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• starting on Jan 31, 2022
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Resume in-person instruction



• Compute the gradient through Back-
propagation algorithm 
– with forward pass and backward pass 
– backward pass is application of chain rule
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Recap



• Input: dimensional vector  

• Set: 
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Forward “Pass”

Dk is the size of the kth layer



• Output layer  : 
– For  

‣
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Backward Pass

Called “Backpropagation” because 
the derivative of the loss is 
propagated “backwards” through 
the network

Backward weighted combination of 
next layer

Backward equivalent of activation

Very analogous to the forward pass:



learning rate eta. 
1.set initial parameter  
2.for epoch = 1 to maxEpoch or until 
converge: 

3.  for each data (x, y) in D: 
4.    compute forward y_hat = f(x; ) 

5.    compute gradient  using 
backpropagation 

6.    total_g += g 
7.  update  =  - eta * total_g / num_sample

θ ← θ0

θ

g =
∂err(yhat, y)

∂θ

θ θ
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Gradient Descent for FFN



Model Evaluation



• Training error (=empirical risk): model prediction 
error on the training data 

• Generalization error (= expected risk): model 
error on new unseen data over full population 

• Example: practice a GRE exam with past exams 
– Doing well on past exams (training error) doesn’t 

guarantee a good score on the future exam 
(generalization error) 

– Student A gets 0 error on past exams by rote learning 
– Student B understands the reasons for given 

answers
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Training and Generalization



• Validation dataset: a dataset used to evaluate 
the model performance 
– E.g. Take out 50% of the training data  
– Should not be mixed with the training data (#1 

mistake) 
• Test dataset: a dataset can be used once, e.g. 

– A future exam 
– The house sale price I bided 
– Dataset used in private leaderboard in Kaggle
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Validation Dataset and Test Dataset 



• After train a model 
• Given an input data x 
• to compute the prediction for output y 
• For regression: 

– just model output 
• For classification: 

–  

• Need to do inference for validation and testing

̂y = arg max
i

f(x)i
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Model Inference



• Useful when insufficient data 
• Algorithm: 

– Partition the training data into K parts 
– For i = 1, …, K 

‣ Use the i-th part as the validation set, the rest for 
training 

‣ Train the model using training set, and evaluate the 
performance on validation set. 

– Report the averaged the K validation errors  
• Popular choices: K = 5 or 10
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K-fold Cross-Validation



Underfitting  
Overfitting 

Image credit: hackernoon.com
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Underfitting and Overfitting

Model 
capacity

Data complexity

v Simple Complex

Low ok Underfitting

High Overfitting ok



• The ability to fit variety of 
functions 

• Low capacity models 
struggles to fit training set 
– Underfitting 

• High capacity models can 
memorize the training set 
– Overfitting
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Model Capacity 
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Influence of Model Complexity



• It’s hard to compare 
complexity between 
different algorithms 
– e.g. tree vs neural network 

• Given an algorithm family, 
two main factors matter: 
– The number of parameters  
– The values taken by each 

parameter
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Estimate Model Capacity 
d + 1

(d + 1)m + (m + 1)k



• A center topic in Statistic 
Learning Theory 

• For a classification 
model, it’s the size of 
the largest dataset, no 
matter how we assign 
labels, there exist a 
model to classify them 
perfectly
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VC Dimension

Alexey Chervonenkis

Vladimir Vapnik



• 2-D perceptron: VCdim = 3  
– Can classify any 3 points, but not 4 points 

(xor) 

• Perceptron with N parameters: VCdim = 
• Some Multilayer Perceptrons: VCdim =
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VC-Dimension for Classifiers

N

O(N log2(N ))



• Provides theoretical insights why a model 
works  
– Bound the gap between training error and 

generalization error  
• Rarely used in practice with deep learning  

– The bounds are too loose 
– Difficulty to compute VC-dimension for deep 

neural networks  
• Same for other statistic learning theory tools

19

Usefulness of VC-Dimension



• Multiple factors matters 
– # of examples 
– # of features in each 

example 
– temporal/spacial structure  
– diversity/coverage
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Data Complexity



Regularization



• Reduce model complexity by 
limiting value range 

– Often do not regularize bias b  
• Doing or not doing has little 

difference in practice 
– A small     means more 

regularization
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L2 Regularization as Hard Constraint

min ℓ(θ) subject to ∥θ∥2 ≤ λ

λ



• Using Lagrangian multiplier method 
• Minimizing the loss plus additional penalty 

– Hyper-parameter    controls regularization 
importance 

–          : no effect 
–
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L2 Regularization as Soft Constraint

min ℓ(θ) +
λ
2

∥θ∥2

λ = 0

λ → ∞, θ* → 0

λ
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Illustrate the Effect on Optimal 
Solutions

w̃*
w*

w* = arg min ℓ(w, b) +
λ
2

∥w∥2

w̃* = arg min ℓ(w, b)



• Compute the gradient 
 
 

• Update weight at step t 

– Often            , so also called weight decay in 
deep learning 

25

Update Rule - Weight Decay

∂
∂θ (ℓ(θ) +

λ
2

∥θ∥2) =
∂ℓ(θ)

∂θ
+ λθ

θt+1 = (1 − ηλ)θt − η
∂ℓ(θt)

∂θt

ηλ < 1

backprop
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Weight Decay in Pytorch
import torch 

learning_rate = 1e-3 
weight_decay = 1.0 
optimizer = 
torch.optim.SGD(model.parameters()
, lr=learning_rate, 
weight_decay=weight_decay) 



• Minimizing the loss plus additional penalty 

–  is the original loss 

–  is penalty (or regularization term), not 
necessary smooth

ℓ(θ)
R(θ)
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General Penalty

min ℓ(θ) + R(θ)



• Minimizing the loss plus additional penalty 

–  is the original loss 
– using L1 norm as penalty

ℓ(θ)
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L1 Regularization

min ℓ(θ) + λ |θ |



•  is not always differentiable! 
• Soft-threshold (Proximal operator):  

 
• Update weight at step t 

 

 

• Also known as Proximal Gradient Descent

ℓ(θ) + λ |θ |

Sλ(x) = sign(x) max(0, |x | − λ) = sign(x)Relu( |x | − λ)

θ̃t = θt − η
∂ℓ(θt)

∂θt

θt+1 = Sλ(θ̃)
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L1 Update Rule - Soft Thresholding



• L1 Regularization 
– will make parameters sparse (many 

parameters will be zeros) 
– could be useful for model pruning 

• L2 Regularization 
– will make the parameter shrink towards 0, but 

not necessary 0. 
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Effects of L1 and L2 Regularization



Dropout



• A good model should be 
robust under modest 
changes in the input 
– Dropout: inject noises 

into internal layers 
(simulating the noise)
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Motivation



• Add noise into x to get x’, we hope  

• Dropout perturbs each element by 
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Add Noise without Bias

E[x′ ] = x

x′ i = {
0 with probablity p

xi

1 − p otherise



• Often apply dropout on the output of 
hidden fully-connected layers

34

Apply Dropout

h = σ(W1x + b1)
h′ = dropout(h)
o = W2h′ + b2

y = softmax(o)



• Dropout is only used in training 

• No dropout is applied during inference! 
• Pytorch Layer:
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Dropout in Training and Inference

h′ = dropout(h)

torch.nn.Dropout(p=0.5)



• From Srivastava et al., 2013.  Test error for 
different architectures on MNIST with and without 
dropout 
– 2-4 hidden layers with 1024-2048 units
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Dropout: Typical results



• Generalization error: the expected error on unseen data 
(general population) 

• Minimizing training loss does not always lead to 
minimizing the generalization error 

• Under-fitting: model does not have adequate capacity ==> 
increase model size, or choose a more complex model 

• Over-fitting: validation loss does not decrease while 
training loss still does 

• Regularization 
– L1 ==> more sparse parameters 
– L2/Weight decay ==> shrink parameters 
– Dropout, equivalent to L2, but as a network Layer
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Recap



Numerical Stability



• Consider a network with d layers 

• Compute the gradient of the loss    w.r.t. 
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Gradients for Neural Networks

ht = ft(ht−1) and y = ℓ ∘ fd ∘ … ∘ f1(x)

∂ℓ
∂Wt

=
∂ℓ
∂hd

∂hd

∂hd−1
…

∂ht+1

∂ht

∂ht

∂Wt

ℓ Wt

Multiplication of d-t matrices
{



• Two common issues with 
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Two Issues for Deep Neural Networks
d−1

∏
i=t

∂hi+1

∂hi

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10



• Assume FFN (without bias for simplicity)
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Example: FFN

ft(ht−1) = σ(Wtht−1)

∂ht

∂ht−1
= diag (σ′ (Wtht−1))(Wt)T

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′ (Wihi−1))(Wi)T

σ is the activation function

σ′  is the gradient function of σ



• Use ReLU as the activation function 

• Elements of                                      may 
from 

– Leads to large values when d-t is large 
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Gradient Exploding 

σ(x) = max(0,x) and σ′ (x) = {1  if x > 0
0 otherwise

d−1

∏
i=t

(Wi)T

1.5100 ≈ 4 × 1017

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′ (Wihi−1))(Wi)T



• Value out of range: infinity value 
– Severe for using 16-bit floating points  

‣ Range: 6E-5  ~ 6E4 

• Sensitive to learning rate (LR) 
– Not small enough LR -> large weights -> 

larger gradients 
– Too small LR -> No progress  
– May need to change LR dramatically during 

training
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Issues with Gradient Exploding



• Use sigmoid as the activation function  
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Gradient Vanishing 

σ(x) =
1

1 + e−x
σ′ (x) = σ(x)(1 − σ(x))

Small Small 



• Use sigmoid as the activation function   

• Elements                                      are 
products of d-t small values
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Gradient Exploding 

σ(x) =
1

1 + e−x
σ′ (x) = σ(x)(1 − σ(x))

0.8100 ≈ 2 × 10−10

d−1

∏
i=t

∂hi+1

∂hi
=

d−1

∏
i=t

diag (σ′ (Wihi−1))(Wi)T



• Gradients with value 0 
– Severe with 16-bit floating points 

• No progress in training 
– No matter how to choose learning rate 

• Severe with bottom layers 
– Only top layers are well trained 
– No benefit to make networks deeper
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Issues with Gradient Vanishing



Stabilize Training



• Goal: make sure gradient values are in a 
proper range 
– E.g. in [1e-6, 1e3] 

•  Multiplication -> plus 
– ResNet, LSTM (later lecture) 

• Normalize 
– Gradient clipping 
– Batch Normalization / Layer Normalization (later)  

• Proper weight initialization and activation 
functions 
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Stabilize Training



• Initialize weights with 
random values in a proper 
range 

• The beginning of training 
easily suffers to numerical 
instability  

– The surface far away from 
an optimal can be complex 

– Near optimal may be flatter  
• Initializing according to                  

works well for small 
networks, but not guarantee 
for deep neural networks

49

Weight Initialization

𝒩(0, 0.01) near optimal

random 



• Treat both layer outputs and gradients are 
random variables 

• Make the mean and variance for each layer’s 
output are same, similar for gradients
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Constant Variance for each Layer

𝔼[ht
i ] = 0

Var[ht
i ] = a

𝔼 [ ∂ℓ
∂ht

i ] = 0 Var [ ∂ℓ
∂ht

i ] = b

Forward Backward

a and b are constants

∀i, t



• Assumptions 
– i.i.d       , 
–      is independent to  
– identity activation:                   with                          
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Example: FFN

wt
i, j

ht−1
i

wt
i, j

ht = Wtht−1 Wt ∈ ℝnt×nt−1

𝔼[ht
i ] = 𝔼 ∑

j

wt
i, jh

t−1
j = ∑

j

𝔼[wt
i, j]𝔼[ht−1

j ] = 0

𝔼[wt
i, j] = 0, Var[wt

i, j] = γt
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Forward Variance 

Var[ht
i ] = 𝔼[(ht

i )
2] − 𝔼[ht

i ]
2 = 𝔼 ∑

j

wt
i, jh

t−1
j

2

= 𝔼 ∑
j

(wt
i, j)

2

(ht−1
j )

2
+ ∑

j≠k

wt
i, jw

t
i,kht−1

j ht−1
k

= ∑
j

𝔼 [(wt
i, j)

2] 𝔼 [(ht−1
j )

2]
= ∑

j

Var[wt
i, j]Var[ht−1

j ] = nt−1γtVar[ht−1
j ] nt−1γt = 1

 is the number of units in t-1 layernt−1



• Apply forward analysis as well
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∂ℓ
∂ht−1

=
∂ℓ
∂ht

Wt ( ∂ℓ
∂ht−1 )

T

= (Wt)T( ∂ℓ
∂ht )

T

leads to

Backward Mean and Variance

𝔼 [ ∂ℓ
∂ht−1

i ] = 0

Var [ ∂ℓ
∂ht−1

i ] = ntγtVar [ ∂ℓ
∂ht

j ] ntγt = 1



• Conflict goal to satisfies both  
and  

• Xavier 
– Normal distribution  
– Uniform distribution 

‣ Variance of               is  

• Adaptive to weight shape, especially when 
 varies

nt−1γt = 1
ntγt = 1

nt
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Xavier Initialization

γt(nt−1 + nt)/2 = 1 →

𝒩 (0, 2/(nt−1 + nt))
𝒰 (− 6/(nt−1 + nt), 6/(nt−1 + nt))

𝒰[−a, a] a2 /3

γt = 2/(nt−1 + nt)



• Continued training can result in over fitting to 
training data 
– Track performance on a held-out validation set 
– Apply one of several early-stopping criterion to 

terminate training when performance on validation 
set degrades significantly

error

epochs

training

validation
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Other heuristics: Early stopping



• Often the derivative will be too high 
– When the divergence has a steep slope 
– This can result in instability 

• Gradient clipping: set a ceiling on derivative value 

– Typical value is 5 
– Can be easily set in pytorch/tensorflow

𝑖𝑓 𝜕𝑤𝐷 >  𝜃 𝑡h𝑒𝑛  𝜕𝑤𝐷 = 𝜃
𝜃 
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Additional heuristics: Gradient clipping

Loss

w



• Numerical issues in training 
– gradient explosion 
– gradient vanishing 

• Proper initialization of parameters
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Recap



• Convolutional Neural Networks 
• Visual perception:  

– Image classification 
– Object recognition 
– Face detection
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Next Up


