165B Machine Learning Graph Neural Network Lei Li (leili@cs) UCSB

Recap

- Key components in Transformer
 - Positional Embedding (to distinguish tokens at different pos)
 - Multihead attention
 - Residual connection
 - layer norm
- Transformer is effective for machine translation, and many other tasks
- Pre-training: using raw unlabeled data for training, also known as self-supervised learning

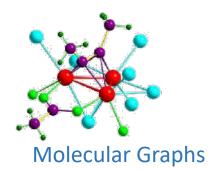
Graph Data is everywhere

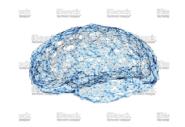
Social Graphs

Web Graphs

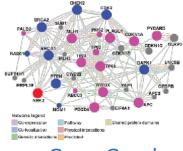


Transportation Graphs





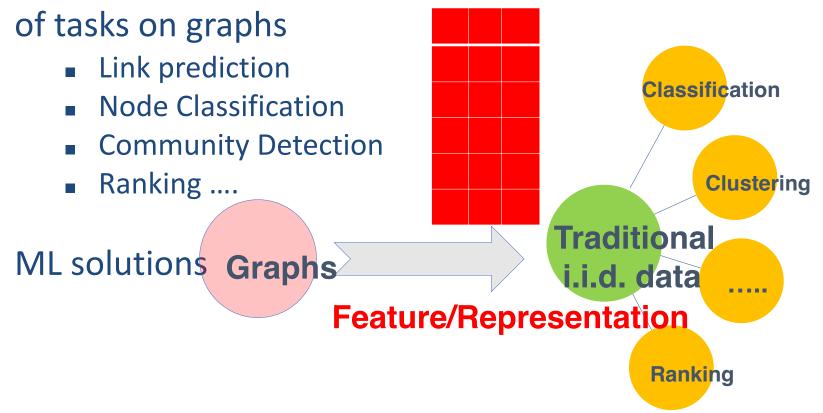
Brain Graphs



Gene Graphs

ML on Graphs

Numerous real-world problems can be summarized as a set



Slides adapted from Yao Ma & Jiliang Tang@MSU

Deep Learning Meets Graphs: Challenges

Traditional DL is designed for simple grids or sequences

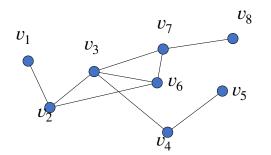
- CNNs for fixed-size images/grids
- RNNs for text/sequences

But nodes on graphs have different connections

- Arbitrary neighbor size
- Complex topological structure
- No fixed node ordering

Slides adapted from Yao Ma & Jiliang Tang@MSU

Graph Representation

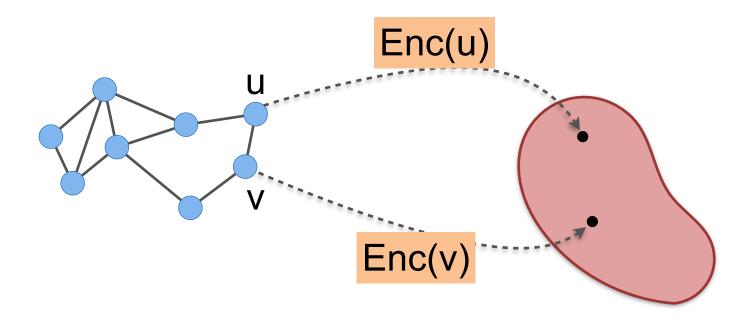


$$\mathcal{V} = \{v_1, \dots, v_N\}$$

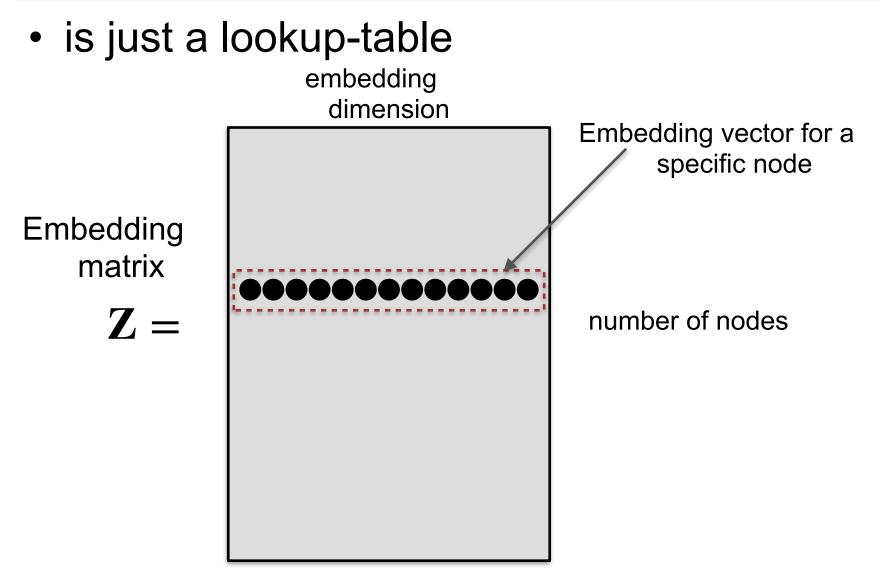
 $\mathcal{E} = \{e_1, \dots, e_M\}$
 $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$

Node Embedding

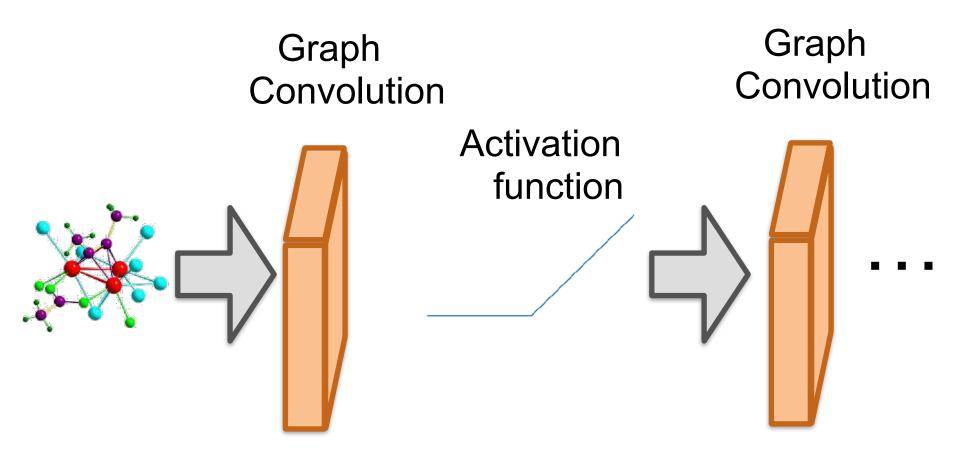
$$Enc(\cdot): V \to \mathbb{R}^d$$



"Shallow" Node Embedding



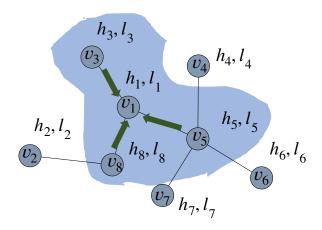
Deep Graph Neural Network



Output is embedding matrix for nodes for further downstream tasks: e.g. node classification⁹

From 2D-Convolution to Graph Convolution

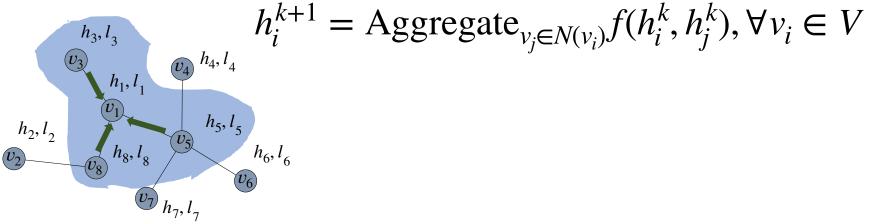
Every node's neighbor defines a convolutional kernel



aggregate information from its neighbors

Aggregate Neighbors

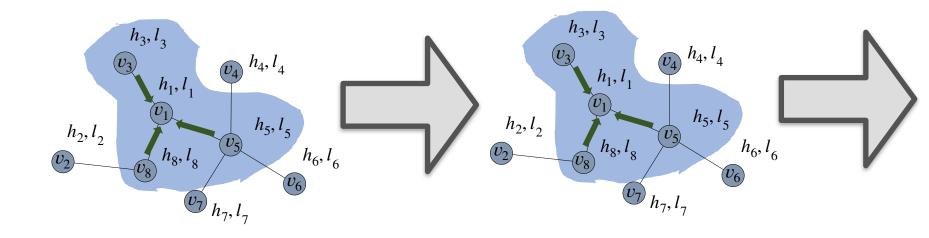
 h_i : node (hidden) embedding vector



 $N(v_i)$: Neighbors of the node v_i .

 $f(\cdot)$: Feedforward network.

Multiple Computation Layers



A Simple Graph Convolution Layer

Simple approach: averaging neighbor's message and apply nonlinear transformation

$$h_{i}^{0} = x_{i}$$
$$h_{i}^{k+1} = \sigma(W_{k} \frac{1}{|N(v_{i})|} \sum_{v_{j} \in N(v_{i})} h_{j}^{k} + B_{k} h_{i}^{k})$$

Property: Equivariant

 the embeddings computed from graph convolution layers is invariant to node permutation

$$h_i^0 = x_i$$

$$h_i^{k+1} = \sigma(W_k \frac{1}{|N(v_i)|} \sum_{v_j \in N(v_i)} h_j^k + B_k h_i^k)$$

Model Training

• Parameters: weight matrix for each layer

$$h_{i}^{k+1} = \sigma(W_{k} \frac{1}{|N(v_{i})|} \sum_{v_{j} \in N(v_{i})} h_{j}^{k} + B_{k} h_{i}^{k})$$

- Unsupervised training:
 - Linked nodes have similar embedding

$$L = \sum_{i,j} CE(y_{i,j}, Sim(h_i^K, h_j^K))$$

- $y_{i,j} = 1$ if there is edge from v_i to v_j
- Similarity can be defined in many ways: e.g. inner product

Model Training

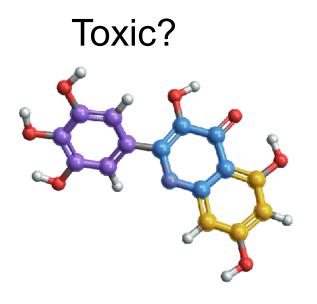
Parameters: weight matrix for each layer

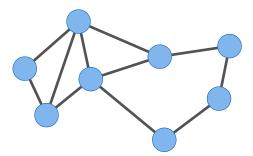
$$h_{i}^{k+1} = \sigma(W_{k} - \frac{1}{|N(v_{i})|} \sum_{v_{j} \in N(v_{i})} h_{j}^{k} + B_{k} h_{i}^{k})$$

- Supervised training: e.g. Node classification – Linked nodes have similar embedding $L = \sum CE(y_i, f(h_i^K))$
 - $-y_i$ is node label

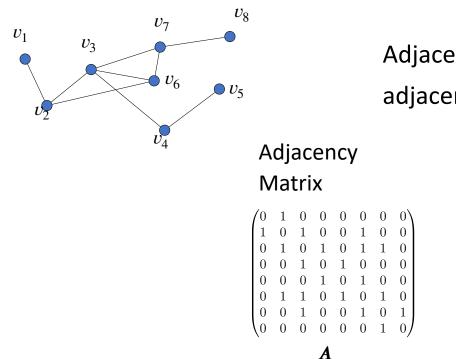
i

Example: predict toxicity of a drug





Matrix Representations of Graphs



Adjacency Matrix: A[i, j] = 1 if v_i is adjacent to v_j

$$A[i, j] = 0$$
, otherwise

Spectral graph theory. American Mathematical Soc.; 1997.

Matrix Representation of GCN

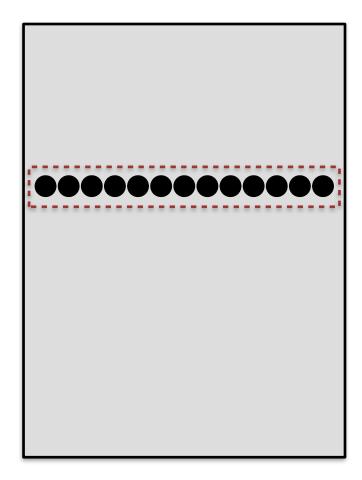
 Neighbor Aggregation can be performed efficiently using matrix operations

 $H^{k} = [h_{1}^{k}, \dots, h_{|V|}^{k}]^{T}$ Then $\sum_{v_{j} \in N(v_{i})} h_{j}^{k} = A_{i,:}H^{k}$

Let D be diagonal matrix

$$D_{i,i} = \text{Degree}(v_i) = \sum_j A_{i,j}$$

Then $\frac{1}{|N(v_i)|} \sum_{v_j \in N(v_i)} h_j^k = D^{-1}AH^k$



Matrix Representation of GCN

 Neighbor Aggregation can be performed efficiently using matrix operations

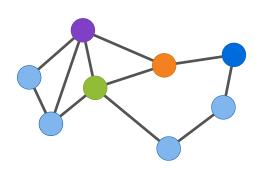
$$H^{k} = [h_{1}^{k}, \dots, h_{|V|}^{k}]^{T}$$
$$\tilde{A} = D^{-1}A$$
$$H^{k+1} = \sigma(\tilde{A}H^{k} \cdot W_{k}^{T} + H^{k}B_{k}^{T})$$

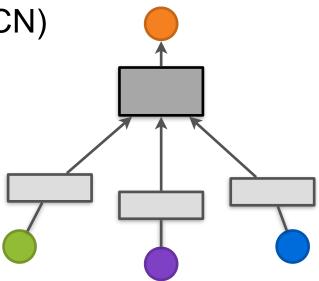
Graph Convolution Network

- Neighbor Aggregation can be performed efficiently using matrix operations
- To make \tilde{A} symmetric
- $\begin{aligned} H^k &= [h_1^k, \dots, h_{|V|}^k]^T \\ \tilde{A} &= D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \\ H^{k+1} &= \sigma (\tilde{A} H^k \cdot W_k^T + H^k B_k^T) \end{aligned}$

Generic GNN framework

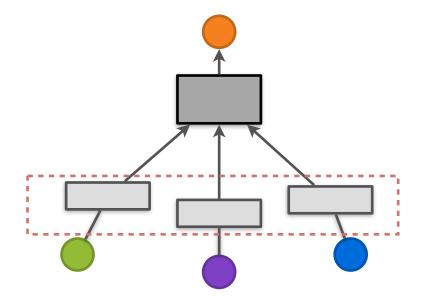
- GNN layer = message passing + Aggregation
 - different design choices under this framework
 - Graph convolutional network (GCN)
 - GraphSAGE
 - GAT

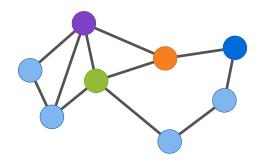




Message Computation

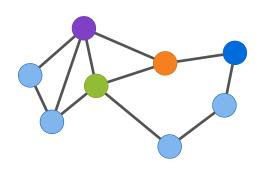
- Each node will create a message
- e.g.
 - Linear projection





Aggregation/Pooling

- Each node will aggregate messages from its neighbors
- e.g.
 - Sum, Mean, Max operator
- Concat(AGG{m_j}, m_i)
- Apply nonlinear activation



GraphSAGE

$$h_i^{k+1} = \sigma\left(W_k \cdot \text{CONCAT}\left(h_i^k, \text{AGG}(\{h_j^k, \forall v_j \in N(v_i)\})\right)\right)$$

AGG can be designed in multiple ways

GraphSAGE

$$h_i^{k+1} = \sigma\left(W_k \cdot \text{CONCAT}\left(h_i^k, \text{AGG}(\{h_j^k, \forall v_j \in N(v_i)\})\right)\right)$$

AGG can be designed in multiple ways

Graph Attention Network (GAT)

$$h_{i}^{k+1} = \sigma(\sum_{v_{j} \in N(v_{i})} \alpha_{ij} W_{k} h_{v_{j}}^{k})$$

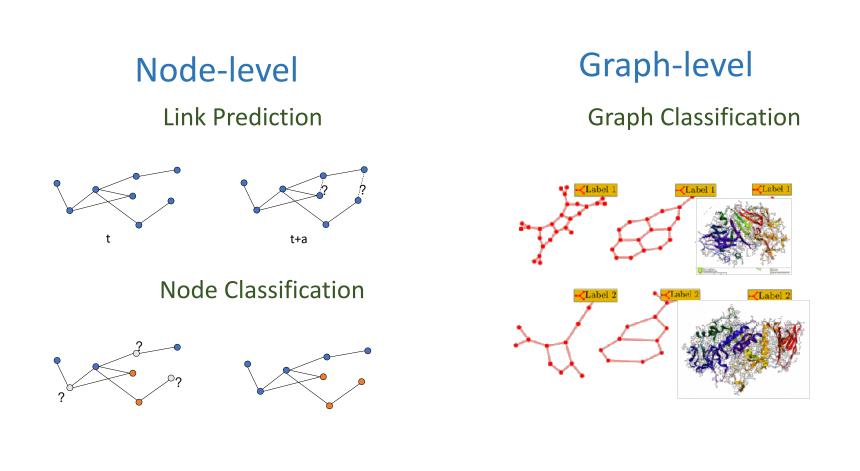
$$\alpha_{ij} = \text{Attention}(W_{k} h_{i}, W_{k} h_{j}) = \frac{\exp(W_{k} h_{i})^{T} W_{k} h_{j}}{\sum_{j'} \exp(W_{k} h_{i})^{T} W_{k} h_{j'}}$$

Multi-head Attention for GAT? Yes

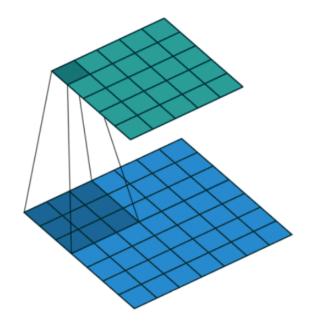
$$h_{i}^{k+1} = \sigma\left(\sum_{v_{j} \in N(v_{i})} \alpha_{ij} W_{k} h_{v_{j}}^{k}\right)$$

$$\alpha_{ij} = \text{Attention}(W_{k} h_{i}, W_{k} h_{j}) = \frac{\exp(W_{k} h_{i})^{T} W_{k} h_{j}}{\sum_{j'} \exp(W_{k} h_{i})^{T} W_{k} h_{j'}}$$

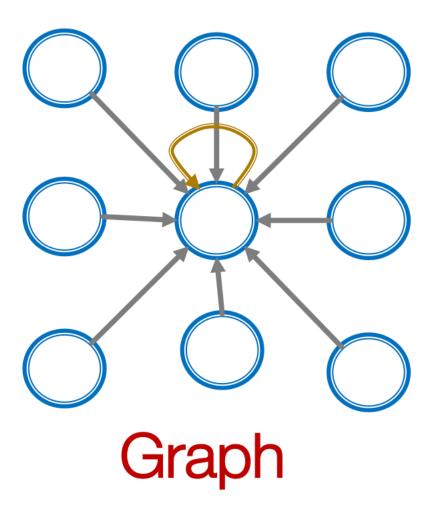
Tasks on Graph-Structured Data



Relation between GNN and CNN



Image



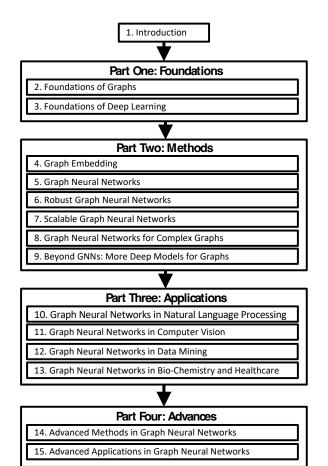
CNN can be viewed as a special GNN on grid graph³¹

GNN vs. Transformer

 Transformer is special GNN on a fullconnected graph

Book: Deep Learning on Graphs

https://cse.msu.edu/~mayao4/ dlg_book/



Summary

- Graph neural network
 - message passed along graph edges
 - aggregate message/embedding by FFN
 - many variants

Next Up

Variational Auto-Encoder