Week 1 Recitation

Saurabh Sharma

CS165B Machine Learning

Outline for today

- Recap of probability concepts
- Maximum likelihood estimation
- Recap of linear algebra concepts

Random Variable (RV)

- A random variable is a variable that can take on different values randomly.
- A probability distribution is a description of how likely a random variable or set of random variables is to take on each of its possible states.

Random Variable (RV)

- Example

Sample space (outcomes)	Number of Heads (Random Variable X)	How many possible ways can this happen, if you flip a coin twice? (Probability of X)
HH	2	1 out of 4 outcomes
HT	1	2 out of 4 outcomes
TH		1 out of 4 outcomes
TT	0	

Value of \mathbf{X}	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Probability of $\mathrm{X}:$ $p(x)$ or $f(x)$	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$

Discrete random variable

- The probability distribution of a discrete RV is given by its probability mass function, or PMF.
- To be a probability mass function on a random variable \mathbf{x}, a function P must satisfy the following properties:
- The domain of P must be the set of all possible states of \mathbf{x}.
- $\forall x \in X, 0 \leq P(x) \leq 1$.
- $\Sigma_{x \in X} P(x)=1$

Continuous random variable

- To be a probability density function, a function p must satisfy the following properties:
- The domain of p must be the set of all possible states of x.
- $\forall x \in X, p(x) \geq 0$. Note that we don't require $p(x) \leq 1$.
, $\int p(x) d x=1$
- We can integrate the density function to find the actual probability mass of a set of points.
- Probability that x lies in the interval $[a, b]$ is given by $\int_{[a, b]} p(x) d x$.

Joint and marginal probability

- A probability distribution over multiple RVs is known as a joint probability distribution.
- $P(\mathbf{x}=x, \mathbf{y}=y)$ denotes the probability that $\mathbf{x}=x$ and $\mathbf{y}=y$ simultaneously.
- For discrete RVs, given the joint distribution $P(x, y)$, we can get the marginal distribution $P(x)$ by the sum rule:

$$
P(\mathbf{x}=x)=\Sigma_{y} P(\mathbf{x}=x, \mathbf{y}=y)
$$

- For continuous RVs,

$$
p(x)=\int p(x, y)
$$

Conditional probability

- Probability of an event given that another event has happened:

$$
P(\mathbf{y}=y \mid \mathbf{x}=x)=\frac{P(\mathbf{y}=y, \mathbf{x}=x)}{P(\mathbf{x}=x)}
$$

- Chain rule of probability:
$P\left(\mathbf{x}^{(\mathbf{1})}, \mathbf{x}^{(\mathbf{2})}, \ldots, \mathbf{x}^{(\mathbf{n})}\right)=P\left(\mathbf{x}^{(\mathbf{1})}\right) \prod_{i=2}^{n} P\left(x^{(i)} \mid x^{(1)}, \ldots, x^{(i-1)}\right)$
- The rule follows directly from the definition of conditional probability:

$$
\begin{aligned}
P(\mathrm{a}, \mathrm{~b}, \mathrm{c}) & =P(\mathrm{a} \mid \mathrm{b}, \mathrm{c}) P(\mathrm{~b}, \mathrm{c}) \\
P(\mathrm{~b}, \mathrm{c}) & =P(\mathrm{~b} \mid \mathrm{c}) P(\mathrm{c}) \\
P(\mathrm{a}, \mathrm{~b}, \mathrm{c}) & =P(\mathrm{a} \mid \mathrm{b}, \mathrm{c}) P(\mathrm{~b} \mid \mathrm{c}) P(\mathrm{c})
\end{aligned}
$$

Independence

- Two random variables \mathbf{x} and \mathbf{y} are independent if their probability distribution can be expressed as,

$$
P(\mathbf{x}=x, \mathbf{y}=y)=P(\mathbf{x}=x) P(\mathbf{y}=y)
$$

Expectation and Variance

- The expectation or expected value of some function $f(x)$ with respect to a probability distribution $P(x)$ is the average or mean value that f takes on when x is drawn from P.
- For discrete RVs,

$$
\mathbb{E}_{\mathrm{x} \sim P}[f(x)]=\sum_{x} P(x) f(x)
$$

- For continuous RVs,

$$
\mathbb{E}_{x \sim p}[f(x)]=\int p(x) f(x) d x
$$

Expectation and Variance

- Expectations are linear,

$$
\mathbb{E}_{\mathbf{x}}[\alpha f(x)+\beta g(x)]=\alpha \mathbb{E}_{\mathbf{x}}[f(x)]+\beta \mathbb{E}_{\mathbf{x}}[g(x)]
$$

- The variance gives a measure of how much the values of a function of a random variable \mathbf{x} vary as we sample different values of \mathbf{x} from its probability distribution:

$$
\operatorname{Var}(f(x))=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]
$$

- The square root of the variance is called the standard deviation.

Useful probability distributions

- The Bernoulli distribution is a distribution over a single binary random variable. It is controlled by a single parameter $\phi \in[0,1]$, which gives the probability of this variable being equal to 1 :

$$
\begin{gathered}
P(\mathrm{x}=1)=\phi \\
P(\mathrm{x}=0)=1-\phi
\end{gathered}
$$

- The Multinoulli distribution extends the above to the case when x can take k states. It is controlled by $k-1$ parameters that specify the probabilities at the k states.

Useful probability distributions

- The most commonly used distribution over real numbers is the normal distribution, also known as the Gaussian distribution:

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\sqrt{\frac{1}{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

- The expectation of this distribution is μ and it's variance is σ^{2}.

Useful probability distributions

- μ gives the location of the central peak and σ controls the width of the peak. In the above plot, $\mu=0, \sigma=1$.

Bayes Rule

- Sometimes we know $P(y \mid x)$ and need to compute $P(x \mid y)$. In this case, if we also know $P(x)$, we can use Bayes' rule,

$$
\begin{aligned}
& P(x \mid y)=\frac{P(x, y)}{P(y)} \\
& P(x \mid y)=\frac{P(x) P(y \mid x))}{P(y)} \\
& P(x \mid y)=\frac{P(x) P(y \mid x)}{\Sigma_{x^{\prime} \in X} P\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)}
\end{aligned}
$$

Maximum likelihood estimation

Example: X_{1}, \ldots, X_{n} - i.i.d. random variables with probability $p_{x}(x \mid \theta)=P(X=x)$ where θ is a parameter
\square likelihood function $L(\theta \mid x)$ where $x=\left(x_{1}, \ldots, x_{n}\right)$ is set of observations

$$
L(\theta \mid x)=\prod_{i=1}^{n} p_{X}\left(x_{i} \mid \theta\right)
$$

\square maximum likelihood estimate $\hat{\theta}(x)$ maximizer of $L(\theta \mid x)$
\square typically easier to work with log-likelihood function, $C(\theta \mid x)=\log L(\theta \mid x)$

MLE example

- Suppose we have three data points they have been generated from a process that is adequately described by a Gaussian distribution. These points are 9, 9.5 and 11.
- How do we calculate the maximum likelihood estimates of the parameter values of the Gaussian distribution μ and σ ?
- The Gaussian density function is given by,

$$
P(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

MLE example

- The likelihood or the joint density of the data is given by,

$$
\begin{aligned}
P(9,9.5,11 ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(9-\mu)^{2}}{2 \sigma^{2}}\right) \times \frac{1}{\sigma \sqrt{2 \pi}} & \exp \left(-\frac{(9.5-\mu)^{2}}{2 \sigma^{2}}\right) \\
& \times \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(11-\mu)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

- The log-likelihood is given by,

$$
\begin{aligned}
\ln (P(x ; \mu, \sigma))=\ln \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)-\frac{(9-\mu)^{2}}{2 \sigma^{2}}+\ln \left(\frac{1}{\sigma \sqrt{2 \pi}}\right) & -\frac{(9.5-\mu)^{2}}{2 \sigma^{2}} \\
& +\ln \left(\frac{1}{\sigma \sqrt{2 \pi}}\right)-\frac{(11-\mu)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

MLE example

- This can be further simplified to,

$$
\ln (P(x ; \mu, \sigma))=-3 \ln (\sigma)-\frac{3}{2} \ln (2 \pi)-\frac{1}{2 \sigma^{2}}\left[(9-\mu)^{2}+(9.5-\mu)^{2}+(11-\mu)^{2}\right]
$$

- This expression attains it's maximum for μ when the partial derivative with respect to μ is 0 ,

$$
\begin{aligned}
& \frac{\partial \ln (P(x ; \mu, \sigma))}{\partial \mu}=\frac{1}{\sigma^{2}}[9+9.5+11-3 \mu]=0 \\
& \mu=\frac{9+9.5+11}{3}=9.833
\end{aligned}
$$

Recap of linear algebra concepts

Scalars and Vectors

- Scalars: A scalar is just a single number. Example: 5, 10, 15
- Vectors: A vector is an ordered array of numbers. We can identify each individual number by its index in that ordering. Example:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Matrices and tensors

- Matrices: A matrix is a rectangular array of numbers, and we can identify each number using its row and column indices.

	m-by-n matrix		
$\begin{gathered} a_{i, j} \\ m \\ \text { rows } \end{gathered}$	n columns		chang
	$a_{1,1}$	$\mathrm{a}_{1,2}$	$a_{1,3}$
c	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
n	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$
s			

- Tensors: A tensor is like a high-dimensional matrix that can be indexed similarly. For example, the element at (i, j, k) coordinate of a 3D tensor \mathbf{A} is denoted by $\mathbf{A}_{i, j, k}$.

Matrix and vector operations

- Matrix addition: Matrices can be added as long as their shapes match

$$
C=A+B, \text { where } C_{i, j}=A_{i, j}+B_{i, j}
$$

- Scalar multiplication and addition: Scalars can be multiplied and added to each element of a matrix

$$
D=a \cdot B+c, \text { where } D_{i, j}=a \cdot B_{i, j}+c
$$

- Broadcasting: Vectors can be added to matrices (shapes must match)

$$
C=A+B, \text { where } C_{i, j}=A_{i, j}+B_{j}
$$

The vector B gets added to every row in A.

Matrix and vector operations

- Dot product of two vectors $x^{T} y=y^{T} x=\Sigma_{k} x_{k} y_{k}$
- Product of two matrices $C=A B$ is defined as

$$
C_{i, j}=\Sigma_{k} A_{i, k} B_{k, j}
$$

$C_{i, j}$ is the dot product of the i th row of A and j th column of B. Number of columns in A must match number of rows in B.

- Distributive law:
- Associativity:

$$
A(B+C)=A B+A C
$$

$A(B C)=(A B) C$

- Commutativity does not always hold: $A B \neq B A$

Matrix and vector operations

- Transpose of a matrix is obtained by "flipping" along the diagonal.

$$
\boldsymbol{A}=\left[\begin{array}{cc}
A_{1, \boldsymbol{*}} & A_{1,2} \\
A_{2,1} & A_{2,8} \\
A_{3,1} & A_{3,2}
\end{array}\right] \Rightarrow \boldsymbol{A}^{\top}=\left[\begin{array}{lll}
A_{1,1} & A_{2,1} & A_{3,1} \\
A_{1,2} & A_{2,2} & A_{3,2}
\end{array}\right]
$$

- Transpose of a product:

$$
(A B)^{T}=B^{T} A^{T}
$$

Some special matrices

- A square matrix has the same number of rows and columns. The identity matrix is a square matrix with 1 s along the diagonal:

$$
I_{1}=[1], I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], I_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \ldots, I_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

- The inverse of a square matrix A is a matrix A^{-1} that satisfies:

$$
A A^{-1}=A^{-1} A=I
$$

Norms

- Norm is a function that intuitively measures the size of a vector.
- L^{1} norm : $\|x\|_{1}=\Sigma_{i}\left|x_{i}\right|$
- L^{2} norm : $\|x\|_{2}=\sqrt{\Sigma_{i}\left|x_{i}\right|^{2}}$
- L^{∞} norm : $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$. Also known as the max norm.
- We can also assign a norm to a matrix. The most commonly used is the Frobenius norm: $\|A\|_{F}=\sqrt{\Sigma_{i, j}\left|A_{i, j}\right|^{2}}$.
- This is analogous to the L_{2} norm of a vector.

References

- Probability and linear algebra recap: Chapters 2 and 3 of the Deep learning book (GBC).
- Maximum likelihood estimation: https://towardsdatascience.com/ probability-concepts-explained-maximum-likelihood-estimationc7b4342fdbb1

