

Week 1 Recitation

Saurabh Sharma

CS165B Machine Learning

JNIVERSITY OF CALIFORNIA

Outline for today

Recap of probability concepts

• Maximum likelihood estimation

• Recap of linear algebra concepts

Random Variable (RV)

• A random variable is a variable that can take on different values randomly.

• A probability distribution is a description of how likely a random variable or set of random variables is to take on each of its possible states.

Random Variable (RV)

• Example

Sample space (outcomes)	Number of Heads (Random Variable X)	How many possible ways can this happen, if you flip a coin twice? (Probability of X)	
нн	2	1 out of 4 outcomes	
нт	•	2 out of 4 outcomes	
тн			
ТТ	0	1 out of 4 outcomes	

Value of X	2	1	0
Probability of X:	1	2	1
p(x) or $f(x)$	4	4	4

Discrete random variable

- The probability distribution of a discrete RV is given by its probability mass function, or PMF.
- To be a probability mass function on a random variable \mathbf{x} , a function P must satisfy the following properties:
 - The domain of P must be the set of all possible states of \mathbf{x} .
 - $\forall x \in X, 0 \le P(x) \le 1$.
 - $\sum_{x \in X} P(x) = 1$

Continuous random variable

- To be a probability density function, a function *p* must satisfy the following properties:
 - The domain of p must be the set of all possible states of x.
 - $\forall x \in X, p(x) \ge 0$. Note that we don't require $p(x) \le 1$.

$$\int p(x)dx = 1$$

• We can integrate the density function to find the actual probability mass of a set of points.

Probability that x lies in the interval [a, b] is given by $\int_{[a,b]} p(x) dx$.

Joint and marginal probability

- A probability distribution over multiple RVs is known as a *joint probability distribution*.
- $P(\mathbf{x} = x, \mathbf{y} = y)$ denotes the probability that $\mathbf{x} = x$ and $\mathbf{y} = y$ simultaneously.
- For discrete RVs, given the joint distribution P(x, y), we can get the marginal distribution P(x) by the sum rule:

$$P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y)$$

• For continuous RVs,

$$p(x) = \int p(x, y)$$

Conditional probability

• Probability of an event given that another event has happened:

$$P(\mathbf{y} = y | \mathbf{x} = x) = \frac{P(\mathbf{y} = y, \mathbf{x} = x)}{P(\mathbf{x} = x)}$$

• *Chain rule* of probability:

$$P(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}) = P(\mathbf{x}^{(1)}) \prod_{i=2}^{n} P(x^{(i)} | x^{(1)}, \dots, x^{(i-1)})$$

• The rule follows directly from the definition of conditional probability:

$$P(a, b, c) = P(a \mid b, c)P(b, c)$$

$$P(b, c) = P(b \mid c)P(c)$$

$$P(a, b, c) = P(a \mid b, c)P(b \mid c)P(c).$$

Independence

• Two random variables **x** and **y** are *independent* if their probability distribution can be expressed as,

$$P(\mathbf{x} = x, \mathbf{y} = y) = P(\mathbf{x} = x)P(\mathbf{y} = y)$$

Expectation and Variance

- The expectation or expected value of some function f(x) with respect to a probability distribution P(x) is the average or mean value that ftakes on when x is drawn from P.
- For discrete RVs,

$$\mathbb{E}_{\mathbf{x}\sim P}[f(x)] = \sum_{x} P(x)f(x)$$

• For continuous RVs,

$$\mathbb{E}_{\mathbf{x}\sim p}[f(x)] = \int p(x)f(x)dx$$

Expectation and Variance

• Expectations are linear,

$$\mathbb{E}_{\mathbf{x}}[\alpha f(x) + \beta g(x)] = \alpha \mathbb{E}_{\mathbf{x}}[f(x)] + \beta \mathbb{E}_{\mathbf{x}}[g(x)]$$

 The variance gives a measure of how much the values of a function of a random variable x vary as we sample different values of x from its probability distribution:

$$\operatorname{Var}(f(x)) = \mathbb{E}\left[(f(x) - \mathbb{E}[f(x)])^2 \right]$$

• The square root of the variance is called the standard deviation.

Useful probability distributions

• The *Bernoulli* distribution is a distribution over a single binary random variable. It is controlled by a single parameter $\phi \in [0,1]$, which gives the probability of this variable being equal to 1:

 $P(\mathbf{x} = 1) = \phi$ $P(\mathbf{x} = 0) = 1 - \phi$

• The *Multinoulli* distribution extends the above to the case when x can take k states. It is controlled by k - 1 parameters that specify the probabilities at the k states.

Useful probability distributions

• The most commonly used distribution over real numbers is the normal distribution, also known as the *Gaussian* distribution:

$$\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

• The expectation of this distribution is μ and it's variance is σ^2 .

Useful probability distributions

• μ gives the location of the central peak and σ controls the width of the peak. In the above plot, $\mu = 0, \sigma = 1$.

Bayes Rule

• Sometimes we know $P(y \mid x)$ and need to compute $P(x \mid y)$. In this case, if we also know P(x), we can use Bayes' rule,

$$P(x \mid y) = \frac{P(x, y)}{P(y)}$$

$$P(x \mid y) = \frac{P(x)P(y \mid x))}{P(y)}$$

$$P(x \mid y) = \frac{P(x)P(y \mid x)}{\sum_{x' \in X} P(x')P(y \mid x')}$$

Maximum likelihood estimation

- Example: X₁,...,X_n i.i.d. random variables with probability p_X(x|θ) = P(X=x) where θ is a parameter
- Iikelihood function L(θ|x) where x=(x₁,...,x_n) is set of observations

$$L(\theta \mid x) = \prod_{i=1}^{n} p_X(x_i \mid \theta)$$

□ maximum likelihood estimate $\hat{\theta}(x)$ maximizer of L($\theta | x$)

typically easier to work with log-likelihood function, C(θ|x) = log L(θ|x)

MLE example

- Suppose we have three data points they have been generated from a process that is adequately described by a Gaussian distribution. These points are 9, 9.5 and 11.
- How do we calculate the maximum likelihood estimates of the parameter values of the Gaussian distribution μ and σ ?
- The Gaussian density function is given by,

$$P(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

MLE example

• The *likelihood* or the joint density of the data is given by,

$$P(9, 9.5, 11; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9.5-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right)$$

• The *log-likelihood* is given by,

$$\begin{aligned} \ln(P(x;\mu,\sigma)) &= \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(9-\mu)^2}{2\sigma^2} + \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(9.5-\mu)^2}{2\sigma^2} \\ &+ \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(11-\mu)^2}{2\sigma^2} \end{aligned}$$

MLE example

• This can be further simplified to,

$$\ln(P(x;\mu,\sigma)) = -3\ln(\sigma) - \frac{3}{2}\ln(2\pi) - \frac{1}{2\sigma^2}\left[(9-\mu)^2 + (9.5-\mu)^2 + (11-\mu)^2\right]$$

• This expression attains it's maximum for μ when the partial derivative with respect to μ is 0,

$$\frac{\partial \ln(P(x;\mu,\sigma))}{\partial \mu} = \frac{1}{\sigma^2} \left[9 + 9.5 + 11 - 3\mu\right] = 0$$

$$\mu = \frac{9 + 9.5 + 11}{3} = 9.833$$

Recap of linear algebra concepts

Scalars and Vectors

• Scalars: A scalar is just a single number. Example: 5, 10, 15

• Vectors: A vector is an ordered array of numbers. We can identify each individual number by its index in that ordering. Example:

$$oldsymbol{x} = \left[egin{array}{c} x_1 \ x_2 \ dots \ dots \ x_n \end{array}
ight]$$

Matrices and tensors

• *Matrices*: A matrix is a rectangular array of numbers, and we can identify each number using its *row and column indices*.

• *Tensors*: A tensor is like a high-dimensional matrix that can be indexed similarly. For example, the element at (i, j, k) coordinate of a 3D tensor **A** is denoted by $\mathbf{A}_{i,j,k}$.

Matrix and vector operations

- Matrix addition: Matrices can be added as long as their shapes match C = A + B, where $C_{i,j} = A_{i,j} + B_{i,j}$
- Scalar multiplication and addition: Scalars can be multiplied and added to each element of a matrix

$$D = a \cdot B + c$$
, where $D_{i,j} = a \cdot B_{i,j} + c$

• *Broadcasting:* Vectors can be added to matrices (shapes must match)

C = A + B, where $C_{i,j} = A_{i,j} + B_j$ The vector *B* gets added to every row in *A*.

Matrix and vector operations

- Dot product of two vectors $x^T y = y^T x = \Sigma_k x_k y_k$
- Product of two matrices C = AB is defined as

$$C_{i,j} = \Sigma_k A_{i,k} B_{k,j}$$

- $C_{i,j}$ is the *dot product* of the *i*th row of *A* and *j*th column of *B*. Number of columns in *A* must match number of rows in *B*.
- Distributive law:
- Associativity:

- A(B + C) = AB + ACA(BC) = (AB)C $AB \neq BA$
- *Commutativity* does not always hold:

Matrix and vector operations

• *Transpose* of a matrix is obtained by "flipping" along the diagonal.

$$\mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow \mathbf{A}^{\top} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

• Transpose of a product:

$$(AB)^T = B^T A^T$$

Some special matrices

• A square matrix has the same number of rows and columns. The identity matrix is a square matrix with 1s along the diagonal:

$$I_{1} = \begin{bmatrix} 1 \end{bmatrix}, \ I_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ I_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \dots, \ I_{n} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

• The inverse of a square matrix A is a matrix A^{-1} that satisfies:

$$AA^{-1} = A^{-1}A = I$$

Norms

- *Norm* is a function that intuitively measures the size of a vector.
- L^1 norm : $||x||_1 = \sum_i |x_i|$

•
$$L^2$$
 norm : $||x||_2 = \sqrt{\Sigma_i |x_i|^2}$

- L^{∞} norm : $||x||_{\infty} = \max_{i} |x_{i}|$. Also known as the max norm.
- We can also assign a norm to a matrix. The most commonly used is the Frobenius norm: $||A||_F = \sqrt{\sum_{i,j} |A_{i,j}|^2}$.
 - This is analogous to the L_2 norm of a vector.

References

• **Probability and linear algebra recap:** Chapters 2 and 3 of the Deep learning book (GBC).

 Maximum likelihood estimation: https://towardsdatascience.com/ probability-concepts-explained-maximum-likelihood-estimation <u>c7b4342fdbb1</u>

