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• Instruction continue on zoom till Jan 31
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Announcement



• Logistic Regression for classification 
– single linear layer with Softmax output 

• General framework to formulate a learning 
task is through empirical risk minimization 
(ERM) 

• Minimizing cross-entropy is a realization of 
ERM 

• Kullback-Leibler Divergence
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Recap
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Logistic Regression

h1

x1 x3x2 …

h2

o1 o2

Softmax
h = W ⋅ x

softmax(h)i =
exp(hi)

∑j exp(hj)

p(y |h) = softmax(h)y

output: prob. of class y

Softmax

Linear
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Logistic Regression for Binary 
Classification

h

x1 x3x2 …

o

Sigmoidh = w ⋅ x

p(y |h) = σ(h) =
eh

eh + 1

output: prob. of class y

Sigmoid

Linear
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Cross-Entropy Loss for Classification

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− log f(xn)yn



D[p∥q] = ∫ dp(x)log
p(x)
q(x)

= ∫ dp(x)[−log q(x)] − [−log p(x)]

• “Distance” between distributions (e.g. truth & 
estimate) 
Number of extra bits when using the wrong code 
 
 

• Nonnegativity of KL Divergence 
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Kullback-Leibler Divergence

Optimal bitsInefficient bits

D[p∥p] = ∫ dp(x)log
p(x)
p(x)

= 0

D[p∥q] = − ∫ dp(x)log
q(x)
p(x)

≥ − log∫ dp(x)
q(x)
p(x)

= 0

Jensen Inequality 
log is concave  



• Single layer has 
limited capability 
– cannot learn XOR 

• The decision 
boundary is linear  
– cannot learn a 

nonlinear decision 
boundary 

– why?
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Limitation of Logistic Regression

o1

x1 x3x2 …

o2



• also known as multilayer 
perceptron (MLP)  

• Layers are connected 
sequentially 

• Each layer has full-connection 
(each unit is connected to all 
units of next layer) 

– Linear project followed by 
– an element-wise nonlinear 

activation function 
• There is no connection from 

output to input
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Feedforward Neural Net (FFN)

h1

h2



• also known as multilayer 
perceptron (MLP)  

 

 
 
 

Parameters 

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

o = Softmax(wL ⋅ hL−1 + bL)

θ = {w1, b1, w2, b2, …}
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Feedforward Neural Net (FFN)

h1

h2



•   
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Hidden layers

Why do we 
need an a 
nonlinear 

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

h1

h2 is element-wise nonlinear 
activation function

σ

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl
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What-if Layer with no activation?

h1 = W1x + b1

h2 = wT
2 h1 + b2

hence h2 = w⊤
2 W1x + b′ 

Linear …

Why do we 
need an a 
nonlinear 

h1

h2
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Map input into (0, 1), a soft version of 
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Sigmoid Activation

sigmoid(x) =
1

1 + exp(−x)

σ(x) = {1 if x > 0
0 otherwise



Map inputs into (-1, 1)
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Tanh Activation

tanh(x) =
1 − exp(−2x)
1 + exp(−2x)



ReLU: rectified linear unit 
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ReLU Activation

ReLU(x) = max(x,0)



smoothed version of RELU 

 GELU (x) = xP (X ≤ x) = xΦ (x) = x ⋅
1
2 [1 + erf(x/ 2)]

GELU(x) ≈ 0.5x (1 + tanh ( 2/π(x + 0.044715x3)))
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Gaussian Error Linear Units (GELU)



Softmax as the final 
output layer. 

 
 
 
 

Parameters 

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

o = Softmax(wL ⋅ hL−1 + bL)

θ = {w1, b1, w2, b2, …}
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Feedforward Network for Classification

h1

h2



• Number of layers  
• Number of hidden 

dimension for each 
layer
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Hyperparameters for FFN

h1

h2



• Given a training set of input-
output pairs  

–  and  may both be vectors 
• To find the model parameters 

such that the model produces the 
most accurate output for each 
training input 

– Or a close approximation of it 
• Learning the parameter of a 

neural network is an instance! 
– The network architecture is given

D = {(xn, yn)}N
n=1

xn yn

𝑦

𝑿
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The Learning Problem



• The expected risk is the average risk (loss) 
over the entire (x, y) data space 

R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))] = ∫ ℓ(y, f(x; θ))dP(x, y)
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Risk



• Ideally, we want to minimize the expected 
risk 
– but, unknown data distribution …  

• Instead, given a training set of empirical 
data  

• Minimize the empirical risk over training data 

   

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))
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The general learning framework: 
Empirical Risk Minimization (ERM)



• Ideally, we want to minimize the expected 
risk 
– but, unknown data distribution …  

• Instead, given a training set of empirical 
data  

• Minimize the empirical risk over training data 

   

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))
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The general learning framework: 
Empirical Risk Minimization (ERM)

Note :  Its really a measure of error, but using standard 
terminology, we will call it a “Loss” 

Note 2: The empirical risk  is only an empirical approximation  
to the true risk , which is our ultimate 
optimization objective 

Note 3: For a given training set the loss is only a function of 

L(θ)
R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))]

θ



• The empirical risk (loss) is determined by the 
loss function 

• Ideal loss for classification: 0-1 loss  

 

• Cross entropy loss is one common loss for 
classification 

l(y, f(x)) = {0  if y = arg maxk f(x)k

1 otherwise

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− yn ⋅ log f(xn)
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Loss function



• Hinge loss 
- Binary classification:

When ground-truth y is +1, 
prediction <0 lead to larger 
penalty
- Multi-class 

ℓ(y, ̂y) = max(0,1 − y ̂y)

̂y

ℓ(y, ̂y) = ∑
k≠y

max(0,1 − ̂yy + ̂yk)
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Other Loss for Classification



• Continuous outcome 

 

• squared loss:  

• L1 loss:  

•
Huber loss: 

ℒ(θ) =
1
N

N

∑
n=1

ℓ(yn, f(xn))

ℓ(y, f ) =
1
2

| f − y |2
2

ℓ(y, f ) =
1
2

| f − y |

ℓ(y, f ) =
1
2 | f − y |2

2  if | f − y |2 ≤ δ

δ( | f − y | − δ
2 )  otherwise 
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Loss for Regression

Huber

MSE



• General framework to formulate a learning 
task is through empirical risk minimization 
(ERM) 

• Minimizing cross-entropy is a realization of 
ERM
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Recap



• Finding the parameter  to minimize the 
empirical risk over training data 

 

    

• This is an instance of function optimization 
problem 
• Many algorithms exist (following lectures)

θ

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))
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Learning the Model



• Consider a generic function minimization 
problem 

 

• Optimality condition: 

 

• Linear regression has closed-form solution 
• In general, no closed-form solution for the 

equation.

min
x

f(x) where f : ℝd → ℝ

∇f |x = 0, where i-th element of ∇f |x  is 
∂f
∂xi
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Optimization



• Consider a generic function minimization 
problem, where x is unknown variable 

 

• Iterative update algorithm  
 

• so that  

• How to find 

min
x

f(x) where f : ℝd → ℝ

xt+1 ← xt + Δ
f(xt+1) ≪ f(xt)

Δ
29

Generic Iterative Algorithm



•  

• Theorem: if f is twice-differentiable and has continuous 
derivatives around x, for any small-enough , there 

is , 

where is the Hessian at z which lies on the line 
connecting  and  

• First-order and second-order Taylor approximation 
result in gradient descent and Newton’s method

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |x Δx + ⋯

Δx

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |z Δx

∇2f |z
x x + Δx
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Taylor approximation



•  

• To make  

•  

• Update rule:  

•  is a hyper-parameter to control the 
learning rate

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt

ΔxT ∇f |xt
 smallest 

⇒ Δx in the opposite direction of ∇f |xt
 i.e. Δx = − ∇f |xt

xt+1 = xt − η∇f |xt

η
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Gradient Descent



learning rate eta. 
1.set initial parameter  
2.for epoch = 1 to maxEpoch or until 
converg: 

3.  for each data (x, y) in D: 
4.    compute error err(f(x; ) - y) 

5.    compute gradient  

6.    total_g += g 
7.  update  =  - eta * total_g / N

θ ← θ0

θ

g =
∂err(θ)

∂θ

θ θ
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Gradient Descent Algorithm



• Surrogate function

f̃(xt) = f(xt) + ΔxT ∇f |xt
+

1
2

∥Δx∥2
2

33

Understand GD
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GD: Illustration

[credit: gif from 3blue1brown]



• Depends 
• Convex and smooth function: yes! 
• Non-convex? local optimal
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Does gradient descent guarantee 
finding the optimal solution?



• First-order optimality condition: gradient=0 
• Gradient descent is an iterative algorithm 

to update the parameter towards the 
opposite direction of gradient
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Recap



• Gradient calculation using Back-
propagation  

• More on optimization 
• Training/testing procedure 
• Generalization problem 
• Regularization tricks
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Next Up


