165B Machine Learning ResNet

Lei Li (leili@cs) UCSB

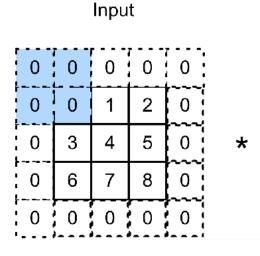
Acknowledgement: Slides borrowed from Bhiksha Raj's 11485 and Mu Li & Alex Smola's 157 courses on Deep Learning, with modification

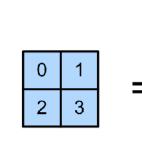
Recap

- Convolutional layer
 - Reduced model capacity compared to dense layer
 - Efficient at detecting spatial pattens
 - High computation complexity
 - Control output shape via padding, strides and channels
- Max/Average Pooling layer
 - Provides some degree of invariance to translation

2-D Convolution Layer

$$y_{i,j} = \sum_{a=1}^{h} \sum_{b=1}^{w} w_{a,b} x_{i+a,j+b}$$

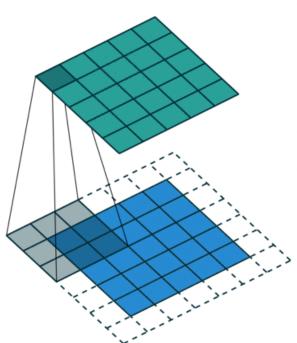




Kernel

0	3	3 8	
9	19	25	10
21	37	43	16
6	7	8	0

Output



 $0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0$

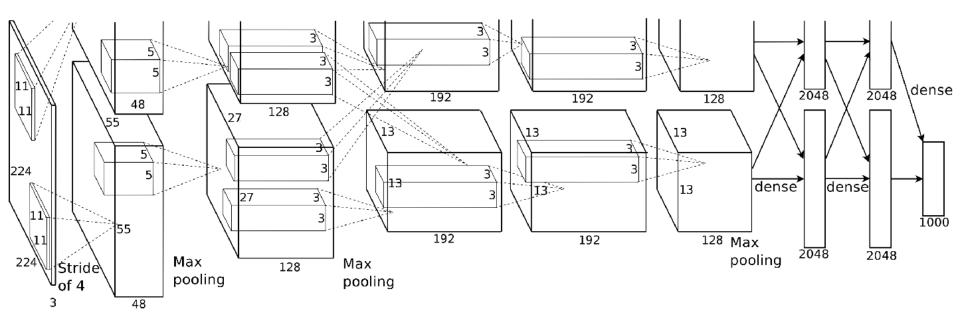
2-D Convolution Layer Summary

- Input $\mathbf{X} : c_i \times n_h \times n_w$
- Kernel $\mathbf{W}: c_o \times c_i \times k_h \times k_w$
- Bias $\mathbf{B}: c_o$
- Output $\mathbf{Y} : c_o \times m_h \times m_w$

$$\mathbf{Y} = \mathbf{X} \star \mathbf{W} + \mathbf{B}$$

- Complexity (number of floating point operations FLOP) $c_i = c_o = 100$ $k_h = h_w = 5$ $m_h = m_w = 64$ $O(c_i c_o k_h k_w m_h m_w)$ 1GFLOP
- 10 layers, 1M examples: 10PF (CPU: 0.15 TF = 18h, GPU: 12 TF = 14min)

AlexNet



SVM

- In the 1990s, algorithms based on support vector machines (SVM) are developed
- Kernel methods
- There are (shallow) models
- Linear classifier with margin loss (hinge loss)

Vladimir Vapnik

Computer Vision Pre-2012

- Extract features
- Describe geometry (e.g. multiple cameras) analytically
- (Non)Convex optimization problems
- Many beautiful theorems ...
- Works very well in theory when the assumptions are satisfied

Feature Engineering

- Feature engineering is crucial
- Feature descriptors, e.g. SIFT (Scaleinvariant feature transform), SURF
- Bag of visual words (clustering)
- Then apply SVM ...

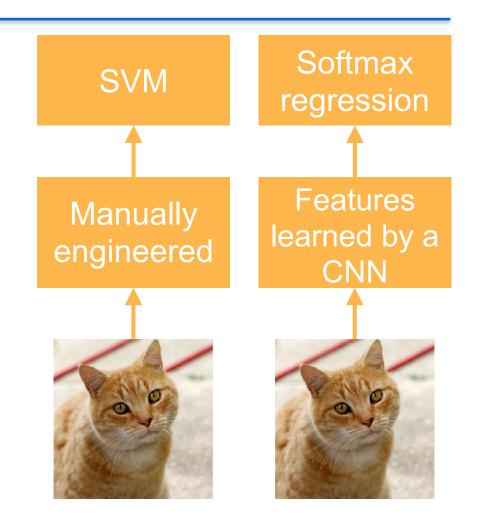
(opencv)

ImageNet (2010)

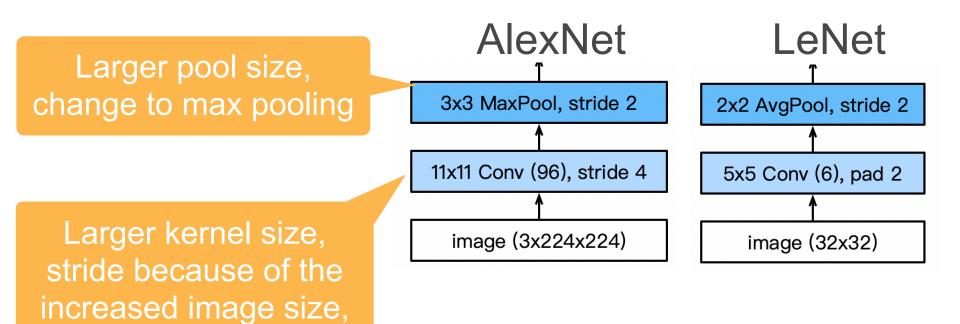
Images	Color images	Gray image for
	with nature	hand-written
	objects	digits
Size	469 x 387	28 x 28
#	1.2 M	60 K
examples		
# classes	1,000	10

AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Key modifications
 - Dropout (regularization)
 - ReLu (training)
 - MaxPooling
- Paradigm shift for computer vision



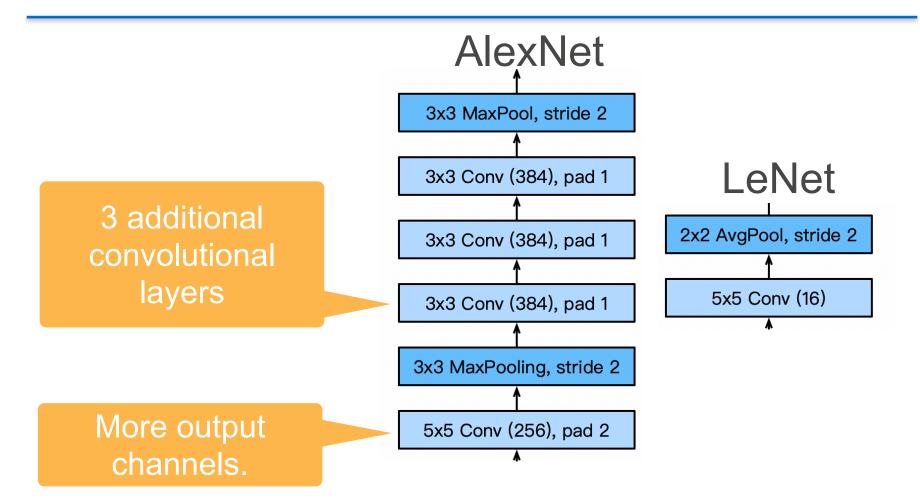
AlexNet Architecture



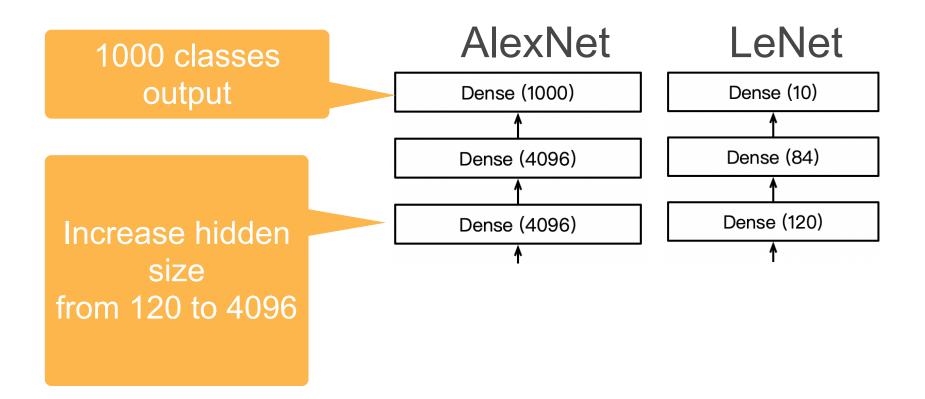
and more output

channels.

AlexNet Architecture



AlexNet Architecture



More Tricks

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Add a dropout layer after two hidden FFN layers (better robustness / regularization)
- Data augmentation

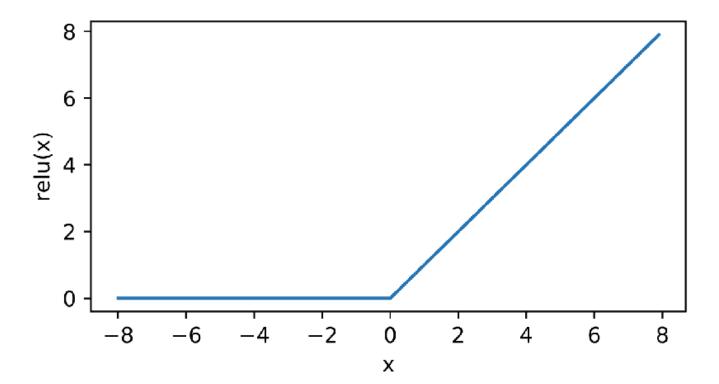
Data Augmentation

 Create additional training data with existing data

ReLU Activation

ReLU: rectified linear unit

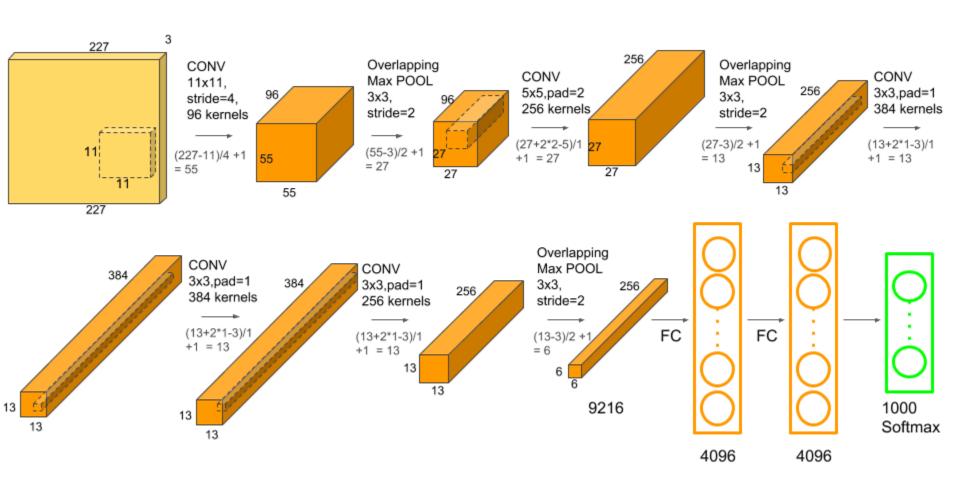
 $\operatorname{ReLU}(x) = \max(x,0)$



Dropout Layer

• For every input x_i , Dropout produces $x'_i = \begin{cases} 0 & \text{with probablity } p \\ \frac{x_i}{1-p} & \text{otherise} \end{cases}$

AlexNet



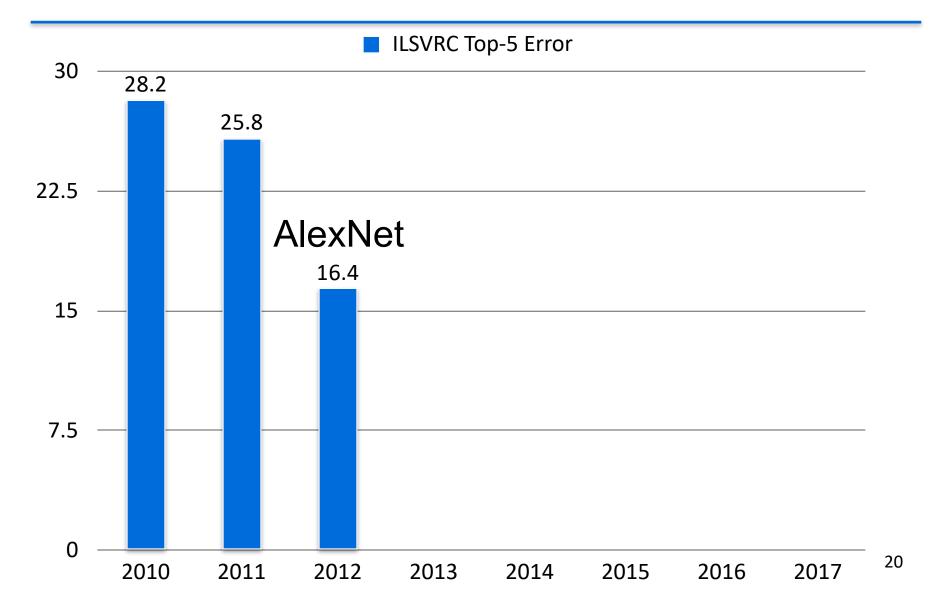
Complexity

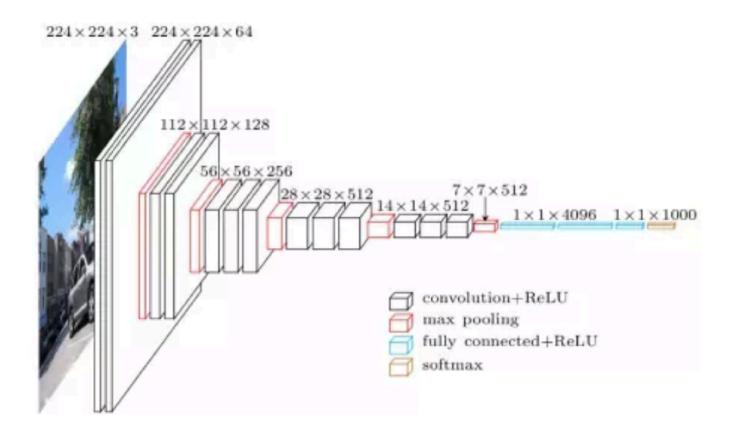
					Dense (1000)	
	#parameters		FLOP		Dense (4096)	
	AlexNet	LeNet	AlexNet	LeNet	↑ Dense (4096)	
Conv1	35K	150	101M	1.2M	Max Pooling	
Conv2	614K	2.4K	415M	2.4M	↑ 3x3 Conv (384)	
Conv3-5	3M		445M		↑ 3x3 Conv (384)	
Dense1	26M	0.48M	26M	0.48M	<u> </u>	
Dense2	16M	0.1M	16M	0.1M	3x3 Conv (384) ♠	
Total	46M	0.6M	1G	4M	Max Pooling ↑	
Increase	11x	1x	250x	1x	5x5 Conv (256)	
					Max Pooling	

11x11 Conv (96), stride 4

image (224x224)

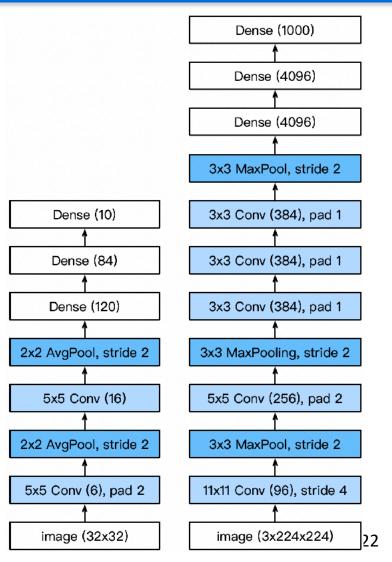
ImageNet Results: ILSVRC Winners





VGG

- AlexNet is deeper and bigger than LeNet to get performance
- Go even bigger & deeper?
- Options
 - More dense layers (too expensive)
 - More convolutions
 - Group into blocks

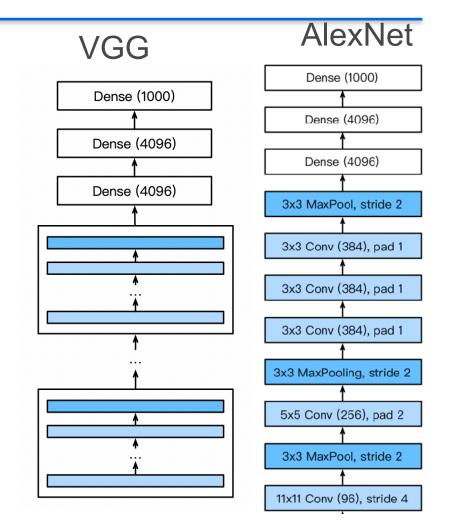


VGG Blocks

- Deeper vs. wider?
 - 5x5 convolutions
 - 3x3 convolutions (more)
 - Deep & narrow better
- VGG block
 - 3x3 convolutions (pad 1)
 (n layers, m channels)
 - 2x2 max-pooling (stride 2)

VGG Architecture

- Multiple VGG blocks followed by dense layers
- Vary the repeating number to get different architectures, such as VGG-16, VGG-19, ...



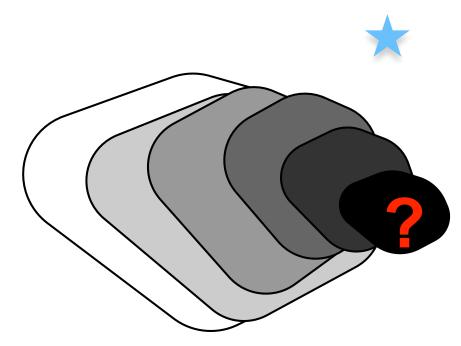
Going Deeper

- LeNet (1995)
 - 2 convolution + pooling layers
 - 2 hidden dense layers
- AlexNet
 - Bigger and deeper LeNet
 - ReLu, Dropout, preprocessing
- VGG
 - Bigger and deeper AlexNet (repeated VGG blocks)

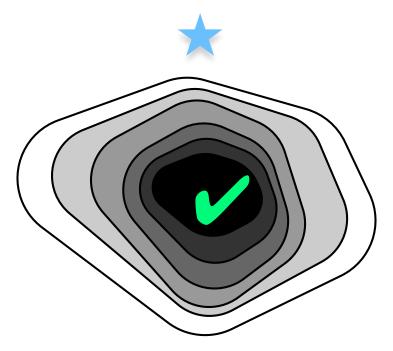
Residual Networks

Best paper CVPR 2016

Does adding layers improve accuracy?



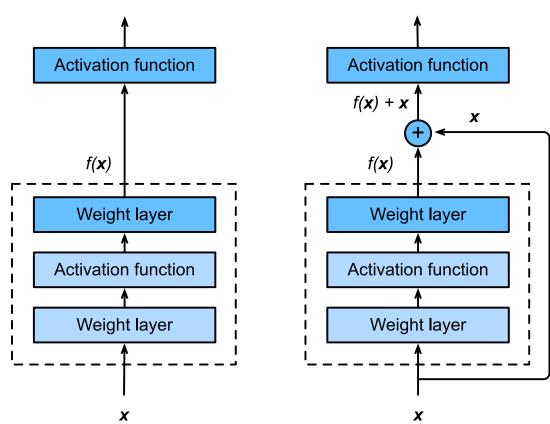
generic function classes



nested function classes

Residual Networks

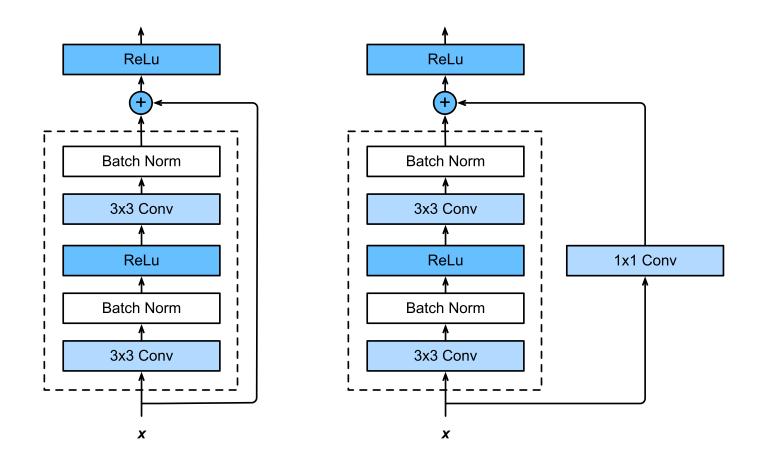
- Adding a layer
 changes function
 class
- We want to add to the function class
- 'Taylor expansion' style f(x) = x + g(x) parametrization



28

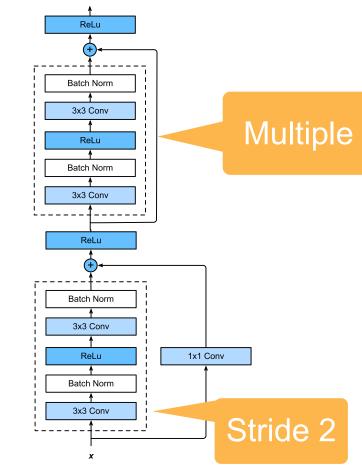
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition. 2016

ResNet Block in detail



ResNet Module

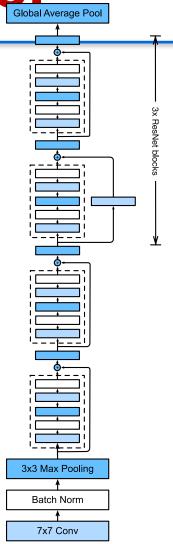
- Downsample per module (stride=2)
- Enforce some nontrivial nonlinearity per module (via 1x1 convolution)
- Stack up in blocks



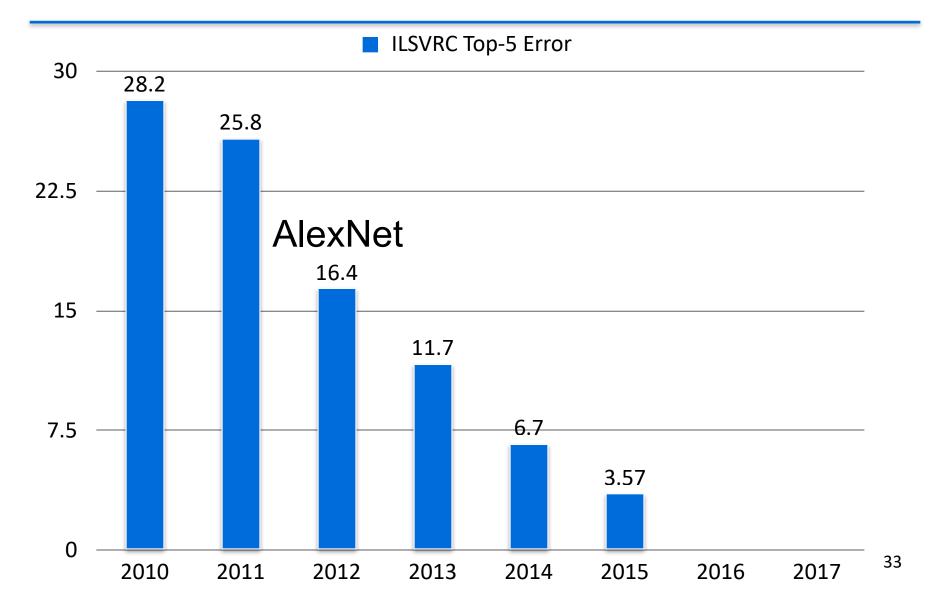
```
blk = nn.Sequential()
for i in range(num_residuals):
    if i == 0 and not first_block:
        blk.add(Residual(num_channels,
            use_1x1conv=True, strides=2))
    else:
        blk.add(Residual(num_channels))
```

Putting it all together

- Same block structure as e.g. VGG or GoogleNet
- Residual connection to add to expressiveness
- Pooling/stride for dimensionality reduction
- Batch Normalization for capacity control



ImageNet Results: ILSVRC Winners



Notes

- ResNet won the champion for ILSVRC 2015
- The ResNet paper won the best paper award from CVPR 2016 (one of the leading CV conferences)
- Kaimin He won multiple best papers.

Papers of Kaimin He

- Exploring Simple Siamese Representation Learning. CVPR Best Paper Honorable Mention, 2021
- Group Normalization. ECCV Best Paper Honorable Mention, 2018

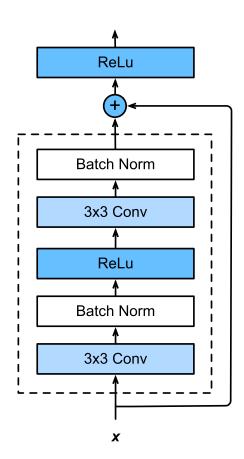
- Mask R-CNN. ICCV Best Paper Award (Marr Prize), 2017
- Focal Loss for Dense Object Detection. ICCV Best Student Paper Award, 2017
- Deep Residual Learning for Image Recognition.
 CVPR Best Paper Award, 2016
- Single Image Haze Removal using Dark Channel Prior. CVPR Best Paper Award, 2009

ResNext

Reducing the cost of Convolutions

- Parameters
 - $k_h \cdot k_w \cdot c_i \cdot c_o$
- **Computation** $m_h \cdot m_w \cdot k_h \cdot k_w \cdot c_i \cdot c_o$
- Slicing convolutions (Inception v4)
 e.g. 3x3 vs. 1x5 and 5x1
- Break up channels (mix only within)

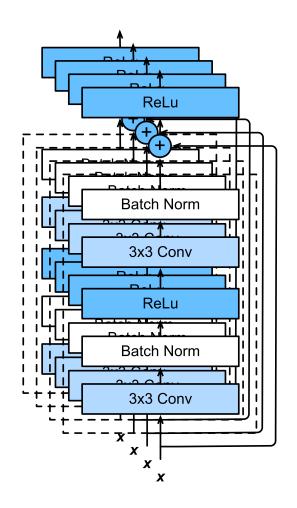
$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot \frac{c_i}{b} \cdot \frac{c_o}{b} \cdot b$$



Reducing the cost of Convolutions

- Parameters
 - $k_h \cdot k_w \cdot c_i \cdot c_o$
- **Computation** $m_h \cdot m_w \cdot k_h \cdot k_w \cdot c_i \cdot c_o$
- Slicing convolutions (Inception v4)
 e.g. 3x3 vs. 1x5 and 5x1
- Break up channels (mix only within)

$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot \frac{c_i}{b} \cdot \frac{c_o}{b} \cdot b$$



RexNext budget

- Slice blocks into 32 sub-blocks
- Can use more dimensions
- Higher accuracy

stage	output	ResNet-50		ResNeXt-50 (32×4d)				
conv1	112×112	7×7, 64, stride 2		7×7, 64, stride 2				
conv2 56		3×3 max pool, stride 2		3×3 max pool, stride 2				
	56×56	1×1,64		1	×1	128		×3
	20720	3×3, 64	×3	3	3×3	128,	C=32	
		1×1,256			$\times 1$	256		
conv3		1×1, 128		[]	×1	256	1	×4
	28×28	3×3, 128	$\times 4$	3	3×3	256,	C=32	
		1×1, 512		1	×1	512	_	
conv4	14×14	1×1, 256	×6	<u> </u>	×1	512	Ī	
		3×3, 256		3	3×3	512,	C=32	$\times 6$
		1×1, 1024		1	$\times 1$	1024		
conv5	7×7	1×1, 512	×3	 1	×1,	1024]
		3×3, 512		3	×3,	1024	C=32	×3
		1×1, 2048			×1,	2048		
11	global average pool		global average pool					
	1×1	1000-d fc, softmax		1000-d fc, softmax				
# params.		25.5×10^{6}		25.0 ×10 ⁶				
FLOPs		4.1 ×10 ⁹		4.2 ×10 ⁹				

AlexNet

- 11 layers, bigger convolusion
- ReLu, Dropout, preprocessing
- VGG
 - Bigger and deeper AlexNet (repeated VGG blocks)
 - VGG-16 and VGG-19

ResNet

- 50 or 153 layers
- Residual connection

Next Up

Advanced optimization methods