Applied Math Review for Deep Learning

UCSB CS165B W22 Section 1

Yijun Xiao

Table of Contents

1. Linear Algebra
2. Calculus
3. Probability

Vectors, Matrices and Tensors

Scalar Vector Matrix Tensor

Vectors, Matrices and Tensors

Notations

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right], \text { or } \vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]
$$

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

We often denote the set of all possible real value vectors with d elements as \mathbb{R}^{d}. The shape of such vectors is $d \times 1$, i.e. they are column vectors.

Similarly, the set of real value matrices of shape $m \times n$ is denoted as $\mathbb{R}^{m \times n}$.

Matrix Transpose

$$
\boldsymbol{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] \rightarrow \boldsymbol{A}^{\top}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right]
$$

Formally, the transpose of a matrix \boldsymbol{A} is denoted as \boldsymbol{A}^{\top}. It is defined such that

$$
\left(\boldsymbol{A}^{\top}\right)_{i, j}=\boldsymbol{A}_{j, i}
$$

The transpose of a vector x therefore becomes a row vector.

Matrix Multiplication

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \times\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} & a_{11} b_{13}+a_{12} b_{23} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22} & a_{21} b_{13}+a_{22} b_{23}
\end{array}\right]
$$

For matrix \boldsymbol{A} of shape $m \times n$ and matrix \boldsymbol{B} of shape $n \times p$, the matrix product of the two is another matrix $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ of shape $m \times p$ where

$$
\boldsymbol{C}_{i, j}=\sum_{k} \boldsymbol{A}_{i, k} \boldsymbol{B}_{k, j}
$$

The dot product between two vectors \boldsymbol{x} and \boldsymbol{y} with the same dimensions can be written as $\boldsymbol{x}^{\top} \boldsymbol{y}$.

Matrix Multiplication as Linear Transformation

$$
\left[\begin{array}{cc}
1.5 & 0 \\
0 & 0.75
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Scaling

mim

Rotation

Identity and Inverse Matrices

An n-dimensional identity matrix is denoted as $\boldsymbol{I}_{n} \in \mathbb{R}^{n \times n}$. All its diagonal elements are 1's and all other elements are 0's. For example,

$$
\boldsymbol{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

It is called identity matrix because for any n-dimensional vector $\boldsymbol{x}_{,} \boldsymbol{I}_{n} \boldsymbol{x}=\boldsymbol{x}$.

Identity and Inverse Matrices

An n-dimensional identity matrix is denoted as $\boldsymbol{I}_{n} \in \mathbb{R}^{n \times n}$. All its diagonal elements are 1's and all other elements are 0's. For example,

$$
\boldsymbol{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

It is called identity matrix because for any n-dimensional vector $\boldsymbol{x}_{1} \boldsymbol{I}_{n} \boldsymbol{x}=\boldsymbol{x}$.

The matrix inverse of \boldsymbol{A} is denoted as \boldsymbol{A}^{-1}, and it is defined as the matrix such that

$$
\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}
$$

Finding the inverse of a matrix \boldsymbol{A} helps us to solve linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. i.e. $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$.

Vector Norms

Norms are functions to measure the size of a vector. The L^{p} norm is given by

$$
\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

L^{2} norm, or Euclidean norm, is frequently used in machine learning and simply represents the Euclidean distance from point \boldsymbol{x} to the origin.

Table of Contents

\author{

1. Linear Algebra
}
2. Calculus
3. Probability

Derivatives and Gradients

For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, the derivative of f is defined as

$$
f^{\prime}(x)=\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The derivative gives the slope of the function at x.
For a general function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient of f with respect to the input \boldsymbol{x} is defined as the vector of all partial derivatives

$$
\nabla_{x} f(\boldsymbol{x})=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]^{\top}
$$

Stationary Points

Points where $f^{\prime}(x)=0$ are called stationary points. Local minimum, local maximum, and saddle points are all stationary.

Derivative Calculation

$$
\begin{aligned}
\text { Common Functions: } & \frac{d}{d x} x^{n}=n \cdot x^{n-1}, \\
& \frac{d}{d x} e^{x}=e^{x}, \\
& \frac{d}{d x} \log x=\frac{1}{x} \\
\text { Product Rule: } & \frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\text { Chain Rule: } & \frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

Chapter 2 of the Matrix Cookbook ${ }^{1}$ has all formula needed to compute derivatives with respect to vectors and matrices.

Derivative Calculation

Exercise
Consider vector $\boldsymbol{x}, \boldsymbol{w} \in \mathbb{R}^{n}$ and scalar b, find $\frac{\partial}{\partial x} f(\boldsymbol{x})$ with the function f defined as

$$
f(\boldsymbol{x})=\frac{1}{1+e^{-\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)}}
$$

Derivative Calculation

Exercise

Consider vector $\boldsymbol{x}, \boldsymbol{w} \in \mathbb{R}^{n}$ and scalar b, find $\frac{\partial}{\partial \boldsymbol{x}} f(\boldsymbol{x})$ with the function f defined as

$$
f(\boldsymbol{x})=\frac{1}{1+e^{-\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)}}
$$

f can be seen as a composite of $f_{1}(x)=\frac{1}{x}, f_{2}(x)=1+e^{-x}$, and $f_{3}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}+b$:

$$
f(\boldsymbol{x})=f_{1}\left(f_{2}\left(f_{3}(\boldsymbol{x})\right)\right)
$$

Now let's denote $y=f_{3}(\boldsymbol{x})$ and $z=f_{2}(y)$. Using chain rule:

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{x}} f_{1}\left(f_{2}\left(f_{3}(\boldsymbol{x})\right)\right) & =\frac{\partial f_{1}(z)}{\partial z} \cdot \frac{\partial f_{2}(y)}{\partial y} \cdot \frac{\partial f_{3}(\boldsymbol{x})}{\partial \boldsymbol{x}} \\
& =-z^{-2} \cdot\left(-e^{-y}\right) \cdot \boldsymbol{w}=\frac{e^{-\left(\boldsymbol{w}^{\top} x+b\right)}}{\left(1+e^{-\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)}\right)^{2}} \cdot \boldsymbol{w}
\end{aligned}
$$

Table of Contents

1. Linear Algebra
2. Calculus
3. Probability

Key Concepts

Conditional Probability: $\quad p(y \mid x)=\frac{p(x, y)}{p(x)}$
Marginal Probability: $\quad p(x)=\int p(x, y) d y$
Independence: $\quad p(x, y)=p(x) p(y)$
Expectation: $\quad \mathbb{E}_{x \sim p}[f(x)]=\int f(x) p(x) d x$

Bayes' Rule

When we are interested in the value of $P(x \mid y)$, but only have access to $P(x)$ and $P(y \mid x)$, we can apply the Bayes' rule to compute it.

$$
P(x \mid y)=\frac{P(x) P(y \mid x)}{P(y)}=\frac{P(x) P(y \mid x)}{\sum_{x} P(x) P(y \mid x)}
$$

$P(x)$ if often referred to as the prior distribution, and $P(x \mid y)$ is known as the posterior distribution of x.

Bayes' Rule Application

The distribution of Mark's body temperature is $\mathcal{N}(98,0.5)$ under healthy conditions. When sick, the distribution is $\mathcal{N}(99,0.7)$. We know Mark is sick 10% of the time, and his body temperature right now is 98.5 . What is the probability that Mark is sick at the moment?

Bayes' Rule Application

The distribution of Mark's body temperature is $\mathcal{N}(98,0.5)$ under healthy conditions. When sick, the distribution is $\mathcal{N}(99,0.7)$. We know Mark is sick 10% of the time, and his body temperature right now is 98.5 . What is the probability that Mark is sick at the moment?

We are essentially looking for the posterior distribution of "Mark is sick" given the prior distribution and the conditionals. Denote x as the event "Mark is sick" and y as Mark's body temperature, we have

Prior: $\quad P(x=\mathrm{T})=0.1$
Conditionals: $\quad y|(x=\mathrm{T}) \sim \mathcal{N}(99,0.7), \quad y|(x=\mathrm{F}) \sim \mathcal{N}(98,0.5)$

$$
\text { Posterior: } \quad P(x=\mathrm{T} \mid y=98.5)=\frac{P(x=\mathrm{T}) P(y=98.5 \mid x=\mathrm{T})}{P(x=\mathrm{T}) P(y=98.5 \mid x=\mathrm{T})+P(x=\mathrm{F}) P(y=98.5 \mid x=\mathrm{F})}
$$

