165B

Machine Learning Convolutional Neural Networks

Lei Li (leili@cs)
 UCSB

Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and
Mu Li \& Alex Smola's 157 courses on Deep Learning, with
modification

Resume in-person instruction

- starting on Jan 31, 2022

Recap

- Generalization error: the expected error on unseen data (general population)
- Minimizing training loss does not always lead to minimizing the generalization error
- Under-fitting: model does not have adequate capacity ==> increase model size, or choose a more complex model
- Over-fitting: validation loss does not decrease while training loss still does
- Regularization
- L1 ==> more sparse parameters
- L2/Weight decay ==> shrink parameters
- Dropout, equivalent to L2, but as a network Layer
- Numerical issues in training
- gradient explosion \& gradient vanishing
- Proper initialization of parameters
- Gradient clipping
- Early stoping

Underfitting and Overfitting

Image credit: hackernoon.com

Convolution

Problem: Classifying Dog and Cat Images

- Use a good camera
- RGB image has 36M elements
- What is the size of a FFN with a single hidden layer (100 hidden units)?
- How to reduce parameter size?

Where is
 Waldo?

Two Princinles

- Translation Invariance

- Locality

Full Projection in Tensor Form

- Input image: a matrix with size (h, w)
- Projection weights: a 4-D tensors (h,w) by (h', w')
$h_{i, j}=\sum_{k, l} w_{i, j, k, l} x_{k, l}=\sum_{a, b} v_{i, j, a, b} x_{i+a, j+b}$
V is re-indexes W such as that $v_{i, j, a, b}=w_{i, j, i+a, j+b}$
Tensor is a generalization of matrix

Idea \#1 - Translation Invariance

$$
h_{i, j}=\sum_{a, b} v_{i, j, a, b} x_{i+a, j+b}
$$

- A shift in x also leads to a shift in h
- v should not depend on (i,j). Fix via

$$
v_{i, j, a, b}=v_{a, b}
$$

$$
h_{i, j}=\sum_{a, b} v_{a, b} x_{i+a, j+b}
$$

Idea \#2 - Locality

$$
h_{i, j}=\sum_{a, b} v_{a, b} x_{i+a, j+b}
$$

- We shouldn't look very far from $x(i, j)$ in order to assess what's going on at $\mathrm{h}(\mathrm{i}, \mathrm{j})$
- Outside range $|a|,|b|>\Delta$ parameters vanish $v_{a, b}=0$

$$
h_{i, j}=\sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} v_{a, b} x_{i+a, j+b}
$$

2-D Convolution Layer

- input matrix $\mathbf{X}: n_{h} \times n_{w}$
- kernel matrix $\mathbf{W}: k_{h} \times k_{w}$
- b: scalar bias
- output matrix

$$
\mathbf{Y}:\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)
$$

$$
\mathbf{Y}=\mathbf{X} \star \mathbf{W}+b
$$

$y_{i, j}=\sum_{a=1}^{h} \sum_{b=1}^{w} w_{a, b} x_{i+a, j+b}$

- W and b are learnable parameters

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$=$	19	25	
:---	:---				
37	43				

Examples

Examples

Padding

- Given a 32×32 input image
- Apply convolutional layer with 5×5 kernel
-28×28 output with 1 layer
-4×4 output with 7 layers
- Shape decreases faster with larger kernels

- Shape reduces from $n_{h} \times n_{w}$ to

$$
\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)
$$

Padding

Padding adds rows/columns around input

Input					Kernel			Output			
10:0:0:0:0才											
			-..--~					0	3	8	4
0	0	1	20								
1-..			5		0	1		9	19	25	10
: 0	3	4	50	*							
$: 0$	6	7	8 \%		2	3		21	37	43	16
			-					6	7	8	0
:0:0!0!0!0!											

Padding

- Padding p_{h} rows and p_{w} columns, output shape will be
$\left(n_{h}-k_{h}+p_{h}+1\right) \times\left(n_{w}-k_{w}+p_{w}+1\right)$
- A common choice is $p_{h}=k_{h}-1 \quad$ and $p_{w}=k_{w}-1$
- Odd k_{h} : pad $p_{h} / 2$ on both sides
- Even k_{h} : pad $\left\lceil p_{h} / 2\right\rceil$ on top, $\left\lfloor p_{h} / 2\right\rfloor$ on bottom

Stride

- Padding reduces shape linearly with \#layers
- Given a 224×224 input with a 5×5 kernel, needs 44 layers to reduce the shape to 4×4
- Requires a large amount of computation

Stride

- Stride is the \#rows/\#column

Strides of 3 and 2 for height and width

Input
Kernel
Output

$1-\cdots$ -0 0 1 2											
: 0	3	4	5	0 !							
1	6	7	8	0		2	3		6		8

$0 \times 0+0 \times 1+1 \times 2+2 \times 3=8$
$0 \times 0+6 \times 1+0 \times 2+0 \times 3=6$

Stride

- Given stride s_{h} for the height and stride s_{w} for the width, the output shape is

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

- With $p_{h}=k_{h}-1$ and $p_{w}=k_{w}-1$

$$
\left\lfloor\left(n_{h}+s_{h}-1\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}+s_{w}-1\right) / s_{w}\right\rfloor
$$

- If input height/width are divisible by strides $\left(n_{h} / s_{h}\right) \times\left(n_{w} / s_{w}\right)$

Multiple Channels

Multiple Input Channels

- Color image may have three RGB channels
- Converting to grayscale loses information

Multiple Input Channels

- Color image may have three RGB channels
- Converting to grayscale loses information

Multiple Input Channels

- Input is a tensor
- Have a kernel for each channel, and then sum results over channels

Multiple Input Channels

- $\mathbf{X}: c_{i} \times n_{h} \times n_{w} \quad$ input tensor
- $\mathbf{W}: c_{i} \times k_{h} \times k_{w} \quad$ kernel tensor
- Y: $m_{h} \times m_{w} \quad$ output

$$
\mathbf{Y}=\sum_{i=0}^{c_{i}} \mathbf{X}_{i,,:,} \star \mathbf{W}_{i,,,:}
$$

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates a output channel
- Input $\mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernel W: $c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output Y: $c_{o} \times m_{h} \times m_{w}$

$$
\begin{aligned}
& \mathbf{Y}_{i,,,:}=\mathbf{X} \star \mathbf{W}_{i,,,,,:} \\
& \text { for } i=1, \ldots, c_{o}
\end{aligned}
$$

Multiple Input/Output Channels

- Each output channel may recognize a particular pattern

- Input channels kernels recognize and combines patterns in inputs

1×1 Convolutional Layer

$k_{h}=k_{w}=1$ is a popular choice. It doesn't recognize spatial patterns, but fuse channels.

Kernel

Equal to a dense layer with $n_{h} n_{w} \times c_{i}$ input and $c_{o} \times c_{i}$ weight.

2-D Convolution Layer Summary

- Input $\mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernel W: $c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Bias B: c_{o}

$$
\mathbf{Y}=\mathbf{X} \star \mathbf{W}+\mathbf{B}
$$

- Output Y: $c_{o} \times m_{h} \times m_{w}$
- Complexity (number of floating point operations FLOP)

$$
\begin{array}{rlrl}
c_{i} & =c_{o} & =100 & O\left(c_{i} c_{o} k_{h} k_{w} m_{h} m_{w}\right)
\end{array} \quad \text { 1GFLOP }
$$

- 10 layers, 1M examples: 10PF
(CPU: 0.15 TF = 18h, GPU: $12 \mathrm{TF}=14 \mathrm{~min}$)

Quiz

- https://edstem.org/us/courses/16390/ lessons/28985/edit/slides/166358

Pooling Layer

Pooling

- Convolution is sensitive to position
- Detect vertical edges
- We need some degree of invariance to translation
- Lighting, object positions, scales, appearance vary among images

2-D Max Pooling

- Returns the maximal value in the sliding window
Input

0	1	2		
3	4	5		
6	7	8	\quad	2×2 Max Pooling
:---:	:---:			
$\max (0,1,3,4)=4$	\quad	4	5	
:---	:---			
7	8			

2-D Max Pooling

- Returns the maximal value in the sliding window

Vertical edge detectioœonv output
2×2 max pooling

$$
\begin{aligned}
& \text { [[1. 1. 0. 0. } 0 . \\
& \text { [1. 1. 0. 0. } 0 . \\
& \text { [1. 1. 0. 0. } 0 . \\
& \text { [1. 1. 0. 0. } 0 \text {. }
\end{aligned}
$$

Tolerant to

1 pixel

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel
\#output channels = \#input channels

Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
- The average signal strength in a window Max pooling

Average pooling

LeNet Architecture

Handwritten Digit Recognition

An instance of optical character recognition (OCR)

Philip Marlowe portianp 9270 6381 Hollywood Blud * 615 Los Angeles, CA A Doverng

```
Dave Fenutik
vletter, inv
509 Cascuade Are, Suite H
Hood River, OR9フ031
```

97031206000

MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28×28 images
- 10 classes

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2		
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
777	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7			
8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9

ATET LeNet 5 RESEARCH answer:
 0

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998 Gradientbased learning applied to document recognition

Expensive if we have many outputs

LeNet-5

Layer	\#channels	kernel size	stride	activation	feature map size
Input					$32 \times 32 \times 1$
Conv 1	6	5×5	1	tanh	$28 \times 28 \times 6$
Avg Pooling 1		2×2	2		$14 \times 14 \times 6$
Conv 2	16	5×5	1	tanh	$10 \times 10 \times 16$
Avg Pooling 2		2×2	2		$5 \times 5 \times 16$
Conv 3	120	5×5	1	tanh	120
FC 1					84
FC 2					10

LeNet in Pytorch

class LeNet(nn.Module):

```
        def ___init__(self):
        super(LeNet, self).
        self.model = nn.Sequentia\(
        nn.Conv2d(in_channels = 1, out_channels = 6, kernel_size = 5, stride = 1,
padding = 0),
        nn.Tanh(),
        nn.AvgPool2d(kernel_size = 2, stride = 2),
        nn.Conv2d(in_channels = 6, out_channels = 16, kernel_size = 5, stride = 1,
padding = 0),
        nn.Tanh(),
        nn.AvgPool2d(kernel_size = 2, stride = 2),
        nn.Conv2d(in_channe\s = 16, out_channels = 120, kernel_size = 5, stride =
1, padding = 0),
            nn.Flatten(),
        nn.Linear(120, 84),
        nn.Tanh(),
        nn.Linear(84, 10))
def forward(self, x):
    y = self.model(x)
    return y
```


Recap

- Convolutional layer
- Reduced model capacity compared to dense layer
- Efficient at detecting spatial pattens
- High computation complexity
- Control output shape via padding, strides and channels
- Max/Average Pooling layer
- Provides some degree of invariance to translation

Next Up

- More advanced Convolutional neural networks: ResNet

