest output wins
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From Regression to Multi-class 
Classification

Classification 
• Discrete output 
• Score should reflect 

confidence/uncertainty …

̂y = argmax
i

oi

y = [y1, y2, …, yn]⊤

yi = {1 if i = y
0 otherwise 

o1

x1 x3x2 …

o2
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But, is there better way to model?
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Logistic Regression

h1

x1 x3x2 …

h2

o1 o2

Softmax
h = W ⋅ x

softmax(h)i =
exp(hi)

∑j exp(hj)

p(y |h) = softmax(h)y

output: prob. of class y

Softmax

Linear
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Logistic Regression in Pytorch
class LogisticRegression(torch.nn.Module): 
    def __init__(self, input_dim, output_dim): 
        super(LogisticRegression, self).__init__() 
        self.linear = torch.nn.Linear(input_dim, output_dim) 
         
    def forward(self, x): 
        outputs = torch.sigmoid(self.linear(x)) 
        return outputs 



 
 is the log-likelihood function 

 

Or. equivalent to minimize negative log-likelihood 

̂θ = arg max ℒ(θ; D)
ℒ

ℒ(θ; D) =
1
N

N

∑
n=1

log p(yn |xn; θ)

̂θ = arg min ℓ(θ; D) = −
1
N

N

∑
n=1

log p(yn |xn; θ)
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Maximum Likelihood Estimation
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Loss for Classification: Cross-Entropy

x

h f

 is a vector (e.g. ), 
representing predicted distribution 

 is the ground-truth label, can be 
represented as an one-hot “distribution” 
[0,…,0, 1, 0,…,0] 

ℒ(θ) =
1
N

N

∑
n=1

ℓ(yn, f(xn); θ)

ℓ(yn, f(xn)) = H(yn, f(xn)) = − log f(xn)yn

f(xn) ∈ 𝑅10

yn

Cross-entropy
𝐻(𝑝, 𝑞) = − ∑

𝑘

𝑝𝑘log𝑞𝑘
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Maximum Likelihood and Cross-
Entropy

max
1
N

N

∑
n=1

log p(yn |xn; θ) =
1
N

N

∑
n=1

∑
k

yn,k f(xn)k

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− log f(xn)yn

Or equivalently, minimize CE loss

MLE



• Negative log-likelihood (for given label y) 

• Cross-Entropy Loss (the true label y is an 
one-hot vector) 

• Gradient ∂hℓ(y, h) =
exp(h)

∑i exp(hi)
− y
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Cross-Entropy Loss with Softmax

−log p(y |h) = log∑
i

exp(hi) − hy

ℓ(y, h) = log∑
i

exp(hi) − y⊤h

Difference between true and estimated 
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Quiz-3

Cat 0.6 0.2 0.4

Dog 0.1 0.8 0.05

Tiger 0.3 0 0.55

Compute the cross-entropy loss for the prediction prob.
https://edstem.org/us/courses/16390/lessons/27551/slides/156087
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Information Theory

Claude Shannon



• Data source producing observations 
• How much ‘information’ is in this source? 

• Tossing a fair coin - at each step the surprise is 
whether it’s heads or tails 

• Rolling a fair dice - we have 1 out of 6 outcomes. 
This should be more surprising than the coin 

• Picture of a white wall vs. picture of a football 
stadium  
(the football stadium should have more information) 

• Measure is minimum number of bits needed
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Entropy
x1…xn



• Data source producing data            with 
probability 

• Definition 

• Coding theorem 
Entropy is lower bound on bits (or rather nats - 
base e) 

• Entropy is concave
22

Entropy

H[p] = − ∑
j

pj log pj

x1…xn
p(x)

2a = eb hence a log 2 = b hence bits =
H[p]
log 2

H[λp + (1 − λ)q] ≥ λH[p] + (1 − λ)H[q]
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Convex Function

tf(x1) + (1 − t)f(x2) ≥ f (tx1 + (1 − t)x2)
for all , and all 0 < t < 1 x1 ≠ x2

f is convex iff

Convex function is very useful in optimization. 
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Concave Function

tf(x1) + (1 − t)f(x2) ≤ f (tx1 + (1 − t)x2)
for all , and all 0 < t < 1 x1 ≠ x2

f is concave iff



• Fair coin (p = 0.5) 
 

• Biased coin (p = 0.9) 

• Dungeons and Dragons (20-sided dice)
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Entropy (binary form)

H[p] = − 0.5 ⋅ log2 0.5 − 0.5 ⋅ log2 0.5 = 1 bit

H[p] = − 0.9 ⋅ log2 0.9 − 0.1 ⋅ log2 0.1 = 0.47 bit

H[p] = − log2
1
20

= 4.32 bit



• Prefix Code 
• m codes with length  
• No code c(x) is the prefix for any c(x’),  

• The code length of all prefix code <==>  Kraft inequality 

l1, l2, …, lm

m

∑
i=1

2−li ≤ 1
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Kraft Inequality

a → 0
b → 01
c → 011
d → 0111

a → 0
b → 10
c → 110
d → 111
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Prefix Codes on Binary Trees
∅

0 1

0 1 0 1

0 1

path from root represent code 
Prefix code: 
only leaf node can be code word 

(code word can not be ancestor 
of another code node) 



•  be the length of 
longest codeword  

• A codeword at length  has 
 descendants  

• How many descendants in 
total? 

lmax

li
2lmax−li

∑
i

2lmax−li ≤ 2lmax

Proof of Kraft Inequality
∅

0 1

0 1 0 1

0 1



• Conversely, if  satisfy Kraft 
inequality, then we can 

• explicitly construct prefix code recursively 
• Pick set of {x} with smallest l(x) and generate 

code 
• Use leftovers and break them up into sets of 

weight 
• Give each of them prefix and rescale by 

l1, l2, …, lm
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Proof Kraft Inequality

2l(x)

2−l(x)



• Forward part
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Kraft Inequality

a → 0 1
2

b → 10 1
4

c → 110 1
8

d → 11110 1
32

110001010

• Backwards part 
lengths (1, 2, 3, 5) 

• Pick 1  
• Use code ‘0’ for it 
• Use prefix ‘1’ for the rest 
• Remaining set is (1, 2, 4) 
• Pick 1 

• Use code ‘0’ for it (thus ’10’) 
• Use prefix ‘1’ for the rest 
• Remaining set is (1,3)



• Entropy is lower bound on expected number of bits  

• Proof: 

 

E[#bits] − H(p) = ∑
i

pili − ∑ pi log 1/pi

= KL(p | |q) + log
1

∑j 2−lj
≥ 0

qi =
2−li

∑j 2−lj
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Optimal expected code length

E[#bits] = ∑
j

pjlj ≥ H2[p] = − ∑
j

pj log2 pj



• Entropy is lower bound on expected number of bits  
 

• Generate prefix code with length 
This is within 1 bit of optimal code  
Kraft inequality shows that such a thing exists. 
 

• Combine data in k-tuples to encode (within 1/k bit 
of optimal)
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Optimal expected code length

E[#bits] = ∑
j

pjlj ≥ H2[p] = − ∑
j

pj log2 pj

l(x) = ⌈log2 p(x)⌉

∑
x

2−⌈−log2 p(x)⌉ ≤ ∑
x

2log2 p(x) = ∑
x

p(x) = 1



D[p∥q] = ∫ dp(x)log
p(x)
q(x)

= ∫ dp(x)[−log q(x)] − [−log p(x)]

• Distance between distributions (e.g. truth & 
estimate) 
Number of extra bits when using the wrong code 
 
 

• Nonnegativity of KL Divergence 
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Kullback-Leibler Divergence

Optimal bitsInefficient bits

D[p∥p] = ∫ dp(x)log
p(x)
p(x)

= 0

D[p∥q] = − ∫ dp(x)log
q(x)
p(x)

≥ − log∫ dp(x)
q(x)
p(x)

= 0

Jensen Inequality 
log is concave  



• Cross entropy loss 

• Cross entropy loss for softmax 

• Kullback Leiber divergence 
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Minimizing Cross-Entropy is equivalent 
to Minimizing the KL divergence!

ℓ(y, h(x)) = log∑
i

exp(h(x)i) − y⊤h(x)

D(q∥p( ̂y |x)) = D(q∥softmax(h(x)))

= ∑
i

qi log qi − qi log softmax(h(x))i

= − H[q] + log∑
i

exp(h(x)i) − ∑
i

qih(x)i

Independent of h()x

ℓ(y, x) = H(y, f(x)) = − log f(x)y



• The smallest number of bits to encode  
message is lower-bounded by entropy 

• Minimizing cross entropy is equivalent to 
minimizing Kullback-Leibler Divergence
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Recap



• Given a training set of input-
output pairs  

–  and  may both be vectors 
• To find the model parameters 

such that the model produces the 
most accurate output for each 
training input 

– Or a close approximation of it 
• Learning the parameter of a 

neural network is an instance! 
– The network architecture is given

D = {(xn, yn)}N
n=1

xn yn

𝑦

𝑿
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The Learning Problem



• The expected risk is the average risk (loss) 
over the entire (x, y) data space 

 

• The empirical risk:  average loss over the 
samples (using empirical data distribution) 

R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))] = ∫ ℓ(y, f(x; θ))dP(x, y)

Remp(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))
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The Empirical risk



• Ideally, we want to minimize the expected 
risk 
– but, unknown data distribution …  

• Instead, given a training set of empirical 
data  

• Minimize the empirical risk over training data 

   

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))
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The general learning framework: 
Empirical Risk Minimization (ERM)



• Ideally, we want to minimize the expected 
risk 
– but, unknown data distribution …  

• Instead, given a training set of empirical 
data  

• Minimize the empirical risk over training data 

   

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))
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The general learning framework: 
Empirical Risk Minimization (ERM)

Note :  Its really a measure of error, but using standard 
terminology, we will call it a “Loss” 

Note 2: The empirical risk  is only an empirical approximation  
to the true risk , which is our ultimate 
optimization objective 

Note 3: For a given training set the loss is only a function of 

L(θ)
R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))]

θ



• Finding the parameter  to minimize the 
empirical risk over training data 

 

    

• This is an instance of function optimization 
problem 
• Many algorithms exist (following lectures)

θ

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))
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The Training Problem



• The empirical risk (loss) is determined by 
the loss function 

• Cross entropy loss is one common loss for 
classification 

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− log f(xn)yn
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Defining the Training Objective



• Hinge loss 
- Binary classification:

When ground-truth y is +1, 
prediction <0 lead to larger 
penalty
- Multi-class 

ℓ(y, ̂y) = max(0,1 − y ̂y)

̂y

ℓ(y, ̂y) = ∑
k≠y

max(0,1 − ̂yy + ̂yk)
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Other Loss for Classification



• General framework to formulate a learning 
task is through empirical risk minimization 
(ERM) 

• Minimizing cross-entropy is a realization of 
ERM
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Recap



• Multilayer Perceptron / Feedforward 
Network 

• More on neural networks as universal 
approximators 
– And the issue of depth in networks 

• How to train neural network from data
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Next Up


