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Recap

 Vocabulary building

— Subword Tokenization
» No OOV.

* Language Model
PY) = [ POr1 11---3)
4

* Word Embedding
 CNN-Language model
* Recurrent neural network

— memory
— Long-short term memory



Language Modeling

* Given a sentence y, estimate the
probability

P(y) = HP()’HI | y1---¥,)
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Recurrent Neural Network
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Elman, Finding Structure in Time. Cog. Sci. 1990.
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Mikolov et al, Recurrent neural network based language model. Interspeech 2010.



Long-Short Term Memory (LSTM)

* Replace cell with more advanced one
* Adaptively memorize short and long term

iInformation
Xi+1 ht Xi+1 hz .
| / I iy = 0(M;x, 1 + Myh, + b))
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71
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Hochreiter & Schmidhuber. Long Short-Term Memory, 1997
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Gers et al. Learning to Forget: Continual Prediction with LSTM. 2000



LSTM Language Modelling

A cat sits on a mat . Softmax
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LSTM Generation
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B P N R A T

. Linear
S A I O O LS%FM
> ll‘ Y :- x :'-T :.T :. T Embedding

[BOS] *A *cat sits *on * a i



LSTM: More layers

A cat sits on a mat
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Expressive Power of RNN-LM

Perplexity:
1 N
PPL =P - —VYloeP
(X5 - s Xy) exp N og P(x, | x{...x,_,
n=1
MODEL TEST PERPLEXITY NUMBER OF PARAMS [BILLIONS]
SIGMOID-RNN-2048 (JIET AL., 2015A) 68.3 4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) 67.6 1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015) 52.9 33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013) 51.3 20
LSTM-512-512 54.1 0.82
LSTM-1024-512 48.2 0.82
LSTM-2048-512 43.7 0.83
LSTM-8192-2048 (NoO DrROPOLT) 37.9 33
LSTM-8192-2048 (50% DROPOUT) 32.2 3.3
2-LAYER LSTM-8192-1024 (BIG LSTM) 30.6 1.8
BIG LSTM+CNN INpPUTS 30.0 1.04
BIG LSTM+CNN INPUTS + CNN SOFTMAX 39.8 0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION 35.8 0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS 47.9 0.23

Jozefowicz et al. Exploring the limits of language modelling, 2016 ?



Sequence Labelling



Understanding Query Intention

Noodle house near Santa Barbara
[Keyword] [Location]

How to go from Santa Barbara to Log Angeles ?
[Origin] [Destination]

Sequence Labelling
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Named entity recognition

date Location
In April 1775 fighting broke out between Massachusetts

militia units and British regulars at Lexington and Concord .
Geo-Political

12



Sequence Labelling

* Named entity recognition
In April 1775 fighting broke out between

militia units and regulars at
and :
« Semantic role labeling
The excess supply pushed down in that period .
subject verb object

» Question Answering: subject parsing
Who created Harry Potter ?

13



Represent the Output Labels

 BIO scheme

O O O B-GPEI-GPE O B-PERI-PER O

The governor of is Cathy Muirillo .
1640 897 45 1890 78 943 3521 782 533
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RNN/LSTM for Sequence Labelling
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The governor of Santa Barbara is Cathy Murillo .
1640 897 45 1890 78 943 3521 782 533 *©




Bi-LSTM
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Twisted NN for NER
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Word Embedding
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Max Entropy Sequence

Decoder

Max Entropy Sequence

Cost

Chinese NER

OntoNotes Data 4-class:

I N O

Bi-NER-WA* 84.42 76.34 80.18
Wang et al.

RNN-2b with WS 84.75 77.85 81.15
ours

* Wang et al used bilingual data

OntoNotes Data 18-class:

Sameer Pradhan et al. 78.20 66.45 71.85
RNN-2b with WS 78.69 70.54 74.39

ours

Twisted NN [Zefu Lu, Lei Li, Wei Xu, 2015]
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State-of-the-art result: F1 74.39% on ontonotes-5.0 18-class data. (Chinese) 'I
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Sequence Labelling using LSTM

(Pytorch)

class LSTMTagger(nn.Module):

def

def

__init__ (self, embedding_dim, hidden_dim, vocab_size, tagset_size):

super (LSTMTagger, self).__init__ ()
self.hidden_dim = hidden_dim

self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)

# The LSTM takes word embeddings as inputs, and outputs hidden states
# with dimensionality hidden_dim.
self.lstm = nn.LSTM(embedding_dim, hidden_dim)

# The linear layer that maps from hidden state space to tag space
self.hidden2tag = nn.Linear(hidden_dim, tagset_size)

forward(self, sentence):

embeds = self.word_embeddings(sentence)

lstm _out, _ = self.lstm(embeds.view(len(sentence), 1, -1))
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
tag_scores = F.log_softmax(tag_space, dim=1)

return tag_scores

19



Training in Pytorch

model = LSTMTagger (EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

# See what the scores are before training
# Note that element 1i,j of the output is the score for tag j for word 1i.
# Here we don't need to train, so the code is wrapped in torch.no_grad()
with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_scores = model(inputs)
print(tag_scores)

for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad()

# Step 2. Get our inputs ready for the network, that is, turn them into
# Tensors of word indices.

sentence_in = prepare_sequence(sentence, word_to_ix)

targets = prepare_sequence(tags, tag_to_ix)

# Step 3. Run our forward pass.
tag_scores = model(sentence_in)

# Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()

loss = loss_function(tag_scores, targets)

loss.backward()

optimizer.step()

20



Testing in Pytorch

# See what the scores are after training

with torch.no_grad():
inputs = prepare_sequence(training_data[0][0], word_to_ix)

tag_scores = model(inputs)

21



Better Loss Function (advanced)

* Loss using Conditional Random Fields

—log(P(y | X)) = —log

exp (2221 U(Xk, yr) + Z,i;ll T (yr, yA-+1))
Z(X)

( (—1
= log (Z(X)) — log (exp ( Z U(xXk, yr) + Z T'(yp. yA-+1)))
k=1 k=1

( (—1

=log (Z2(X)) = (Y Uxe.ye) + > T, Yis1))
k—1 k—1

-1
— (D U(xkm) Z (Ys Yrr1))

k=1
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Encoder-decoder framework

Ouaput A generic formulation
ImageCaption
Decoder Text-to-Image Generation
A ASR (speech-to-text)
Encoder MT (text-to-text)
)

iInput

23



Sequence To Sequence (Seq2seq)

* Machine translation as directly learning a
function mapping from source sequence to

target sequence

target:
The weather is nice

Encoder: LSTM ‘ ‘

II’I-I-’ -
]

A

Source:% 5 Decoder: LSTM
B

24
Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014



Sequence To Sequence (Seq2seq)

* Machine translation as directly learning a
function mapping from source sequence to
target sequence

target: P(Y|X) = HP()’zl)’q, X)
the weatheris nice Training loss: Cross-Entropy
OB l l |

Encoder: LSTM ‘ ‘

H»l—»l—»

A

Source:?i 5 Decoder: LSTM
B’ ¥

== )" ) 108 £y Yy 15 - Yus1)
n t

Teacher-forcing during training.
(pretend to know groundtruth for prefix)

T

25
Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014



Performance (2014)

B SMT (moses) B SMT (Buck 2014)
W LSTM S2S (2014) B LSTM - UNK replace
38 —m tSTMensembl

285 ——
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0
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Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014
Durrani et al. Edinburgh’s Phrase-based Machine Translation Systems for WMT-14. 201
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Stacked LSTM for seq-2-seq

* More layers of LSTM
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Attention

cat

The

sits

cat

on

sits

a ?

on a
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LSTM Seqg2seq with Attention

Weath is, nice

T
x 5 | ¥ [BOS Weath
] er

Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate

2015
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Generation by Attention

A context vector c will be predicted before,
[\ which represents the related source context for
- current predicted word.
exp(D(s,, 1))

context

a,; = Softtmax(D(s,, hy 1)) =

J
The probability of word y_i is computed as:

p(yi) o exp(Wh;) Immail (y;) oc exp(Wh; + V)

Y., exp(D(s,, /)

Mnih et al. Recurrent Models of Visual Attention. 2014.
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Decoding



Autoregressive Generation

greedy decoding: output the token with max

next token prob

| like singing <EOS>
\41— \/o— Q
| | | | [Sof:ma] [Sof:ma] [Sof:ma]
[EncodeJ [EncodeJ [EncodeJ [Encode] —>[Decod] [Deco d} [Decod]
|
1 L Aike

But, this is not necessary the best

32



Inference

Now already trained a model &

Decoding/Generation: Given an input sentence x, to
generate the target sentence y that maximize the

probability P(y | x; 0)

argmax P(y |x) = fy(x,y)
y

Two types of error

— the most probable translation is bad — fix the model

— search does not find the most probably translation — fix the
search

Most probable translation is not necessary the highest
BLEU one!

33



Decoding

: argmyax P(y|x) = fo(x,y)

* naive solution: exhaustive search
— too expensive

 Beam search
— (approximate) dynamic programming

34



Beam Search

start with empty S

at each step, keep k best partial
sequences

expand them with one more forward
generation

collect new partial results and keep top-k

35



Beam Search (pseudocode)

best_scores = []
add {[@], 0.0} to best_scores # @ is for beginning of sentence token

for 1 1n 1 to max_length:
new_seqs = PriorityQueue()
for (candidate, s) 1n best_scores:
1f candidate[-1] 1is EOS:
prob = all -inf
prob[EQS] = 0

else:
prob = using model to take candidate and compute next token

probabilities (logp)
pick top k scores from prob, and their index
for each score, index in the top-k of prob:
new_candidate = candidate.append(index)
new_score = s + score
1f not new_segs.full(Q):

36



Beam Search

forward by
network top-k
: singing 0.6
rward by ton-k lhke g'j _lllike 0.16 s top-k
network  OP- ove 04T ep.16| forward by = I
am 0.1 netyosRoutin . ., ! like singing 0.
04 ' | lik 0.032
’ g ike song 0.
104 hate 0.01 | .
—BOSH We 0.3 We O want 0.01 I—)Ilke 016 FUlilg :
\ He 0.1 . love 0.16 |dancing 0.01
forwaxd by
She 0.1 ne O”ﬁke 04 .
They 0.01 do 03 _ |[Welke0.12 network N
are 0.2 We do 0.09 singing 0.5 | love singing 0.08
can 0.01 dancing 0.3 —p !love dancing 0.048
say 0.01 you O0.11
going 0.01
it 0.01
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Seq2seq for Machine
Translation



Many possible translation, which is
better?

SpaceXE =ME(8#1T 7 —RXRGMES, KHARELMARER
AR ALTIEARTHIE,

SpaceX launched a mission Wednesday night to put four
amateurs with no space experience into orbit.

SpaceX conducted a launch mission on Wednesday night,
sending four amateurs with no aerospace experience into
space orbit.

SpaceX conducted a launch mission Wednesday night that
sent four amateurs with no spaceflight experience into orbit.

SpaceX carried out a launch mission on Wednesday night to
put four amateurs without Aerospace experience into orbit.

39



BLEU

Measuring the precision of n-grams
— Precision of n-gram: percentage of tokens in output
sentences

num . of . correct . token .ngram
_Pn =

total . output . ngram

Penalize for brevity
— if output is too short

— bp = min(1,e'777°)

BLEU=bp - (] [ o
Notice BLEU is computed over the whole corpus, not on
one sentence

40



Example

Ref: A SpaceX rocket was launched into a
space orbit Wednesday evening.

System A: SpaceX launched a mission
Wednesday evening into a space orbit.

System B: A rocket sent SpaceX into orbit
Wednesday.

41



Example

Ref: A SpaceX rocket was launched into a
space orbit Wednesday evening.

System A: SpaceX launched a mission
Wednesday evening into a space orbit.

Precision bp=e1-12/11=0.91
Unigram — 9/11 B) EU=0.91*(9/11 * 4/10 * 2/9 * 1/8)1/4
Bigram 4/10 =28.1%

Trigram 2/9

Four-gram 1/8 42



LSTM Seq2Seq w/ Attention

40

30

20

10

i B

B SMT (moses) B SMT (best)
W LSTM S2S (2014) B LSTM w/ Att (RNNSearch)
— N

\WMT 14en-Fr En-De

Jean et al. On Using Very Large Target Vocabulary for Neural Machine

Translation. 2015
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Performance with Model Ensemble

B SMT (moses) B SMT (best)
W LSTM S2S (2014) B LSTM w/ Att (RNNSearch)

40 — @ tSTMw/ Att (RNNSearcB 18 Il

30 — e
21.59
20 — —
o II N
0

En-Fr En-De
WMT14

Luong et al. Effective Approaches to Attention-based Neural Machine Translation. 2015
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Summary

« LSTM-RNN Language Modelling

* Sequence Labelling

— named entity recognition/semantic role
labelling/POS tagging

— BIi-LSTM
¢ Seqg2seq
— End-to-end model for Machine Translation
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Next Up

e Transformer

46



