
165B
Machine Learning

Feedforward Network
Lei Li (leili@cs)

UCSB
Acknowledgement: Slides borrowed from Bhiksha Raj’s 11485 and

Mu Li & Alex Smola’s 157 courses on Deep Learning, with
modification

1

• Instruction continue on zoom till Jan 31

2

Announcement

• Logistic Regression for classification
– single linear layer with Softmax output

• General framework to formulate a learning
task is through empirical risk minimization
(ERM)

• Minimizing cross-entropy is a realization of
ERM

• Kullback-Leibler Divergence

3

Recap

4

Logistic Regression

h1

x1 x3x2 …

h2

o1 o2

Softmax
h = W ⋅ x

softmax(h)i =
exp(hi)

∑j exp(hj)

p(y |h) = softmax(h)y

output: prob. of class y

Softmax

Linear

5

Logistic Regression for Binary
Classification

h

x1 x3x2 …

o

Sigmoidh = w ⋅ x

p(y |h) = σ(h) =
eh

eh + 1

output: prob. of class y

Sigmoid

Linear

6

Cross-Entropy Loss for Classification

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− log f(xn)yn

D[p∥q] = ∫ dp(x)log
p(x)
q(x)

= ∫ dp(x)[−log q(x)] − [−log p(x)]

• “Distance” between distributions (e.g. truth &
estimate)
Number of extra bits when using the wrong code

• Nonnegativity of KL Divergence

7

Kullback-Leibler Divergence

Optimal bitsInefficient bits

D[p∥p] = ∫ dp(x)log
p(x)
p(x)

= 0

D[p∥q] = − ∫ dp(x)log
q(x)
p(x)

≥ − log∫ dp(x)
q(x)
p(x)

= 0

Jensen Inequality
log is concave

• Single layer has
limited capability
– cannot learn XOR

• The decision
boundary is linear
– cannot learn a

nonlinear decision
boundary

– why?

8

Limitation of Logistic Regression

o1

x1 x3x2 …

o2

• also known as multilayer
perceptron (MLP)

• Layers are connected
sequentially

• Each layer has full-connection
(each unit is connected to all
units of next layer)

– Linear project followed by
– an element-wise nonlinear

activation function
• There is no connection from

output to input

9

Feedforward Neural Net (FFN)

h1

h2

• also known as multilayer
perceptron (MLP)

Parameters

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

o = Softmax(wL ⋅ hL−1 + bL)

θ = {w1, b1, w2, b2, …}

10

Feedforward Neural Net (FFN)

h1

h2

•

11

Hidden layers

Why do we
need an a
nonlinear

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

h1

h2 is element-wise nonlinear
activation function

σ

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

12

What-if Layer with no activation?

h1 = W1x + b1

h2 = wT
2 h1 + b2

hence h2 = w⊤
2 W1x + b′

Linear …

Why do we
need an a
nonlinear

h1

h2

12

Map input into (0, 1), a soft version of

13

Sigmoid Activation

sigmoid(x) =
1

1 + exp(−x)

σ(x) = {1 if x > 0
0 otherwise

Map inputs into (-1, 1)

14

Tanh Activation

tanh(x) =
1 − exp(−2x)
1 + exp(−2x)

ReLU: rectified linear unit

15

ReLU Activation

ReLU(x) = max(x,0)

smoothed version of RELU

 GELU (x) = xP (X ≤ x) = xΦ (x) = x ⋅
1
2 [1 + erf(x/ 2)]

GELU(x) ≈ 0.5x (1 + tanh (2/π(x + 0.044715x3)))

16

Gaussian Error Linear Units (GELU)

Softmax as the final
output layer.

Parameters

x ∈ ℝd

h1 = σ(w1 ⋅ x + b1) ∈ ℝd1

hl = σ(wl ⋅ hl−1 + bl) ∈ ℝdl

o = Softmax(wL ⋅ hL−1 + bL)

θ = {w1, b1, w2, b2, …}

17

Feedforward Network for Classification

h1

h2

• Number of layers
• Number of hidden

dimension for each
layer

18

Hyperparameters for FFN

h1

h2

• Given a training set of input-
output pairs

– and may both be vectors
• To find the model parameters

such that the model produces the
most accurate output for each
training input

– Or a close approximation of it
• Learning the parameter of a

neural network is an instance!
– The network architecture is given

D = {(xn, yn)}N
n=1

xn yn

𝑦

𝑿

19

The Learning Problem

• The expected risk is the average risk (loss)
over the entire (x, y) data space

R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))] = ∫ ℓ(y, f(x; θ))dP(x, y)

20

Risk

• Ideally, we want to minimize the expected
risk
– but, unknown data distribution …

• Instead, given a training set of empirical
data

• Minimize the empirical risk over training data

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

21

The general learning framework:
Empirical Risk Minimization (ERM)

• Ideally, we want to minimize the expected
risk
– but, unknown data distribution …

• Instead, given a training set of empirical
data

• Minimize the empirical risk over training data

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

22

The general learning framework:
Empirical Risk Minimization (ERM)

Note : Its really a measure of error, but using standard
terminology, we will call it a “Loss”

Note 2: The empirical risk is only an empirical approximation
to the true risk , which is our ultimate
optimization objective

Note 3: For a given training set the loss is only a function of

L(θ)
R(θ) = E⟨x,y⟩∈P [ℓ(y, f(x; θ))]

θ

• The empirical risk (loss) is determined by the
loss function

• Ideal loss for classification: 0-1 loss

• Cross entropy loss is one common loss for
classification

l(y, f(x)) = {0 if y = arg maxk f(x)k

1 otherwise

min ℒ(θ) =
1
N

N

∑
n=1

H(yn, f(xn)) =
1
N

N

∑
n=1

− yn ⋅ log f(xn)

23

Loss function

• Hinge loss
- Binary classification:

When ground-truth y is +1,
prediction <0 lead to larger
penalty
- Multi-class

ℓ(y, ̂y) = max(0,1 − y ̂y)

̂y

ℓ(y, ̂y) = ∑
k≠y

max(0,1 − ̂yy + ̂yk)

24

Other Loss for Classification

• Continuous outcome

• squared loss:

• L1 loss:

•
Huber loss:

ℒ(θ) =
1
N

N

∑
n=1

ℓ(yn, f(xn))

ℓ(y, f) =
1
2

| f − y |2
2

ℓ(y, f) =
1
2

| f − y |

ℓ(y, f) =
1
2 | f − y |2

2 if | f − y |2 ≤ δ

δ(| f − y | − δ
2) otherwise

25

Loss for Regression

Huber

MSE

• General framework to formulate a learning
task is through empirical risk minimization
(ERM)

• Minimizing cross-entropy is a realization of
ERM

26

Recap

• Finding the parameter to minimize the
empirical risk over training data

• This is an instance of function optimization
problem
• Many algorithms exist (following lectures)

θ

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

27

Learning the Model

• Consider a generic function minimization
problem

• Optimality condition:

• Linear regression has closed-form solution
• In general, no closed-form solution for the

equation.

min
x

f(x) where f : ℝd → ℝ

∇f |x = 0, where i-th element of ∇f |x is
∂f
∂xi

28

Optimization

• Consider a generic function minimization
problem, where x is unknown variable

• Iterative update algorithm

• so that

• How to find

min
x

f(x) where f : ℝd → ℝ

xt+1 ← xt + Δ
f(xt+1) ≪ f(xt)

Δ
29

Generic Iterative Algorithm

•

• Theorem: if f is twice-differentiable and has continuous
derivatives around x, for any small-enough , there

is ,

where is the Hessian at z which lies on the line
connecting and

• First-order and second-order Taylor approximation
result in gradient descent and Newton’s method

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |x Δx + ⋯

Δx

f(x + Δx) = f(x) + ΔxT ∇f |x +
1
2

ΔxT ∇2f |z Δx

∇2f |z
x x + Δx

30

Taylor approximation

•

• To make

•

• Update rule:

• is a hyper-parameter to control the
learning rate

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt

ΔxT ∇f |xt
 smallest

⇒ Δx in the opposite direction of ∇f |xt
 i.e. Δx = − ∇f |xt

xt+1 = xt − η∇f |xt

η

31

Gradient Descent

learning rate eta.
1.set initial parameter
2.for epoch = 1 to maxEpoch or until
converg:

3. for each data (x, y) in D:
4. compute error err(f(x;) - y)

5. compute gradient

6. total_g += g
7. update = - eta * total_g / N

θ ← θ0

θ

g =
∂err(θ)

∂θ

θ θ
32

Gradient Descent Algorithm

• Surrogate function

f̃(xt) = f(xt) + ΔxT ∇f |xt
+

1
2

∥Δx∥2
2

33

Understand GD

34

GD: Illustration

[credit: gif from 3blue1brown]

• Depends
• Convex and smooth function: yes!
• Non-convex? local optimal

35

Does gradient descent guarantee
finding the optimal solution?

• First-order optimality condition: gradient=0
• Gradient descent is an iterative algorithm

to update the parameter towards the
opposite direction of gradient

36

Recap

• Gradient calculation using Back-
propagation

• More on optimization
• Training/testing procedure
• Generalization problem
• Regularization tricks

37

Next Up

