
165B
Machine Learning

Optimization Methods
Lei Li (leili@cs)

UCSB
Acknowledgement: Slides borrowed from Bhiksha Raj’s 11485 and

Mu Li & Alex Smola’s 157 courses on Deep Learning, with
modification

1

• Starting Feb 7. moving to Monday 4-5pm.
• On zoom or in person (HFH 2121)

2

Change of Office Hour

Convergence of Gradient
Descent

• Finding the parameter to minimize the
empirical risk over training data

• Start from initial value
• Update rule:

θ

D = {(xn, yn)}N
n=1

̂θ ← arg min
θ

L(θ) =
1
N ∑

n

ℓ(yn, f(xn; θ))

θt+1 = θt − η∇L(θt)

4

Gradient Descent

• Assume f is convex, and its gradient is
Lipschitz continuous with constant L

• If use learning rate , after T steps

– Convergence rate
– To get , needs iterations

5

Convergence Rate

∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥

f(xT) − f(x*) ≤
∥x0 − x*∥2

2ηT

η ≤ 1/L

O(1/T)

f(xT) − f(x*) ≤ ϵ O(1/ϵ)

• Gradient L-Lipschitz means

• Plug in

• Take

6

Proof

f(y) ≤ f(x) + ∇f(x)T(y − x) +
L
2

∥y − x∥2

y = x − η∇f(x)

f(y) ≤ f(x) − (1 −
Lη
2) η∥∇f(x)∥2

0 < η ≤ 1/L

f(y) ≤ f(x) −
η
2

∥∇f(x)∥2
f decreases
every time

• By the convexity:
• Plug in to

7

Proof II
f(x) ≤ f (x*) + ∇f(x)T(x − x*)

f(y) ≤ f(x*) + ∇f(x)T(x − x*) −
η
2

∥∇f(x)∥2

f(y) ≤ f(x) −
η
2

∥∇f(x)∥2

f(y) − f (x*) ≤ (2η∇f(x)T(x − x*) − η2∥∇f(x)∥2)/2η

= (∥x − x*∥2 + 2η∇f(x)T(x − x*) − η2∥∇f(x)∥2 − ∥x − x*∥2)/2η

= (∥x − x*∥2 − ∥x − η∇f(x) − x*∥2)/2η

= (∥x − x*∥2 − ∥y − x*∥2)/2η

• Sum all T steps

• f is decreasing every time:

8

Proof III

T

∑
t=1

f(xt) − f(x*) ≤
T

∑
t=1

(∥xt−1 − x*∥2 − ∥xt − x*∥2)/2η

= (∥x0 − x*∥2 − ∥xT − x*∥2)/2η ≤ ∥x0 − x*∥2/2η

f(xT) − f(x*) ≤
1
T

T

∑
t=1

f(xt) − f(x*) ≤
∥x0 − x*∥2

2ηT

• f is the sum of loss over all training data, x
is the learnable parameters

• f is often not convex, so the convergence
analysis before cannot be applied

9

Apply to Deep Learning

f(x) =
1
n

n

∑
i=0

ℓi(x) ℓi(x) the loss for the i-th example

• Instead of compute the full
gradient, at each step,
randomly select a sample

• Compare to gradient descent

ti
xt = xt−1 − ηt ∇ℓti(xt−1)

xt = xt−1 − η∇f(xt−1)

f(x) =
1
n

n

∑
i=0

ℓi(x)

10

Stochastic Gradient Descent

• Instead of full gradient, evaluate and
update on random minibatch of data
samples Bt

xt+1 = xt −
η

|Bt | ∑
tn∈Bt

∇ℓtn(xt)

11

Minibatch Stochastic Gradient Descent

• Benefits:
– Pre-step cost is smaller (and independent of

sample size)
– only need to compute one/batch gradient at a

time, smaller memory consumption
• Note stochastic gradient is unbiased

estimate of the full gradient at each step
E[∇ℓtn(θ)] = ∇ℓ(θ)

12

Stochastic Gradient Descents

• SGD typically use diminishing step sizes,
e.g.

• Why not fixed learning rate?
ηt = 1/t

13

Learning rate

• Assume f is convex with a diminishing learning
rate , e.g.

• Under the same assumption, for gradient descent

• Assume gradient L-Lipschitz and fixed

– But does not improve for SGD

ηt = 1/t

η

14

Convergence Rate

𝔼[f(xT)] − f(x*) = O(1/ T)

f(xT) − f(x*) = O(1/ T)

f(xT) − f(x*) = O(1/T)

• Does not diminish the learning rate so
dramatically
– We don’t care about optimizing to high

accuracy
• Despite converging slower, SGD is way

faster on computing the gradient than GD
in each iteration
– Specially for deep learning with complex

models and large-scale datasets

15

In Practice

16

Example: Logistic Regression

credit: R. Tibshirani

17

Convergence in terms of computation

credit: R. Tibshirani

• SGD is effective in terms of per-iteration
cost/memory

• but SGD is slow to converge for strongly
convex functions

• New wave of “variance reduction”
techniques show modified SGD can
converge much faster for finite sums
– e.g. SVRG

18

Summary

• The momentum method maintains a running average of all gradients
until the current step

– Typical value is 0.9
• The running average steps

– Get longer in directions where gradient retains the same sign
– Become shorter in directions where the sign keeps flipping

vt+1 = βvt − η∇ℓ(xt)
xt+1 = xt + vt

𝛽

Plain gradient update With momentum

19

Momentum Method

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the historical average step

vt+1 = βvt − η∇ℓ(xt)

20

Momentum Method

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the historical average step

vt+1 = βvt − η∇ℓ(xt)

21

Momentum Method

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the historical average step

– which is a running average

vt+1 = βvt − η∇ℓ(xt)
xt+1 = xt + vt

22

Momentum Method

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the historical average step

– which is a running average

vt+1 = βvt − η∇ℓ(xt)
xt+1 = xt + vt

23

Momentum Method

• The momentum method

• Incremental SGD and mini-batch gradients tend to
have high variance

• Momentum smooths out the variations
– Smoother and faster convergence

vt+1 = βvt − η∇ℓ(xt)

24

SGD with Momentum Updates

SGD instance or
minibatch loss

• Momentum update steps are actually computed in two stages
– First: We take a step against the gradient at the current location
– Second: Then we add a scaled version of the previous step

• The procedure can be made more optimal by reversing the
order of operations..

25

Momentum Method
1

2

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:

– First extend by the (scaled) historical average

– Then compute the gradient at the resultant position

– Add the two to obtain the final step

26

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient at the resultant position
– Add the two to obtain the final step

27

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

28

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

29

Nestorov’s Accelerated Gradient

x′ t+1 = xt + βvt

vt+1 = βvt − η∇ℓ(x′ t+1)
xt+1 = xt + vt

30

Nestorov’s Accelerated Gradient

• Comparison with momentum (example
from Hinton)

• Converges much faster

31

Nestorov’s Accelerated Gradient

• Momentum and Nestorov’s method improve
convergence by normalizing the mean of the
derivatives

• More recent methods take this one step further by
also considering their variance
– RMS Prop
– Adagrad
– AdaDelta
– ADAM: very popular in practice
– …

32

Adaptive Gradient Methods

• Observation: Steps in “oscillatory” directions show large total
movement
– In the example, total motion in the vertical direction is much greater

than in the horizontal direction
– Can happen even when momentum or Nesterov are used

• Improvement: Dampen step size in directions with high motion
– Second order moments

33

Smoothing the trajectory

1 2
3

4
5

Step X component Y component

1 1 +2.5
2 1 -3

3 2 +2.5

4 1 -2

5 1.5 1.5

• Modify usual gradient-based update:
– Scale updates in every component in inverse proportion to the total

movement of that component in recent past
‣ According to their variation (not just their average)

• This will change the relative update sizes for the individual
components
– In the above example it would scale down Y component
– And scale up X component (in comparison)

• We will see two popular methods that embody this principle… 34

Normalizing steps by second moment

• Notation:
– Updates are by parameter

– Derivative of loss w.r.t any individual parameter is shown as
‣ Batch or minibatch loss, or individual divergence for batch/minibatch/

SGD

– The squared derivative is
‣ Short-hand notation represents the squared derivative, not the second

derivative

– The mean squared derivative is a running estimate of the average
squared derivative. We will show this as

• Modified update rule: We want to
– scale down updates with large mean squared derivatives
– scale up updates with small mean squared derivatives

x g

g2 = (∇ℓ(x))2

E[g2]

35

Adaptive Gradient

• AdaGrad (Duchi, Hazan, and Singer 2010)
very popular adaptive method.

• Element-wise computation

Gt+1 = Gt + ∇ℓ(xt)2

xt+1 = xt − η
1

Gt+1 + ϵ
∇ℓ(xt)

36

AdaGrad

• AdaGrad (Duchi, Hazan, and Singer 2010) very
popular adaptive method.

• Benefits:
• AdaGrad does not require tuning learning rate
• Actual learning rate will decrease
• Can drastically improve over SGD

Gt+1 = Gt + ∇ℓ(xt)2

xt+1 = xt − η
1

Gt+1 + ϵ
∇ℓ(xt)

η

37

AdaGrad

element-wise

• https://edstem.org/us/courses/16390/
lessons/29666/slides/170130

38

Quiz

• Similar to AdaGrad, accumulate the squared
gradients, but with running average
• Adagrad denominator monotonically increase ==>

diminishing updates for parameters
• why not decay the denominator

•

Gt+1 = βGt + (1 − β)∇ℓ(xt)2

xt+1 = xt − η
1

Gt+1 + ϵ
∇ℓ(xt)

39

RMSProp

element-wise

• RMS prop only considers a second-moment normalized version of the
current gradient

• ADAM utilizes a smoothed version of the momentum-augmented
gradient

– Considers both first and second moments

mt+1 = β1mt − (1 − β1)∇ℓ(xt)
vt+1 = β2vt + (1 − β2)(∇ℓ(xt))2

m̂t+1 =
mt+1

1 − βt+1
1

̂vt+1 =
vt+1

1 − βt+1
2

xt+1 = xt −
η

̂vt+1 + ϵ
m̂t+1

40

ADAM: RMSprop + Momentum

• RMS prop only considers a second-moment normalized version of the
current gradient

• ADAM utilizes a smoothed version of the momentum-augmented
gradient

– Considers both first and second moments

mt+1 = β1mt − (1 − β1)∇ℓ(xt)
vt+1 = β2vt + (1 − β2)(∇ℓ(xt))2

m̂t+1 =
mt+1

1 − βt+1
1

̂vt+1 =
vt+1

1 − βt+1
2

xt+1 = xt −
η

̂vt+1 + ϵ
m̂t+1

41

ADAM: RMSprop + Momentum

Why?

• Many:
– AdaDelta
– AdaMax
– …

• Generally no explicit learning rate to optimize
– But come with other hyper parameters to be optimized
– Typical params:

‣ AdaGrad: ,
‣ RMSProp: ,
‣ ADAM: , ,

𝜂 = 0.001
𝜂 = 0.001 β = 0.9

𝜂 = 0.001 β1 = 0.9 β2 = 0.999

42

Other variants of the same theme

43

Visualization

https://github.com/lilipads/gradient_descent_viz

• Second-order method

•

• Let gradient , Hessian

• Let

• updated on stochastic minibatch for large data

f(xt + Δx) ≈ f(xt) + ΔxT ∇f |xt
+

1
2

ΔxT ∇2f |xt
Δx

gt = ∇f |xt
Ht = ∇2f |xt

∂f(xt + Δx)
∂Δx

= 0

xt+1 = xt − η ⋅ H−1
t ⋅ gt

44

Newton’s Method

• Faster convergence
• Higher per-iteration cost. O(d^3)

– also needs memory O(d^2)
•

45

Newton’s method

Tricks for Training

• A large learning rate for randomly initialized
parameters may cause numerical issue

• The warmup trick uses a small learning
rate at beginning and then increases it to
the initial value. For example:
– If we choose the initial learning rate to be 0.1

and use 5 epochs for warmup
– Start the learning rate with 0, linearly

increases it to 0.1 in the first 5 epochs

47

Learning Rate Warmup

• We need to decrease learning rate for
SGD to converge
– E.g. decreasing by 10x at epoch 30, 60, and

90
• Assume in total T iterations (batches), the

cosine decay computes learning rate at
iteration t by

48

Cosine Decay

ηt = 1/2 (1 + cos (tπ /T)) η

• Randomly select two examples i and j,
sample a random number

• Compute the mixed new example

• Train on mixed examples

49

Mixup Training Example

λ ∈ [0,1]

x = λxi + (1 − λ)xj y = λyi + (1 − λ)yj

• Assume is the one-hot encoding of
label

• Approximating 0/1 values with softmax is hard
• The smoothed version

– Commonly use

50

Label Smoothing
y ∈ ℝn

yi = {1 if belongs to class i
0 otherwise

yi = {1 − ϵ if belongs to class i
ϵ/(n − 1) otherwise

ϵ = 0.1

• BatchNorm needs a large batch size for
reliable statistics

• Object detection tasks may allow a small
batch size due to GPU memory
constraints, e.g. 1 image per GPU

• In multi-GPU training, each GPU computes
mean/variance separately

• Synchronized BatchNorm computes
statistics over all GPUs

51

Synchronized Batch Normalization

• Images are resized to same shape in a
batch, e.g. 224 width and 224 height

• We can vary this shape:
– For each batch, choose a random width/height

from 224 (7x32), 256 (8x32), 228 (9x32), …
– Resize all images into this shape

52

Random Batch Shapes

53

Image Classification

Hang et.al Bag of Tricks for Image
Classification with Convolutional
Neural Networks

79 . 15 94 . 58

+0.75
+0.4
+0.84

+0.69
+0.21
+0.37

+0.93
+0.1
+0.35

• Gradient descent can be sped up by incremental
updates

– Convergence is guaranteed under most conditions
‣ Learning rate must shrink with time for convergence

– Stochastic gradient descent: update after each observation.
Can be much faster than batch learning

– Mini-batch updates: update after batches. Can be more
efficient than SGD

• Convergence can be improved using smoothed
updates

– AdaGrad, RMSprop, Adam and more advanced techniques

54

Summary

• Detecting objects in images

55

Next Up

