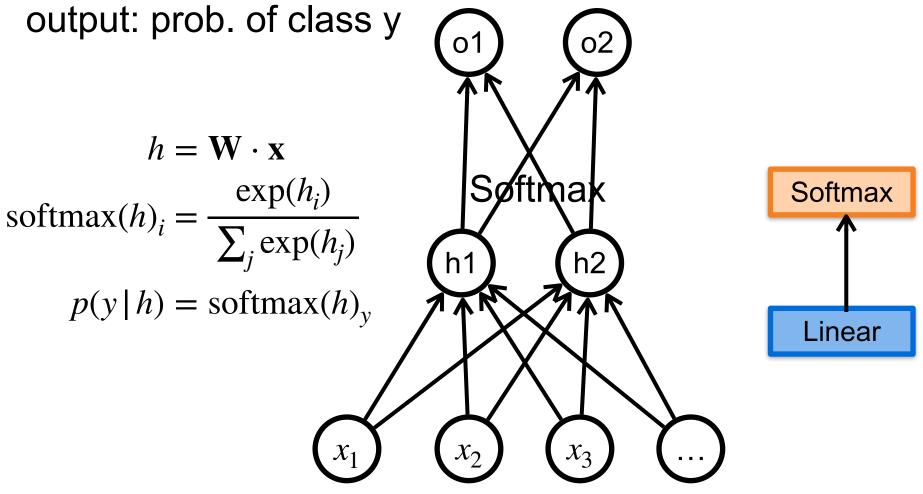
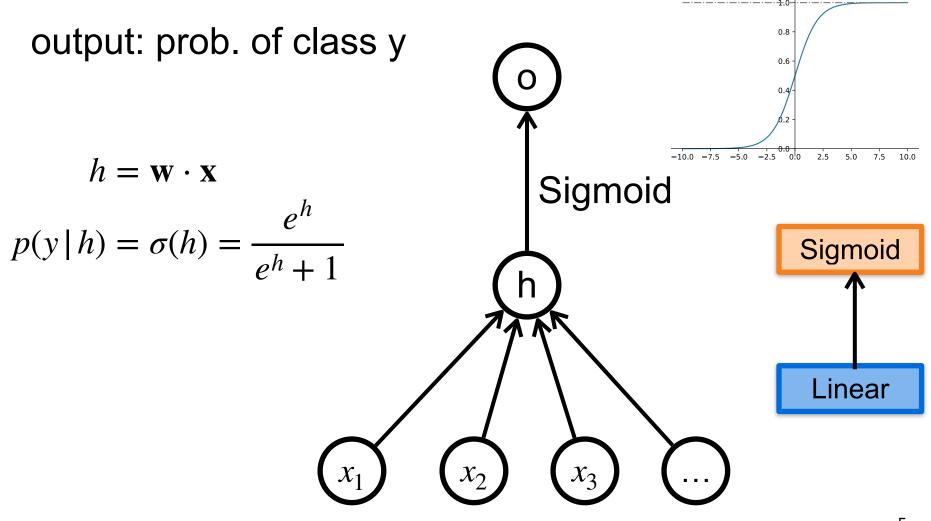
165B Machine Learning Feedforward Network

Lei Li (leili@cs) UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and Mu Li & Alex Smola's 157 courses on Deep Learning, with modification


Announcement

Instruction continue on zoom till Jan 31


Recap

- Logistic Regression for classification
 single linear layer with Softmax output
- General framework to formulate a learning task is through empirical risk minimization (ERM)
- Minimizing cross-entropy is a realization of ERM
- Kullback-Leibler Divergence

Logistic Regression

Logistic Regression for Binary Classification

Cross-Entropy Loss for Classification

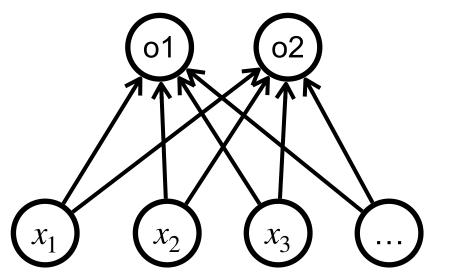
$$\min \mathscr{L}(\theta) = \frac{1}{N} \sum_{n=1}^{N} H(y_n, f(x_n)) = \frac{1}{N} \sum_{n=1}^{N} -\log f(x_n)_{y_n}$$

Kullback-Leibler Divergence

"Distance" between distributions (e.g. truth & estimate)

Number of extra bits when using the wrong code $D[p||q] = \int dp(x) \log \frac{p(x)}{q(x)} = \int dp(x) \left[-\log q(x) \right] - \left[-\log p(x) \right]$

Nonnegativity of KL Divergence

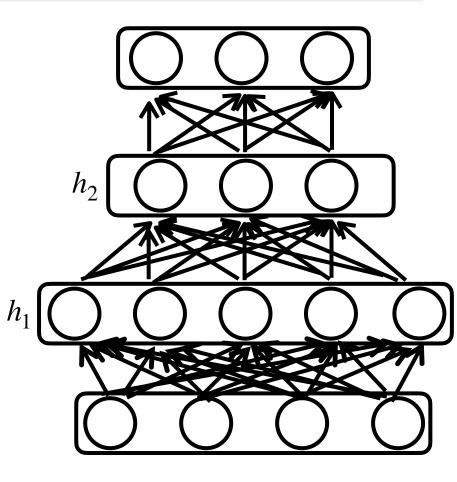

$$D[p||p] = \int dp(x) \log \frac{p(x)}{p(x)} = 0$$

$$D[p||q] = -\int dp(x) \log \frac{q(x)}{p(x)} \ge -\log \int dp(x) \frac{q(x)}{p(x)} = 0$$

Inefficient bits

Optimal bits

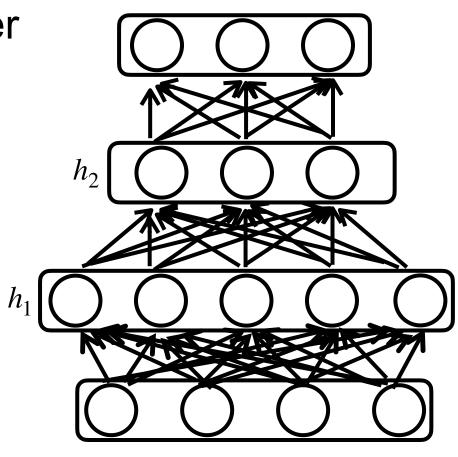
Limitation of Logistic Regression



- Single layer has limited capability
 - cannot learn XOR
- The decision boundary is linear
 - cannot learn a nonlinear decision boundary

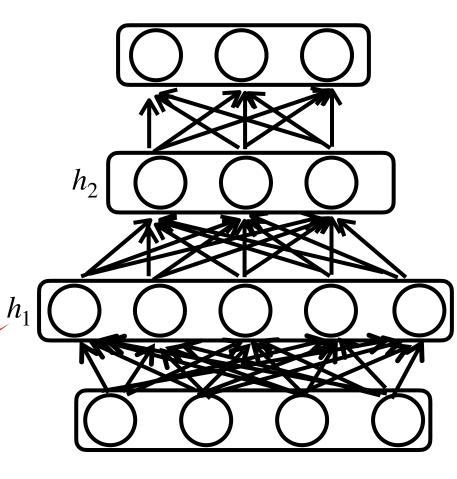
– why?

Feedforward Neural Net (FFN)

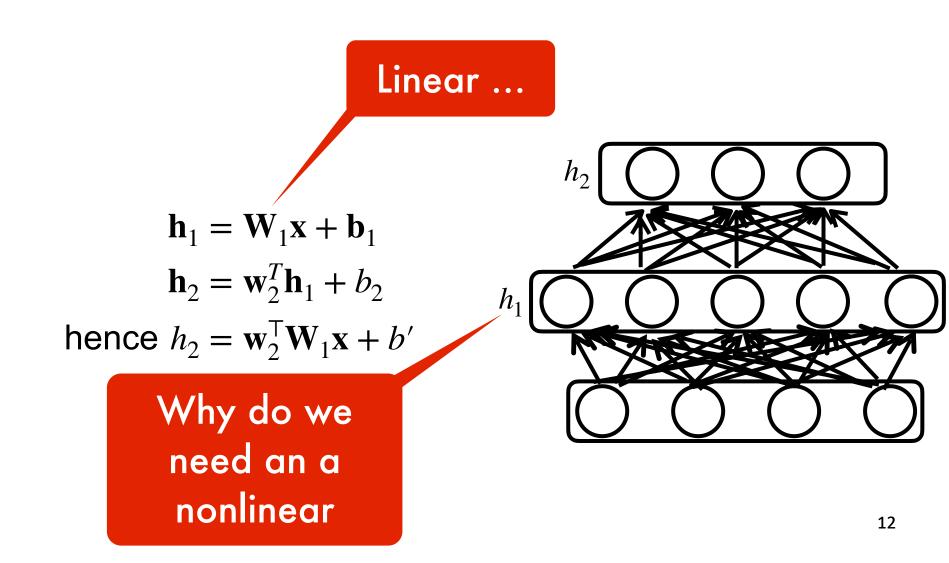

- also known as multilayer perceptron (MLP)
- Layers are connected sequentially
- Each layer has full-connection (each unit is connected to all units of next layer)
 - Linear project followed by
 - an element-wise nonlinear activation function
- There is no connection from output to input

Feedforward Neural Net (FFN)

 also known as multilayer perceptron (MLP)
 x ∈ ℝ^d

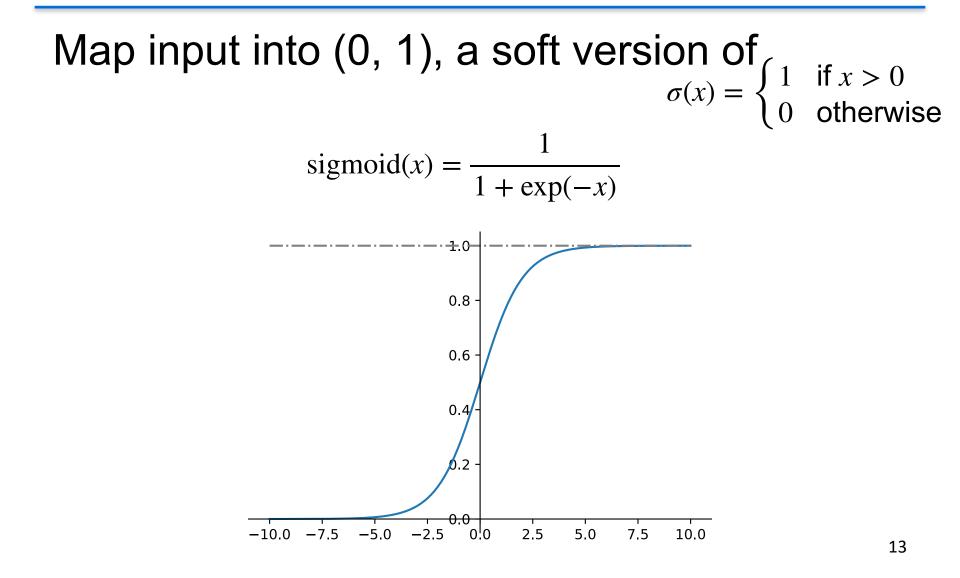

 $h_{1} = \sigma(w_{1} \cdot x + b_{1}) \in \mathbb{R}^{d_{1}}$ $h_{l} = \sigma(w_{l} \cdot h_{l-1} + b_{l}) \in \mathbb{R}^{d_{l}}$ $o = \text{Softmax}(w_{L} \cdot h_{L-1} + b_{L})$ Parameters $\theta = \{w_{1}, b_{1}, w_{2}, b_{2}, \dots\}$

Hidden layers


•
$$h_1 = \sigma(w_1 \cdot x + b_1) \in \mathbb{R}^{d_1}$$

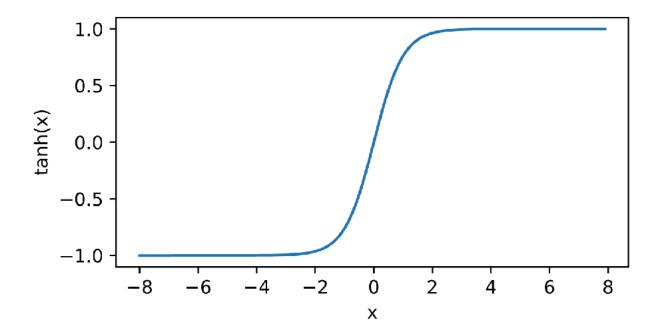
 $h_l = \sigma(w_l \cdot h_{l-1} + b_l) \in \mathbb{R}^{d_l}$

 σ is element-wise nonlinear activation function



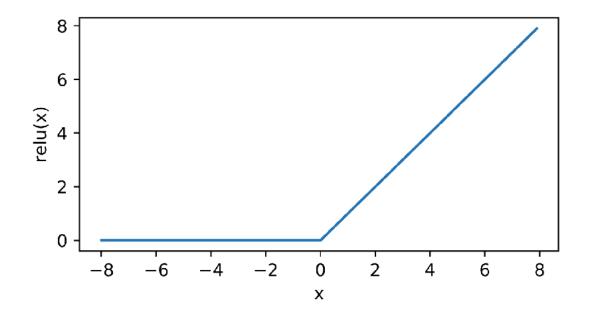
Why do we need an a nonlinear

What-if Layer with no activation?


Sigmoid Activation

Tanh Activation

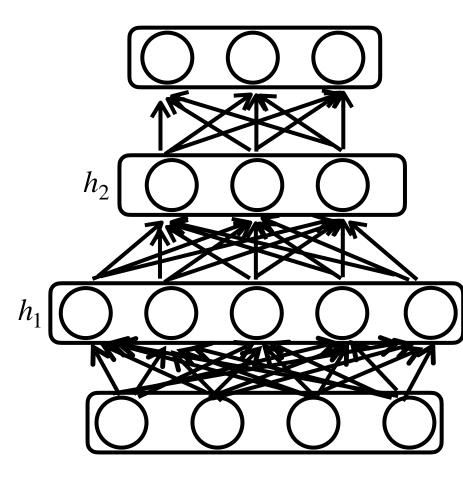
Map inputs into (-1, 1)


$$\tanh(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}$$

ReLU Activation

ReLU: rectified linear unit

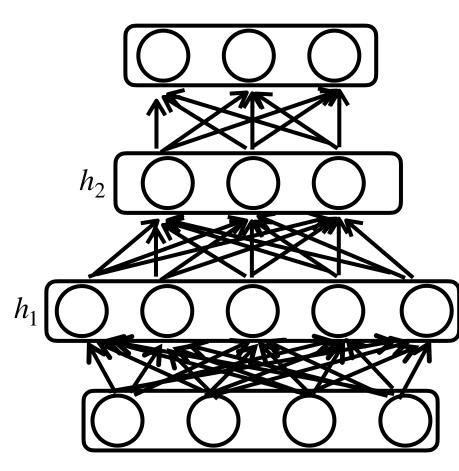
 $\operatorname{ReLU}(x) = \max(x,0)$



Gaussian Error Linear Units (GELU)

smoothed version of RELU
GELU (x) = xP (X ≤ x) = xΦ (x) = x
$$\cdot \frac{1}{2} \left[1 + erf(x/\sqrt{2}) \right]$$

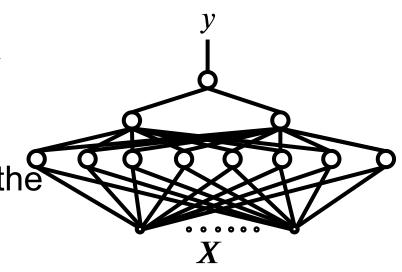
GELU(x) ≈ 0.5x $\left(1 + tanh \left(\sqrt{2/\pi} (x + 0.044715x^3) \right) \right)$


Feedforward Network for Classification

Softmax as the final output layer. $x \in \mathbb{R}^d$ $h_1 = \sigma(w_1 \cdot x + b_1) \in \mathbb{R}^{d_1}$ $h_l = \sigma(w_l \cdot h_{l-1} + b_l) \in \mathbb{R}^{d_l}$ $o = \text{Softmax}(w_I \cdot h_{I-1} + b_I)$ Parameters $\theta = \{w_1, b_1, w_2, b_2, \dots\}$

Hyperparameters for FFN

- Number of layers
- Number of hidden dimension for each layer



The Learning Problem

• Given a training set of inputoutput pairs $D = \{(x_n, y_n)\}_{n=1}^N$

 $-x_n$ and y_n may both be vectors

- To find the model parameters such that the model produces the most accurate output for each training input
 - Or a close approximation of it
- Learning the parameter of a neural network is an instance!
 - The network architecture is given

Risk

• The expected risk is the average risk (loss) over the entire (x, y) data space $R(\theta) = E_{\langle x,y \rangle \in P} \left[\ell(y, f(x; \theta)) \right] = \int \ell(y, f(x; \theta)) dP(x, y)$

The general learning framework: Empirical Risk Minimization (ERM)

Ideally, we want to minimize the expected risk

- but, unknown data distribution ...

- Instead, given a training set of empirical data $D = \{(x_n, y_n)\}_{n=1}^N$
- Minimize the empirical risk over training data

$$\hat{\theta} \leftarrow \arg\min_{\theta} L(\theta) = \frac{1}{N} \sum_{n} \ell(y_n, f(x_n; \theta))$$

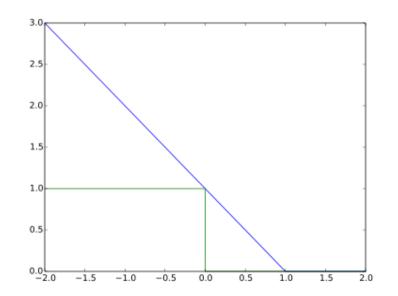
The general learning framework: Empirical Risk Minimization (ERM)

Ideally we want to minimize the expected
 Note: Its really a measure of error, but using standard
 terminology, we will call it a "Loss"

Note 2: The empirical risk $L(\theta)$ is only an empirical approximation to the true risk $R(\theta) = E_{\langle x,y \rangle \in P} \left[\ell(y, f(x; \theta)) \right]$, which is our ultimate optimization objective

Loss function

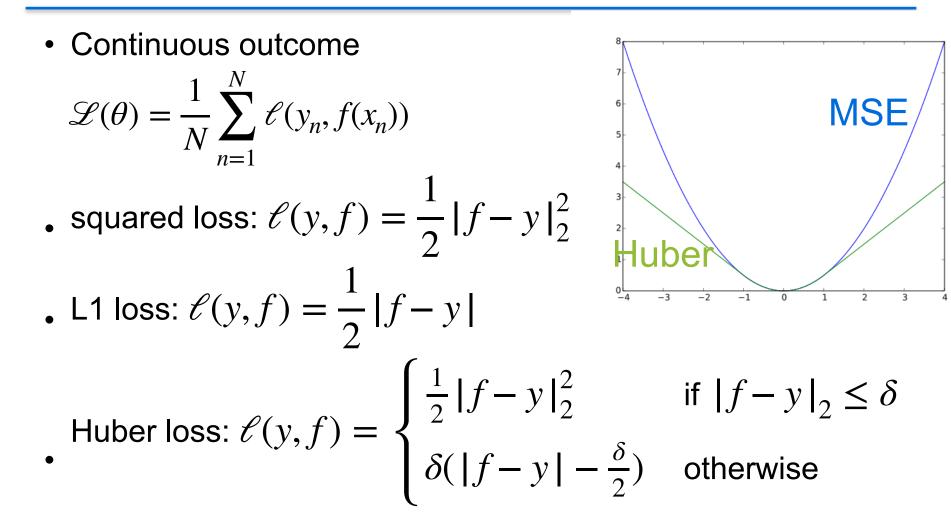
- The empirical risk (loss) is determined by the loss function
- Ideal loss for classification: 0-1 loss


$$l(y, f(x)) = \begin{cases} 0 & \text{if } y = \arg \max_k f(x)_k \\ 1 & \text{otherwise} \end{cases}$$

 Cross entropy loss is one common loss for classification

$$\min \mathscr{L}(\theta) = \frac{1}{N} \sum_{n=1}^{N} H(y_n, f(x_n)) = \frac{1}{N} \sum_{n=1}^{N} - y_n \cdot \log f(x_n)$$

Other Loss for Classification


- Hinge loss
 - Binary classification: $\ell(y, \hat{y}) = \max(0, 1 - y\hat{y})$ When ground-truth y is +1, prediction \hat{y} <0 lead to larger penalty

- Multi-class

$$\ell(y, \hat{y}) = \sum_{k \neq y} \max(0, 1 - \hat{y}_y + \hat{y}_k)$$

Loss for Regression

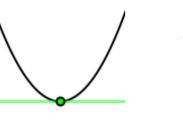
Recap

- General framework to formulate a learning task is through empirical risk minimization (ERM)
- Minimizing cross-entropy is a realization of ERM

Learning the Model

• Finding the parameter θ to minimize the empirical risk over training data $D = \{(x_n, y_n)\}_{n=1}^N$

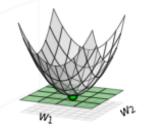
$$\hat{\theta} \leftarrow \arg\min_{\theta} L(\theta) = \frac{1}{N} \sum_{n} \ell(y_n, f(x_n; \theta))$$


- This is an instance of function optimization problem
 - Many algorithms exist (following lectures)

Optimization

 Consider a generic function minimization problem \ / /

$$\min_{x} f(x) \text{ where } f : \mathbb{R}^d \to \mathbb{R}$$


• Optimality condition:

2

w

0

 $\nabla f|_x = 0$, where i-th element of $\nabla f|_x$ is $\frac{\partial f}{\partial x}$

- Linear regression has closed-form solution
- In general, no closed-form solution for the equation.

Generic Iterative Algorithm

- Consider a generic function minimization problem, where x is unknown variable $\min_{x} f(x)$ where $f : \mathbb{R}^{d} \to \mathbb{R}$
- Iterative update algorithm

$$x_{t+1} \leftarrow x_t + \Delta$$

- so that $f(x_{t+1}) \ll f(x_t)$
- How to find Δ

Taylor approximation

•
$$f(x + \Delta x) = f(x) + \Delta x^T \nabla f|_x + \frac{1}{2} \Delta x^T \nabla^2 f|_x \Delta x + \cdots$$

1

• Theorem: if f is twice-differentiable and has continuous derivatives around x, for any small-enough Δx , there

is
$$f(x + \Delta x) = f(x) + \Delta x^T \nabla f|_x + \frac{1}{2} \Delta x^T \nabla^2 f|_z \Delta x$$
,
where $\nabla^2 f|_z$ is the Hessian at z which lies on the line

connecting *x* and $x + \Delta x$

• First-order and second-order Taylor approximation result in gradient descent and Newton's method

Gradient Descent

•
$$f(x_t + \Delta x) \approx f(x_t) + \Delta x^T \nabla f|_{x_t}$$

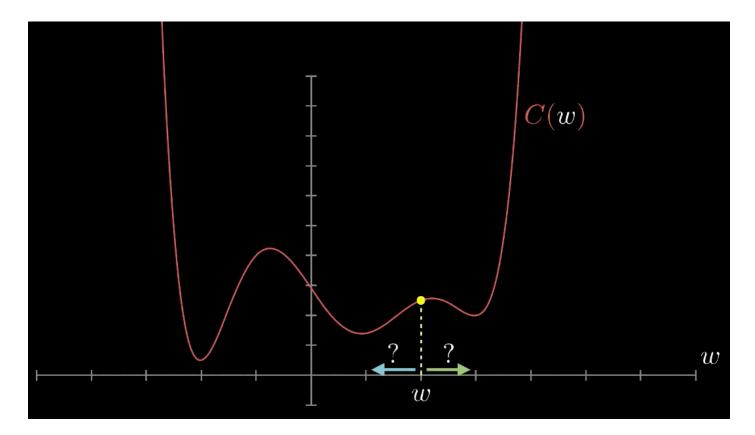
- To make $\Delta x^T \nabla f|_{x_t}$ smallest
- $\Rightarrow \Delta x$ in the opposite direction of $\nabla f|_{x}$ i.e. $\Delta x = -\nabla f|_{x}$
- Update rule: $x_{t+1} = x_t \eta \nabla f|_{x_t}$
- η is a hyper-parameter to control the learning rate

Gradient Descent Algorithm

learning rate eta.

- **1.**set initial parameter $\theta \leftarrow \theta_0$
- 2.for epoch = 1 to maxEpoch or until
 converg:
- 3. for each data (x, y) in D:
- 4. compute error $err(f(x; \theta) y)$ $\frac{\partial err(\theta)}{\partial err(\theta)}$
- 5. compute gradient $g = \frac{\partial \text{err}(\theta)}{\partial \theta}$

6. total_g +=
$$g$$


7. update $\theta = \theta$ - eta * total_g / N

Understand GD

Surrogate function

$$\tilde{f}(x_t) = f(x_t) + \Delta x^T \nabla f|_{x_t} + \frac{1}{2} \|\Delta x\|_2^2$$

GD: Illustration

[credit: gif from 3blue1brown]

Does gradient descent guarantee finding the optimal solution?

- Depends
- Convex and smooth function: yes!
- Non-convex? local optimal

Recap

- First-order optimality condition: gradient=0
- Gradient descent is an iterative algorithm to update the parameter towards the opposite direction of gradient

Next Up

- Gradient calculation using Backpropagation
- More on optimization
- Training/testing procedure
- Generalization problem
- Regularization tricks