165B Machine Learning Model Evaluation & Regularization

Lei Li (leili@cs) UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and Mu Li & Alex Smola's 157 courses on Deep Learning, with modification

Resume in-person instruction

• starting on Jan 31, 2022

- Compute the gradient through Backpropagation algorithm
 - with forward pass and backward pass
 - backward pass is application of chain rule

Forward "Pass"

- Input: *D* dimensional vector $\mathbf{x} = [x_j, j = 1...D]$
- Set:

$$-D_0 = D$$
, is the width of the 0th (input) layer
 $-y_j^{(0)} = x_j, \ j = 1...D; \ y_0^{(k=1...N)} = x_0 = 1$

• For layer
$$k = 1...N$$

- For $j = 1...D_k$ D_k is the size of the kth layer
, $z_j^{(k)} = \sum_{i=0}^{D_{k-1}} w_{i,j}^{(k)} y_i^{(k-1)}$
, $y_j^{(k)} = f_k(z_j^{(k)})$
• Output:

Backward Pass

Output layer (N): - For $i = 1...D_N$ $\frac{\partial \ell}{\partial z_i^{(N)}} = f'_N(z_i^{(N)}) \frac{\partial \ell}{\partial \hat{y}_i^{(N)}}$ $\frac{\partial \ell}{\partial w_{ij}^{(N)}} = y_i^{(N-1)} \frac{\partial \ell}{\partial z_j^{(N)}}$ for each j

Called "Backpropagation" because the derivative of the loss is propagated "backwards" through the network

• For layer $k = N - 1 \ downto$ Very analogous to the forward pass:

- For
$$i = 1...D_k$$

 $\frac{\partial \ell}{\partial y_i^{(k-1)}} = \sum_j w_{ij}^{(k)} \frac{\partial \ell}{\partial z_j^{(k)}}$
 $\frac{\partial \ell}{\partial z_i^{(k)}} = f'_k(z_i^{(k)}) \frac{\partial \ell}{\partial y_i^{(k)}}$
 $\frac{\partial \ell}{\partial w_{ij}^{(k)}} = y_i^{(k-1)} \frac{\partial \ell}{\partial z_j^{(k)}}$ for each j

Backward weighted combination of next layer

Backward equivalent of activation

Gradient Descent for FFN

learning rate eta.

- **1.**set initial parameter $\theta \leftarrow \theta_0$
- 2.for epoch = 1 to maxEpoch or until
 converge:
- 3. for each data (x, y) in D:
- 4. compute forward y_hat = $f(x; \theta)$
- 5. compute gradient $g = \frac{\partial err(y_{hat}, y)}{\partial \theta}$ using backpropagation
- 6. total_g += g
- 7. update $\theta = \theta$ eta * total_g / num_sample

Model Evaluation

Training and Generalization

- Training error (=empirical risk): model prediction error on the training data
- Generalization error (= expected risk): model error on new unseen data over full population
- Example: practice a GRE exam with past exams
 - Doing well on past exams (training error) doesn't guarantee a good score on the future exam (generalization error)
 - Student A gets 0 error on past exams by rote learning
 - Student B understands the reasons for given answers

Validation Dataset and Test Dataset

- Validation dataset: a dataset used to evaluate the model performance
 - E.g. Take out 50% of the training data
 - Should not be mixed with the training data (#1 mistake)
- Test dataset: a dataset can be used once, e.g.
 - A future exam
 - The house sale price I bided
 - Dataset used in private leaderboard in Kaggle

Model Inference

- After train a model
- Given an input data x
- to compute the prediction for output y
- For regression:
 - just model output
- For classification:

 $\hat{y} = \arg\max_{i} f(x)_i$

Need to do inference for validation and testing

K-fold Cross-Validation

- Useful when insufficient data
- Algorithm:
 - Partition the training data into K parts
 - For i = 1, ..., K
 - Use the i-th part as the validation set, the rest for training
 - Train the model using training set, and evaluate the performance on validation set.
 - Report the averaged the K validation errors
- Popular choices: K = 5 or 10

Image credit: hackernoon.com

Underfitting and Overfitting

Data complexity

		Simple	Complex
Model capacity	Low	ok	Underfitting
	High	Overfitting	ok

Model Capacity

- The ability to fit variety of functions
- Low capacity models struggles to fit training set
 – Underfitting
- High capacity models can memorize the training set
 - Overfitting

Influence of Model Complexity

Model complexity

Estimate Model Capacity

- It's hard to compare complexity between different algorithms
 - e.g. tree vs neural network
- Given an algorithm family, two main factors matter:
 - The number of parameters
 - The values taken by each parameter

(d+1)m + (m+1)k

VC Dimension

- A center topic in Statistic Learning Theory
- For a classification model, it's the size of the largest dataset, no matter how we assign labels, there exist a model to classify them perfectly

Vladimir Vapnik

Alexey Chervonenkis

VC-Dimension for Classifiers

- 2-D perceptron: VCdim = 3
 - Can classify any 3 points, but not 4 points (xor)

- Perceptron with *N* parameters: VCdim = *N*
- Some Multilayer Perceptrons: VCdim =

 $O(N \log_2(N))$

Usefulness of VC-Dimension

- Provides theoretical insights why a model works
 - Bound the gap between training error and generalization error
- Rarely used in practice with deep learning
 - The bounds are too loose
 - Difficulty to compute VC-dimension for deep neural networks
- Same for other statistic learning theory tools

Data Complexity

- Multiple factors matters
 - # of examples
 - # of features in each example
 - temporal/spacial structure
 - diversity/coverage

Regularization

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

L₂ Regularization as Hard Constraint

 Reduce model complexity by limiting value range

min $\ell(\theta)$ subject to $\|\theta\|^2 \leq \lambda$

- Often do not regularize bias b
 - Doing or not doing has little difference in practice
- A small $\hat{\lambda}$ means more regularization

L₂ Regularization as Soft Constraint

- Using Lagrangian multiplier method
- Minimizing the loss plus additional penalty

$$\min \ \ell(\theta) + \frac{\lambda}{2} \|\theta\|^2$$

- Hyper-parameter λ controls regularization importance
- $-\lambda = 0$: no effect

$$-\lambda \to \infty, \theta^* \to \mathbf{0}$$

Illustrate the Effect on Optimal Solutions

Update Rule - Weight Decay

• Compute the gradient

$$\frac{\partial}{\partial \theta} \left(\ell(\theta) + \frac{\lambda}{2} \|\theta\|^2 \right) = \frac{\partial \ell(\theta)}{\partial \theta} + \lambda \theta$$

- Update weight at step t $\theta_{t+1} = (1 - \eta\lambda)\theta_t - \eta \frac{\partial \ell(\theta_t)}{\partial \theta_t}$ backprop
 - Often $\eta \lambda < 1$, so also called weight decay in deep learning

Weight Decay in Pytorch

import torch

```
learning_rate = 1e-3
weight_decay = 1.0
optimizer =
torch.optim.SGD(model.parameters()
, lr=learning_rate,
weight_decay=weight_decay)
```


Minimizing the loss plus additional penalty

min $\ell(\theta) + R(\theta)$

- $\ell(\theta)$ is the original loss
- $R(\theta)$ is penalty (or regularization term), not necessary smooth

L1 Regularization

Minimizing the loss plus additional penalty

 $\min \ \mathcal{E}(\theta) + \lambda |\theta|$

- $\ell(\theta)$ is the original loss
- using L1 norm as penalty

L1 Update Rule - Soft Thresholding

- $\ell(\theta) + \lambda |\theta|$ is not always differentiable!
- Soft-threshold (Proximal operator):

 $S_{\lambda}(x) = \operatorname{sign}(x) \max(0, |x| - \lambda) = \operatorname{sign}(x)\operatorname{Relu}(|x| - \lambda)$

• Update weight at step *t*

$$\tilde{\theta}_{t} = \theta_{t} - \eta \frac{\partial \ell'(\theta_{t})}{\partial \theta_{t}}$$
$$\theta_{t+1} = S_{\lambda}(\tilde{\theta})$$

Also known as Proximal Gradient Descent

Effects of L1 and L2 Regularization

- L1 Regularization
 - will make parameters sparse (many parameters will be zeros)
 - could be useful for model pruning
- L2 Regularization
 - will make the parameter shrink towards 0, but not necessary 0.

Motivation

- A good model should be robust under modest changes in the input
 - Dropout: inject noises
 into internal layers
 (simulating the noise)

Add Noise without Bias

- Add noise into \mathbf{x} to get $\mathbf{x'}$, we hope $\mathbf{E}[\mathbf{x'}] = \mathbf{x}$
- Dropout perturbs each element by

$$x'_{i} = \begin{cases} 0 & \text{with probablity } p \\ \frac{x_{i}}{1-p} & \text{otherise} \end{cases}$$

Apply Dropout

 Often apply dropout on the output of hidden fully-connected layers

 $\mathbf{h} = \sigma(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$ $\mathbf{h}' = dropout(\mathbf{h})$ $\mathbf{o} = \mathbf{W}_2\mathbf{h}' + \mathbf{b}_2$ $\mathbf{y} = softmax(o)$

Dropout in Training and Inference

- Dropout is only used in training
 h' = dropout(h)
- No dropout is applied during inference!
- Pytorch Layer:

torch.nn.Dropout(p=0.5)

Dropout: Typical results

- From Srivastava et al., 2013. Test error for different architectures on MNIST with and without dropout
 - 2-4 hidden layers with 1024-2048 units

- Generalization error: the expected error on unseen data (general population)
- Minimizing training loss does not always lead to minimizing the generalization error
- Under-fitting: model does not have adequate capacity ==> increase model size, or choose a more complex model
- Over-fitting: validation loss does not decrease while training loss still does
- Regularization
 - L1 ==> more sparse parameters
 - L2/Weight decay ==> shrink parameters
 - Dropout, equivalent to L2, but as a network Layer

Numerical Stability

Gradients for Neural Networks

Consider a network with d layers

$$\mathbf{h}^t = f_t(\mathbf{h}^{t-1})$$
 and $y = \ell \circ f_d \circ \dots \circ f_1(\mathbf{x})$

• Compute the gradient of the loss e w.r.t. \mathbf{W}_t

Multiplication of *d-t* matrices

Two Issues for Deep Neural Networks

• Two common issues with

Gradient Exploding Gradient Vanishing

$1.5^{100} \approx 4 \times 10^{17}$

 $\prod_{i=1}^{d-1} \frac{\partial \mathbf{h}^{i+1}}{\partial \mathbf{h}^{i}}$

 $0.8^{100} \approx 2 \times 10^{-10}$

• Assume FFN (without bias for simplicity)

 $f_t(\mathbf{h}^{t-1}) = \sigma(\mathbf{W}^t \mathbf{h}^{t-1})$ σ is the activation function

 $\frac{\partial \mathbf{h}^{t}}{\partial \mathbf{h}^{t-1}} = \operatorname{diag} \left(\sigma'(\mathbf{W}^{t} \mathbf{h}^{t-1}) \right) (W^{t})^{T} \quad \sigma' \text{ is the gradient function of } \sigma$

$$\prod_{i=t}^{d-1} \frac{\partial \mathbf{h}^{i+1}}{\partial \mathbf{h}^i} = \prod_{i=t}^{d-1} \operatorname{diag} \left(\sigma'(\mathbf{W}^i \mathbf{h}^{i-1}) \right) (W^i)^T$$

Gradient Exploding

Use ReLU as the activation function

 $\sigma(x) = \max(0,x)$ and $\sigma'(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

• Elements of $\prod_{i=t}^{d-1} \frac{\partial \mathbf{h}^{i+1}}{\partial \mathbf{h}^i} = \prod_{i=t}^{d-1} \text{diag} \left(\sigma'(\mathbf{W}^i \mathbf{h}^{i-1}) \right) (W^i)^T \qquad \text{may}$ from $\prod_{i=t}^{d-1} (W^i)^T$

– Leads to large values when *d-t* is large

$$1.5^{100} \approx 4 \times 10^{17}$$

Issues with Gradient Exploding

- Value out of range: infinity value
 - Severe for using 16-bit floating points
 - ► Range: 6E-5 ~ 6E4
- Sensitive to learning rate (LR)
 - Not small enough LR -> large weights -> larger gradients
 - Too small LR -> No progress
 - May need to change LR dramatically during training

Gradient Vanishing

• Use sigmoid as the activation function

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Gradient Exploding

Use sigmoid as the activation function

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \sigma'(x) = \sigma(x)(1 - \sigma(x))$$

• Elements $\prod_{i=t}^{d-1} \frac{\partial \mathbf{h}^{i+1}}{\partial \mathbf{h}^i} = \prod_{i=t}^{d-1} \operatorname{diag} \left(\sigma'(\mathbf{W}^i \mathbf{h}^{i-1}) \right) (W^i)^T$ are products of *d-t* small values $0.8^{100} \approx 2 \times 10^{-10}$

Issues with Gradient Vanishing

- Gradients with value 0
 Sovero with 16 bit floating is
 - Severe with 16-bit floating points
- No progress in training
 - No matter how to choose learning rate
- Severe with bottom layers
 - Only top layers are well trained
 - No benefit to make networks deeper

Stabilize Training

Stabilize Training

- Goal: make sure gradient values are in a proper range
 - E.g. in [1e-6, 1e3]
- Multiplication -> plus
 - ResNet, LSTM (later lecture)
- Normalize
 - Gradient clipping
 - Batch Normalization / Layer Normalization (later)
- Proper weight initialization and activation functions

Weight Initialization

- Initialize weights with random values in a proper range
- The beginning of training easily suffers to numerical instability
 - The surface far away from an optimal can be complex
 - Near optimal may be flatter
- Initializing according to *N*(0, 0.01) works well for small networks, but not guarantee for deep neural networks

Constant Variance for each Layer

- Treat both layer outputs and gradients are random variables
- Make the mean and variance for each layer's output are same, similar for gradients

ForwardBackward
$$\mathbb{E}[h_i^t] = 0$$
 $\mathbb{E}\left[\frac{\partial \ell}{\partial h_i^t}\right] = 0$ $\mathbb{Var}\left[\frac{\partial \ell}{\partial h_i^t}\right] = b$ $\forall i, t$

a and b are constants

Example: FFN

- **Assumptions** $\mathbb{E}[w_{i,j}^t] = 0$, $\operatorname{Var}[w_{i,j}^t] = \gamma_t$
 - i.i.d $w_{i,j}^t$,
 - h_i^{t-1} is independent to $w_{i,j}^t$
 - identity activation: $\mathbf{h}^{t} = \mathbf{W}^{t}\mathbf{h}^{t-1}$ with $\mathbf{W}^{t} \in \mathbb{R}^{n_{t} \times n_{t-1}}$

$$\mathbb{E}[h_i^t] = \mathbb{E}\left[\sum_j w_{i,j}^t h_j^{t-1}\right] = \sum_j \mathbb{E}[w_{i,j}^t] \mathbb{E}[h_j^{t-1}] = 0$$

Forward Variance

$$\operatorname{Var}[h_{i}^{t}] = \mathbb{E}[(h_{i}^{t})^{2}] - \mathbb{E}[h_{i}^{t}]^{2} = \mathbb{E}\left[\left(\sum_{j} w_{i,j}^{t} h_{j}^{t-1}\right)^{2}\right]$$
$$= \mathbb{E}\left[\sum_{j} \left(w_{i,j}^{t}\right)^{2} \left(h_{j}^{t-1}\right)^{2} + \sum_{j \neq k} w_{i,j}^{t} w_{i,k}^{t} h_{j}^{t-1} h_{k}^{t-1}\right]$$
$$= \sum_{j} \mathbb{E}\left[\left(w_{i,j}^{t}\right)^{2}\right] \mathbb{E}\left[\left(h_{j}^{t-1}\right)^{2}\right]$$
$$= \sum_{j} \operatorname{Var}[w_{i,j}^{t}] \operatorname{Var}[h_{j}^{t-1}] = n_{t-1} \gamma_{t} \operatorname{Var}[h_{j}^{t-1}] \qquad \bigwedge \qquad n_{t-1} \gamma_{t} = 1$$

 n_{t-1} is the number of units in t-1 layer

Backward Mean and Variance

Apply forward analysis as well

$$\frac{\partial \ell}{\partial \mathbf{h}^{t-1}} = \frac{\partial \ell}{\partial \mathbf{h}^t} \mathbf{W}^t \quad \text{leads to} \qquad \left(\frac{\partial \ell}{\partial \mathbf{h}^{t-1}}\right)^T = (W^t)^T \left(\frac{\partial \ell}{\partial \mathbf{h}^t}\right)^T$$

$$\mathbb{E}\left[\frac{\partial \mathcal{E}}{\partial h_i^{t-1}}\right] = 0$$

$$\operatorname{Var}\left[\frac{\partial \mathscr{C}}{\partial h_i^{t-1}}\right] = n_t \gamma_t \operatorname{Var}\left[\frac{\partial \mathscr{C}}{\partial h_j^t}\right] \qquad \swarrow \qquad n_t \gamma_t = 1$$

Xavier Initialization

- Conflict goal to satisfies both $n_{t-1}\gamma_t = 1$ and $n_t\gamma_t = 1$
- Xavier $\gamma_t(n_{t-1}+n_t)/2 = 1 \rightarrow \gamma_t = 2/(n_{t-1}+n_t)$
 - Normal distribution $\mathcal{N}\left(0,\sqrt{2/(n_{t-1}+n_t)}\right)$
 - Uniform distribution $\mathscr{U}\left(-\sqrt{6/(n_{t-1}+n_t)},\sqrt{6/(n_{t-1}+n_t)}\right)$
 - Variance of $\mathscr{U}[-a,a]$ is $a^2/3$
- Adaptive to weight shape, especially when *n_t* varies

Other heuristics: Early stopping

- Continued training can result in over fitting to training data
 - Track performance on a held-out validation set
 - Apply one of several early-stopping criterion to terminate training when performance on validation set degrades significantly

Additional heuristics: Gradient clipping

- Often the derivative will be too high
 - When the divergence has a steep slope
 - This can result in instability
- Gradient clipping: set a ceiling on derivative value
- if $\partial_w D > \theta$ then $\partial_w D = \theta$
 - Typical θ value is 5
- Can be easily set in pytorch/tensorflow

Recap

- Numerical issues in training
 - gradient explosion
 - gradient vanishing
- Proper initialization of parameters

Next Up

- Convolutional Neural Networks
- Visual perception:
 - Image classification
 - Object recognition
 - Face detection