
165B
Machine Learning

Model Evaluation &
Regularization

Lei Li (leili@cs)
UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj’s 11485 and
Mu Li & Alex Smola’s 157 courses on Deep Learning, with

modification

1

• starting on Jan 31, 2022

2

Resume in-person instruction

• Compute the gradient through Back-
propagation algorithm
– with forward pass and backward pass
– backward pass is application of chain rule

3

Recap

• Input: dimensional vector

• Set:
– , is the width of the 0th (input) layer

– ;

• For layer
– For

‣

‣

• Output:
–

𝐷 𝐱 = [𝑥𝑗, 𝑗 = 1…𝐷]

𝐷0 = 𝐷
𝑦(0)

𝑗 = 𝑥𝑗, 𝑗 = 1…𝐷 𝑦(𝑘=1…𝑁)
0 = 𝑥0 = 1

𝑘 = 1…𝑁
𝑗 = 1…𝐷𝑘

𝑧(𝑘)
𝑗 =

𝐷𝑘−1

∑
𝑖=0

𝑤(𝑘)
𝑖,𝑗 𝑦(𝑘−1)

𝑖

𝑦(𝑘)
𝑗 = 𝑓𝑘(𝑧(𝑘)

𝑗)

𝑌 = 𝑦(𝑁)
𝑗 , 𝑗 = 1. . 𝐷𝑁

4

Forward “Pass”

Dk is the size of the kth layer

• Output layer :
– For

‣

‣ for each j

• For layer
– For

‣

‣

‣ for each j

(𝑁)
𝑖 = 1…𝐷𝑁
∂ℓ

∂z(N)
i

= f′ N(z(N)
i)

∂ℓ
∂ ̂y(N)

i∂ℓ
∂w(N)

ij
= y(N−1)

i
∂ℓ

∂z (N)
j

𝑘 = 𝑁 − 1 𝑑𝑜𝑤𝑛𝑡𝑜 1
𝑖 = 1…𝐷𝑘

∂ℓ
∂y(k−1)

i
= ∑

j

w(k)
ij

∂ℓ
∂z(k)

j
∂ℓ

∂z (k)
i

= f′ k(z
(k)
i)

∂ℓ
∂y(k)

i∂ℓ
∂w(k)

ij
= y(k−1)

i
∂ℓ

∂z (k)
j

5

Backward Pass

Called “Backpropagation” because
the derivative of the loss is
propagated “backwards” through
the network

Backward weighted combination of
next layer

Backward equivalent of activation

Very analogous to the forward pass:

learning rate eta.
1.set initial parameter
2.for epoch = 1 to maxEpoch or until
converge:

3. for each data (x, y) in D:
4. compute forward y_hat = f(x;)

5. compute gradient using
backpropagation

6. total_g += g
7. update = - eta * total_g / num_sample

θ ← θ0

θ

g =
∂err(yhat, y)

∂θ

θ θ

6

Gradient Descent for FFN

Model Evaluation

• Training error (=empirical risk): model prediction
error on the training data

• Generalization error (= expected risk): model
error on new unseen data over full population

• Example: practice a GRE exam with past exams
– Doing well on past exams (training error) doesn’t

guarantee a good score on the future exam
(generalization error)

– Student A gets 0 error on past exams by rote learning
– Student B understands the reasons for given

answers
8

Training and Generalization

• Validation dataset: a dataset used to evaluate
the model performance
– E.g. Take out 50% of the training data
– Should not be mixed with the training data (#1

mistake)
• Test dataset: a dataset can be used once, e.g.

– A future exam
– The house sale price I bided
– Dataset used in private leaderboard in Kaggle

9

Validation Dataset and Test Dataset

• After train a model
• Given an input data x
• to compute the prediction for output y
• For regression:

– just model output
• For classification:

–

• Need to do inference for validation and testing

̂y = arg max
i

f(x)i

10

Model Inference

• Useful when insufficient data
• Algorithm:

– Partition the training data into K parts
– For i = 1, …, K

‣ Use the i-th part as the validation set, the rest for
training

‣ Train the model using training set, and evaluate the
performance on validation set.

– Report the averaged the K validation errors
• Popular choices: K = 5 or 10

11

K-fold Cross-Validation

Underfitting
Overfitting

Image credit: hackernoon.com

13

Underfitting and Overfitting

Model
capacity

Data complexity

v Simple Complex

Low ok Underfitting

High Overfitting ok

• The ability to fit variety of
functions

• Low capacity models
struggles to fit training set
– Underfitting

• High capacity models can
memorize the training set
– Overfitting

14

Model Capacity

15

Influence of Model Complexity

• It’s hard to compare
complexity between
different algorithms
– e.g. tree vs neural network

• Given an algorithm family,
two main factors matter:
– The number of parameters
– The values taken by each

parameter

16

Estimate Model Capacity
d + 1

(d + 1)m + (m + 1)k

• A center topic in Statistic
Learning Theory

• For a classification
model, it’s the size of
the largest dataset, no
matter how we assign
labels, there exist a
model to classify them
perfectly

17

VC Dimension

Alexey Chervonenkis

Vladimir Vapnik

• 2-D perceptron: VCdim = 3
– Can classify any 3 points, but not 4 points

(xor)

• Perceptron with N parameters: VCdim =
• Some Multilayer Perceptrons: VCdim =

18

VC-Dimension for Classifiers

N

O(N log2(N))

• Provides theoretical insights why a model
works
– Bound the gap between training error and

generalization error
• Rarely used in practice with deep learning

– The bounds are too loose
– Difficulty to compute VC-dimension for deep

neural networks
• Same for other statistic learning theory tools

19

Usefulness of VC-Dimension

• Multiple factors matters
– # of examples
– # of features in each

example
– temporal/spacial structure
– diversity/coverage

20

Data Complexity

Regularization

• Reduce model complexity by
limiting value range

– Often do not regularize bias b
• Doing or not doing has little

difference in practice
– A small means more

regularization

22

L2 Regularization as Hard Constraint

min ℓ(θ) subject to ∥θ∥2 ≤ λ

λ

• Using Lagrangian multiplier method
• Minimizing the loss plus additional penalty

– Hyper-parameter controls regularization
importance

– : no effect
–

23

L2 Regularization as Soft Constraint

min ℓ(θ) +
λ
2

∥θ∥2

λ = 0

λ → ∞, θ* → 0

λ

24

Illustrate the Effect on Optimal
Solutions

w̃*
w*

w* = arg min ℓ(w, b) +
λ
2

∥w∥2

w̃* = arg min ℓ(w, b)

• Compute the gradient

• Update weight at step t

– Often , so also called weight decay in
deep learning

25

Update Rule - Weight Decay

∂
∂θ (ℓ(θ) +

λ
2

∥θ∥2) =
∂ℓ(θ)

∂θ
+ λθ

θt+1 = (1 − ηλ)θt − η
∂ℓ(θt)

∂θt

ηλ < 1

backprop

26

Weight Decay in Pytorch
import torch

learning_rate = 1e-3
weight_decay = 1.0
optimizer =
torch.optim.SGD(model.parameters()
, lr=learning_rate,
weight_decay=weight_decay)

• Minimizing the loss plus additional penalty

– is the original loss

– is penalty (or regularization term), not
necessary smooth

ℓ(θ)
R(θ)

27

General Penalty

min ℓ(θ) + R(θ)

• Minimizing the loss plus additional penalty

– is the original loss
– using L1 norm as penalty

ℓ(θ)

28

L1 Regularization

min ℓ(θ) + λ |θ |

• is not always differentiable!
• Soft-threshold (Proximal operator):

• Update weight at step t

• Also known as Proximal Gradient Descent

ℓ(θ) + λ |θ |

Sλ(x) = sign(x) max(0, |x | − λ) = sign(x)Relu(|x | − λ)

θ̃t = θt − η
∂ℓ(θt)

∂θt

θt+1 = Sλ(θ̃)

29

L1 Update Rule - Soft Thresholding

• L1 Regularization
– will make parameters sparse (many

parameters will be zeros)
– could be useful for model pruning

• L2 Regularization
– will make the parameter shrink towards 0, but

not necessary 0.

30

Effects of L1 and L2 Regularization

Dropout

• A good model should be
robust under modest
changes in the input
– Dropout: inject noises

into internal layers
(simulating the noise)

32

Motivation

• Add noise into x to get x’, we hope

• Dropout perturbs each element by

33

Add Noise without Bias

E[x′] = x

x′ i = {
0 with probablity p

xi

1 − p otherise

• Often apply dropout on the output of
hidden fully-connected layers

34

Apply Dropout

h = σ(W1x + b1)
h′ = dropout(h)
o = W2h′ + b2

y = softmax(o)

• Dropout is only used in training

• No dropout is applied during inference!
• Pytorch Layer:

35

Dropout in Training and Inference

h′ = dropout(h)

torch.nn.Dropout(p=0.5)

• From Srivastava et al., 2013. Test error for
different architectures on MNIST with and without
dropout
– 2-4 hidden layers with 1024-2048 units

36

Dropout: Typical results

• Generalization error: the expected error on unseen data
(general population)

• Minimizing training loss does not always lead to
minimizing the generalization error

• Under-fitting: model does not have adequate capacity ==>
increase model size, or choose a more complex model

• Over-fitting: validation loss does not decrease while
training loss still does

• Regularization
– L1 ==> more sparse parameters
– L2/Weight decay ==> shrink parameters
– Dropout, equivalent to L2, but as a network Layer

37

Recap

Numerical Stability

• Consider a network with d layers

• Compute the gradient of the loss w.r.t.

39

Gradients for Neural Networks

ht = ft(ht−1) and y = ℓ ∘ fd ∘ … ∘ f1(x)

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of d-t matrices
{

• Two common issues with

40

Two Issues for Deep Neural Networks
d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10

• Assume FFN (without bias for simplicity)

41

Example: FFN

ft(ht−1) = σ(Wtht−1)

∂ht

∂ht−1
= diag (σ′ (Wtht−1))(Wt)T

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′ (Wihi−1))(Wi)T

σ is the activation function

σ′ is the gradient function of σ

• Use ReLU as the activation function

• Elements of may
from

– Leads to large values when d-t is large

42

Gradient Exploding

σ(x) = max(0,x) and σ′ (x) = {1 if x > 0
0 otherwise

d−1

∏
i=t

(Wi)T

1.5100 ≈ 4 × 1017

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′ (Wihi−1))(Wi)T

• Value out of range: infinity value
– Severe for using 16-bit floating points

‣ Range: 6E-5 ~ 6E4

• Sensitive to learning rate (LR)
– Not small enough LR -> large weights ->

larger gradients
– Too small LR -> No progress
– May need to change LR dramatically during

training

43

Issues with Gradient Exploding

• Use sigmoid as the activation function

44

Gradient Vanishing

σ(x) =
1

1 + e−x
σ′ (x) = σ(x)(1 − σ(x))

Small Small

• Use sigmoid as the activation function

• Elements are
products of d-t small values

45

Gradient Exploding

σ(x) =
1

1 + e−x
σ′ (x) = σ(x)(1 − σ(x))

0.8100 ≈ 2 × 10−10

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′ (Wihi−1))(Wi)T

• Gradients with value 0
– Severe with 16-bit floating points

• No progress in training
– No matter how to choose learning rate

• Severe with bottom layers
– Only top layers are well trained
– No benefit to make networks deeper

46

Issues with Gradient Vanishing

Stabilize Training

• Goal: make sure gradient values are in a
proper range
– E.g. in [1e-6, 1e3]

• Multiplication -> plus
– ResNet, LSTM (later lecture)

• Normalize
– Gradient clipping
– Batch Normalization / Layer Normalization (later)

• Proper weight initialization and activation
functions

48

Stabilize Training

• Initialize weights with
random values in a proper
range

• The beginning of training
easily suffers to numerical
instability

– The surface far away from
an optimal can be complex

– Near optimal may be flatter
• Initializing according to

works well for small
networks, but not guarantee
for deep neural networks

49

Weight Initialization

𝒩(0, 0.01) near optimal

random

• Treat both layer outputs and gradients are
random variables

• Make the mean and variance for each layer’s
output are same, similar for gradients

50

Constant Variance for each Layer

𝔼[ht
i] = 0

Var[ht
i] = a

𝔼 [∂ℓ
∂ht

i] = 0 Var [∂ℓ
∂ht

i] = b

Forward Backward

a and b are constants

∀i, t

• Assumptions
– i.i.d ,
– is independent to
– identity activation: with

51

Example: FFN

wt
i, j

ht−1
i

wt
i, j

ht = Wtht−1 Wt ∈ ℝnt×nt−1

𝔼[ht
i] = 𝔼 ∑

j

wt
i, jh

t−1
j = ∑

j

𝔼[wt
i, j]𝔼[ht−1

j] = 0

𝔼[wt
i, j] = 0, Var[wt

i, j] = γt

52

Forward Variance

Var[ht
i] = 𝔼[(ht

i)
2] − 𝔼[ht

i]
2 = 𝔼 ∑

j

wt
i, jh

t−1
j

2

= 𝔼 ∑
j

(wt
i, j)

2

(ht−1
j)

2
+ ∑

j≠k

wt
i, jw

t
i,kht−1

j ht−1
k

= ∑
j

𝔼 [(wt
i, j)

2] 𝔼 [(ht−1
j)

2]
= ∑

j

Var[wt
i, j]Var[ht−1

j] = nt−1γtVar[ht−1
j] nt−1γt = 1

 is the number of units in t-1 layernt−1

• Apply forward analysis as well

53

∂ℓ
∂ht−1

=
∂ℓ
∂ht

Wt (∂ℓ
∂ht−1)

T

= (Wt)T(∂ℓ
∂ht)

T

leads to

Backward Mean and Variance

𝔼 [∂ℓ
∂ht−1

i] = 0

Var [∂ℓ
∂ht−1

i] = ntγtVar [∂ℓ
∂ht

j] ntγt = 1

• Conflict goal to satisfies both
and

• Xavier
– Normal distribution
– Uniform distribution

‣ Variance of is

• Adaptive to weight shape, especially when
 varies

nt−1γt = 1
ntγt = 1

nt

54

Xavier Initialization

γt(nt−1 + nt)/2 = 1 →

𝒩 (0, 2/(nt−1 + nt))
𝒰 (− 6/(nt−1 + nt), 6/(nt−1 + nt))

𝒰[−a, a] a2 /3

γt = 2/(nt−1 + nt)

• Continued training can result in over fitting to
training data
– Track performance on a held-out validation set
– Apply one of several early-stopping criterion to

terminate training when performance on validation
set degrades significantly

error

epochs

training

validation

55

Other heuristics: Early stopping

• Often the derivative will be too high
– When the divergence has a steep slope
– This can result in instability

• Gradient clipping: set a ceiling on derivative value

– Typical value is 5
– Can be easily set in pytorch/tensorflow

𝑖𝑓 𝜕𝑤𝐷 > 𝜃 𝑡h𝑒𝑛 𝜕𝑤𝐷 = 𝜃
𝜃

56

Additional heuristics: Gradient clipping

Loss

w

• Numerical issues in training
– gradient explosion
– gradient vanishing

• Proper initialization of parameters

57

Recap

• Convolutional Neural Networks
• Visual perception:

– Image classification
– Object recognition
– Face detection

58

Next Up

