165B
Machine Learning
Feedforward Network

Lei Li (leili@cs)
UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and
Mu Li & Alex Smola’s 157 courses on Deep Learning, with
modification

Announcement

* |nstruction continue on zoom till Jan 31

Recap

» Logistic Regression for classification
— single linear layer with Softmax output

* General framework to formulate a learning
task Is through empirical risk minimization
(ERM)

* Minimizing cross-entropy is a realization of
ERM

» Kullback-Leibler Divergence

Logistic Regression

output: prob. of class y @ @

h=W-Xx
exp(/,) Softmax
softmax(h), = h
ZJ eXp(])

p(y|h) = softmax(h),

Logistic Regression for Binary
Classification

output: prob. of class y @ I/

h=w-X : .

i Sigmoid
h) =oc(h) = elral
p(y|h) =o(h) o+] G Sigmoid

Cross-Entropy Loss for Classification

I & I
min £(60) = — ¥’ H,. f(5,)) = — 3’ = log f(x,),,
n=1

n=1

Kullback-Leibler Divergence

* “Distance” between distributions (e.g. truth &
estimate)

Number of extra bits when using the wrong code

Dipllq] —Ja’p(X)log& Ja’p(x)[log g(x)| — [~log p(x)]

Inefficient bits Optimal bits

* Nonnegativity of KL Divergence
- Jensen Inequality
Dipllp] = Jdp(x)log% =0 log Is concave

Diplig] = - [dza(x)log@ > logJ dp I _
p(x) p(x)

Limitation of Logistic Regression

» Single layer has
limited capability
— cannot learn XOR

* The decision
boundary is linear

— cannot learn a
nonlinear decision
boundary

— why?

Feedforward Neural Net (FFN)

 also known as multilayer
perceptron (MLP)

« Layers are connected
sequentially

« Each layer has full-connection
(each unit is connected to all
units of next layer)

— Linear project followed by

— an element-wise nonlinear
activation function

 There is no connection from
output to input

(Yo]

Feedforward Neural Net (FFN)
 also known as multilayer O O O

perceptron (MLP)
x € R?

hl — G(Wl - X + bl) < Rdl

Parameters

9 — {Wl,bl,W2, bz, }

Hidden layers

) hl ZG(WI x+b1) = Rdl
hl = U(Wl . hl—l + bl) & Rdl

o IS element-wise nonlinear
activation function

Why do we

need an a
nonlinear

What-if Layer with no activation?

hl — W1X+b1
h2 — Wghl + bz

hence h, = w, W x + b’

Why do we

need an a
nonlinear

Sigmoid Activation

Map input into (0, 1), a

1 ifx>0

o) = 0 otherwise

soft version of{

sigmoid(x) =

1 + exp(—x)

— — — — — — — — _1_0_.

0.8 A1

0.6 1

~10.0 -75 =50 =25 0

0 2.5 5.0 7.5 10.0
13

Tanh Activation

Map inputs into (-1, 1)

- 2020
1.0 -
0.5 A
% 0.0 A
) —0.5 -
—1.0 - :

14

RelLU Activation

RelLU: rectified linear unit

ReLU(x) = max(x,0)

15

Gaussian Error Linear Units (GELU)

smoothed version of RELU

GELU (x) = xP (X < x) = x® (x) = x - % [1 + erf(x/\/i)]

GELU(x) =~ 0.5x <1 + tanh <\/2/7z(x + 0.044715x3)>>

16

Feedforward Network for Classification

Softmax as the final
output layer.

x € RY

h, = o(w; - x+ b)) € R%
hy=o(w,-h_; +b) € R%
o = Softmax(w; - h;_; + by)

Parameters
9 — {Wl’bl’WZ’ bz, }

Hyperparameters for FFN

« Number of hidden

 Number of layers

QO

dimension for each
layer

The Learning Problem

 Given a training set of input-
output pairs D = {(x,,y,) }2’:1 Y

* To find the model parameters | /‘»‘\'

R | S
such that the model produces (‘\!‘g‘,g,‘&,,‘!}
most accurate output for each =/

— X, and y, may both be vectors

» o0 o0 oo0O0O

training input X

— Or a close approximation of it

* Learning the parameter of a
neural network is an instance!

— The network architecture is given

19

Risk

* The expected risk is the average risk (loss)
over the entire (X, y) data space

R©O) = Ey yep [£0 fx:0))] = Jf(y,ﬂx; 0))dP(x,)

20

The general learning framework:
Empirical Risk Minimization (ERM)

* |deally, we want to minimize the expected
risk
— but, unknown data distribution ...

* Instead, given a training set of empirical

_ N
data D = {(x,,y,)}, _;
* Minimize the empirical risk over training data

0 — aremi L(H)—iZK((x.; 0))
arg 9111 Y, 4 Y, J(X,;

21

The general learning framework:
Empirical Risk Minimization (ERM)

e |ldeallv. we want to minimize the exnected

Note : Its really a measure of error, but using standard
terminology, we will call it a "Loss”

Note 2: The empirical risk L(€) is only an empirical approximation

to the true risk R(0) = E\, ;yep [f(y,f(x; 9))] , which is our ultimate
optimization objective

Note 3: For a given training set the loss is only a function of 6

\ 4 N W‘\vl (4 \JI’Z’J \./vn,))
0 N Ld

n

22

Loss function

* The empirical risk (loss) is determined by the
loss function

* |deal loss for classification: 0-1 loss
0 ify=argmax, f(x)
1<y,f<x>>={ AR S
1 otherwise

* Cross entropy loss is one common loss for
classification

I I
min Z(0) = — > HO,p) = — > =, log f(x,)

23

Other Loss for Classification

e Hinge loss

- Binary classification:
£(y,y) = max(0,1 — yy)

When ground-truth y 1s +1,
prediction y<O0 lead to larger

penalty
- Multi-class

£(y,9) = Y max(0,1 - §, + H)
kFy

24

Loss for Regression

 Continuous outcome

1 & ’
LO) == 2, 0w) j MSE
n=1

1
. squared loss: £(y,) = > | f—y |§

1
. L1loss: £(y, f) = 5 |f =¥l

==y 1 f=yl, <8
Huber loss: £(y, f) =

o(|f—y|— g) otherwise

25

Recap

* General framework to formulate a learning

task is through empirical risk minimization
(ERM)

* Minimizing cross-entropy is a realization of
ERM

26

Learning the Model

» Finding the parameter 6 to minimize the
empirical risk over training data

D = {(Xn, yn)}];;[:l
) — argminL(6) = — 3" £, f0x,:0)
argmgm Y 4 Voo J(X,5

* This is an instance of function optimization
problem
« Many algorithms exist (following lectures)

27

Optimization

« Consider a generic function minimization

problem
min f(x) where f : RY - R \/

w

« Optimality condition:

o 0
Vil = 0, where i-th element of Vf| is —f
0X;
 Linear regression has closed-form solution
* In general, no closed-form solution for the

equation.

28

Generic lterative Algorithm

« Consider a generic function minimization
problem, where x is unknown variable

min f(x) where f: RY > R

X
* |terative update algorithm

- so that f(x,,) < f(x,)
» How to find A

29

Taylor approximation

1
. J(x+ Ax) = f(x) + AxTVf|x + EAxTV2f|XAx 4 ...

 Theorem: if f is twice-differentiable and has continuous
derivatives around x, for any small-enough Ax, there

1
is f(x + Ax) = f(x) + AxTVf|_+ EAxTvzflex,

where V2f|zis the Hessian at z which lies on the line

connecting x and x + Ax

 First-order and second-order Taylor approximation
result in gradient descent and Newton’'s method

30

Gradient Descent

. flx,+ Ax) = f(x,) + AxTVflxt
. To make AxTVf\x smallest

e = Axinthe opposite direction of Vf| ie Ax=—Vf|
.+ Update rule: x,,; = x, — Vf|,

717 IS @ hyper-parameter to control the
learning rate

31

Gradient Descent Algorithm

learning rate eta.
l.set initial parameter 6 < ¢,

2.for epoch = 1 to maxEpoch or until
converg:

total _g += ¢
update 0 = ¢ — eta x total_g / N

3. for each data (x, y) in D:

4. compute error err(f(x; 0) - y)
5. compute gradient g= aeg;e)

6.

/.

32

Understand GD

» Surrogate function

T T 1 2
fe) =) + ATV |, + 1| Axl

33

GD: lllustration

[credit: gif from 3blue1brown]

34

Does gradient descent guarantee
finding the optimal solution?

* Depends
« Convex and smooth function: yes!
* Non-convex? local optimal

35

Recap

 First-order optimality condition: gradient=0

* Gradient descent is an iterative algorithm
to update the parameter towards the
opposite direction of gradient

36

Next Up

Gradient calculation using Back-
propagation

More on optimization
Training/testing procedure
Generalization problem
Regularization tricks

37

