Week 2 Recitation

CS165B - Machine Learning

Overview

- Matrix calculus (differentials) examples
- Homework 1 Problem 4

Notations

- Vectors (single-column matrices) are denoted by boldfaced lowercase letters like $\mathbf{a}, \mathbf{b}, \mathbf{x}$.
- Matrices are denoted by boldface uppercase letters A, B, X.

Numerator Layout

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \quad \frac{\partial \mathbf{y}}{\partial x}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x} \\
\frac{\partial y_{2}}{\partial x} \\
\vdots \\
\frac{\partial y_{m}}{\partial x}
\end{array}\right]
$$

$d \mathbf{y} / \mathrm{dx}$ is a column vector

Numerator Layout

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \frac{\partial y}{\partial \mathbf{x}}=\left[\frac{\partial y}{\partial x_{1}}, \frac{\partial y}{\partial x_{2}}, \ldots, \frac{\partial y}{\partial x_{n}}\right]
$$

$d y / d x$ is a row vector

Numerator Layout

$$
\begin{aligned}
& \mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{y} \in \mathbb{R}^{m} \\
& \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
\end{aligned}
$$

Numerator Layout

$$
\begin{gathered}
\mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{y} \in \mathbb{R}^{m}, \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{m \times n} \\
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \\
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial \mathbf{x}} \\
\frac{\partial y_{2}}{\partial \mathbf{x}} \\
\vdots \\
\frac{\partial y_{m}}{\partial \mathbf{x}}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial y_{1}}{\partial x_{1}}, \frac{\partial y_{1}}{\partial x_{2}}, \ldots, \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}}, \frac{\partial y_{2}}{\partial x_{2}}, \ldots, \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots \\
\frac{\partial y_{m}}{\partial x_{1}}, \frac{\partial y_{m}}{\partial x_{2}}, \ldots, \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
\end{gathered}
$$

Numerator Layout

$$
\begin{aligned}
& \mathbf{x} \in \mathbb{R}^{n}, \quad \mathbf{y} \in \mathbb{R}^{m}, \quad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{m \times n} \\
& \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial \mathbf{x}} \\
\frac{\partial y_{2}}{\partial \mathbf{x}} \\
\vdots \\
\frac{\partial y_{m}}{\partial \mathbf{x}}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x_{1}}, \frac{\partial y_{1}}{\partial x_{2}}, \ldots, \frac{\partial y_{1}}{\partial x_{n}} \\
\frac{\partial y_{2}}{\partial x_{1}}, \frac{\partial y_{2}}{\partial x_{2}}, \ldots, \frac{\partial y_{2}}{\partial x_{n}} \\
\vdots \\
\frac{\partial y_{m}}{\partial x_{1}}, \frac{\partial y_{m}}{\partial x_{2}}, \ldots, \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right]
\end{aligned}
$$

Calculus

- Derivative of Sums $\quad y=u+v$

$$
\frac{\partial y}{\partial x}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}
$$

- Product Rule

$$
\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

- Chain Rule

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Example 1

$$
\begin{aligned}
& y=x_{1}^{2}+2 x_{2}^{2} \\
& \frac{\partial y}{\partial \mathbf{x}}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& y=x_{1}^{2}+2 x_{2}^{2} \\
& \frac{\partial y}{\partial \mathbf{x}}=\left[2 x_{1}, 4 x_{2}\right]
\end{aligned}
$$

Example 2

$\mathbf{y}=\mathbf{A x}$
$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$

Example 2

$$
\begin{aligned}
& \mathbf{y}=\mathbf{A} \mathbf{x} \\
& y_{i}=\sum_{k=1}^{n} a_{i k} x_{k} \\
& \frac{\partial y_{i}}{\partial x_{j}}=a_{i j} \\
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\mathbf{A}
\end{aligned}
$$

Example 3

$$
\mathbf{y}=\mathbf{x}^{T} \mathbf{A}
$$

$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$

Example 3

$$
\begin{aligned}
& \mathbf{y}=\mathbf{x}^{T} \mathbf{A} \\
& y_{i}=\sum_{k=1}^{n} x_{k} a_{k i} \\
& \frac{\partial y_{i}}{\partial x_{j}}=a_{j i} \\
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\mathbf{A}^{T}
\end{aligned}
$$

Example 4

$$
y=\mathbf{u}^{T} \mathbf{v}
$$

$$
\frac{\partial y}{\partial \mathbf{x}}
$$

Example 4

$$
\begin{aligned}
& y=\mathbf{u}^{T} \mathbf{v} \\
& y=\sum_{i=1}^{n} u_{i} v_{i}
\end{aligned}
$$

$$
\frac{\partial y}{\partial x_{j}}=\sum_{i=1}^{n}\left(v_{i} \frac{\partial u_{i}}{\partial x_{j}}+u_{i} \frac{\partial v_{i}}{\partial x_{j}}\right)
$$

$$
\frac{\partial y}{\partial \mathbf{x}}=\mathbf{v}^{T} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\mathbf{u}^{T} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}
$$

Example 4

$$
\begin{array}{ll}
y=\mathbf{u}^{T} \mathbf{v} & \frac{\partial y}{\partial \mathbf{x}}=\frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\frac{\partial y}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\
y=\sum_{i=1}^{n} u_{i} v_{i} & \frac{\partial y}{\partial \mathbf{x}}=\mathbf{v}^{T} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\mathbf{u}^{T} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \\
\frac{\partial y}{\partial x_{j}}=\sum_{i=1}^{n}\left(v_{i} \frac{\partial u_{i}}{\partial x_{j}}+u_{i} \frac{\partial v_{i}}{\partial x_{j}}\right) & \\
\frac{\partial y}{\partial \mathbf{x}}=\mathbf{v}^{T} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}+\mathbf{u}^{T} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} &
\end{array}
$$

Example 5

$$
\begin{aligned}
& y=x^{T} A x \\
& \frac{\partial y}{\partial x}
\end{aligned}
$$

Example 5

$$
\begin{aligned}
& y=x^{T} A x \\
& b=A x \\
& y=x^{T} b \\
& \frac{\partial y}{\partial x}=b^{T} \frac{\partial x}{\partial x}+x^{T} \frac{\partial b}{\partial x} \\
& \frac{\partial y}{\partial x}=b^{T}+x^{T} A \\
& \frac{\partial y}{\partial x}=x^{T} A^{T}+x^{T} A \\
& \frac{\partial y}{\partial x}=x^{T}\left(A+A^{T}\right)
\end{aligned}
$$

Example 6

Assume $\mathbf{x}, \mathbf{w} \in \mathbb{R}^{n}, \quad y \in \mathbb{R}$

$$
z=(\langle\mathbf{x}, \mathbf{w}\rangle-y)^{2}
$$

Compute $\frac{\partial z}{\partial \mathbf{w}}$

Lecture 2 - pg. 35

Assume $\mathbf{x}, \mathbf{w} \in \mathbb{R}^{n}, \quad y \in \mathbb{R}$

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\frac{\partial \mathbf{y}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}
$$

$$
z=(\langle\mathbf{x}, \mathbf{w}\rangle-y)^{2}
$$

Compute $\frac{\partial z}{\partial \mathbf{w}}$

Decompose

$$
\begin{aligned}
& a=\langle\mathbf{x}, \mathbf{w}\rangle \\
& b=a-y \\
& z=b^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial z}{\partial \mathbf{w}} & =\frac{\partial z}{\partial b} \frac{\partial b}{\partial a} \frac{\partial a}{\partial \mathbf{w}} \\
& =\frac{\partial b^{2}}{\partial b} \frac{\partial a-y}{\partial a} \frac{\partial\langle\mathbf{x}, \mathbf{w}\rangle}{\partial \mathbf{w}} \\
& =2 b \cdot 1 \cdot \mathbf{x}^{T} \\
& =2(\langle\mathbf{x}, \mathbf{w}\rangle-y) \mathbf{x}^{T}
\end{aligned}
$$

Homework 1 problem 4

Problem 4: Vector Calculus (20')

Suppose x is a 3 - d vector.

$$
f(x)=\left|e^{A \cdot x+b}-c\right|_{2}^{2}
$$

where

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 1.5 & -2
\end{array}\right], b=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right], c=\left[\begin{array}{l}
1.0 \\
1.0
\end{array}\right]
$$

$|\cdot|_{2}$ is 2-norm: $|x|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots}$.
What is the differential $\frac{\partial f}{\partial x}$?

Homework 1 problem 4

$$
\begin{aligned}
& \int_{(3 \times 1)}^{x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { dim of } A x+b: 2 \times 1 \rightarrow \operatorname{dim} \text { of } u: 2 \times 1} \begin{array}{l}
u^{\top}: 1 \times 2
\end{array} \\
& \text { let } u=e^{A x+b}-C \\
& f(x)=|u|_{2}^{2}=u^{\top} u \\
& \frac{d f}{d u}=\frac{d}{d u} u^{\top} u=2 u^{\top} \\
& \frac{d f}{d x}=\frac{d f}{d u} \frac{d u}{d x} \quad \frac{d u}{d x}=\left[\begin{array}{lll}
\frac{d u_{1}}{d x_{1}} & \frac{d u_{1}}{d x_{2}} & \frac{d u}{d x_{3}} \\
\frac{d u_{2}}{d x_{1}} & \frac{d u_{2}}{d x_{2}} & \frac{d u_{2}}{d x_{3}}
\end{array}\right] \\
& =\ldots \text { simplify } \\
& =2 \underbrace{2 u^{\top} \frac{d u}{d x}}_{(1 \times 3)} \begin{array}{c}
(1 \times 2) \\
\downarrow \\
(2 \times 3)
\end{array}
\end{aligned}
$$

UC SANTA BARBARA

