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Abstract

How to find proper moments to generate par-
tial sentence translation given a streaming
speech input? Existing approaches waiting-
and-translating for a fixed duration often break
the acoustic units in speech, since the bound-
aries between acoustic units in speech are
not even. In this paper, we propose MoSST,
a simple yet effective method for translat-
ing streaming speech content. Given a usu-
ally long speech sequence, we develop an
efficient monotonic segmentation module in-
side an encoder-decoder model to accumulate
acoustic information incrementally and detect
proper speech unit boundaries for the input
in speech translation task. Experiments on
multiple translation directions of the MuST-C
dataset show that MoSST outperforms exist-
ing methods and achieves the best trade-off be-
tween translation quality (BLEU) and latency.
Our code is available at https://github.

com/dqqcasia/mosst.

1 Introduction

Speech translation (ST) aims at translating from
source language speech into target language text,
which is widely helpful in various scenarios such
as conference speeches, business meetings, cross-
border customer service, and overseas travel. There
are two kinds of application scenarios, including
the non-streaming translation and the streaming
one. The non-streaming models can listen to the
complete utterances at one time and then generate
the translation afterward. While, the streaming
models need to balance the latency and quality and
generate translations based on the partial utterance,
as shown in Figure 1.

Recently, end-to-end approaches have achieved
remarkable progress in non-streaming ST. Previ-
ous work (Weiss et al., 2017; Berard et al., 2018;
Bansal et al., 2019a,b; Alinejad and Sarkar, 2020;
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Figure 1: An illustration of streaming speech-to-text
translation. ST models listen to the audio in source lan-
guage, and generate tokens in target language.

Stoian et al., 2020) Ansari et al. (2020) has shown
that an end-to-end model achieves even better per-
formance compared to the cascaded competitors.
However, attempts at end-to-end streaming ST are
still not fully explored. Traditional streaming ST
is usually formed by cascading a streaming speech
recognition module with a streaming machine trans-
lation module (Oda et al., 2014; Dalvi et al., 2018).
Most of the previous work focuses on simultaneous
text translation (Gu et al., 2017a). Ma et al. (2019)
propose a novel wait-k strategy based on the prefix-
to-prefix framework, which is one of the popular
research methods of simultaneous text translation.
For end-to-end streaming ST, Ma et al. (2020b);
Ren et al. (2020); Ma et al. (2021a) introduce the
methodology of streaming machine translation into
streaming ST and formalize the task, which be-
longs to the first study to propose simultaneous ST
in an end-to-end manner.

However, those previous streaming ST systems
generally treat a fixed time-span of audio as a acous-
tic unit and translate new words based on fixed
time segmentation, which might be unfavorable
for streaming ST translation. Since the speaker’s
speech speed and the length of the phonemes are
distinct, previous methods cannot find the best pol-
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Figure 2: Overview of the proposed MoSST. MoSST consists of a pre-trained acoustic model, a monotonic seg-
mentation module (MSM) module, and standard Transformer blocks. The acoustic model extracts features from
the raw audio waveform. MSM learns a soft and monotonic alignment over the extracted features from the acoustic
model and outputs accumulated acoustic vectors as the input for down-streaming Transformer blocks.

icy to tell whether to continue reading source audio
or translate new words when the source audio is
streaming in. Hence, we expect the model can de-
termine whether the streaming audio information
input is enough to translate new words, similar to
the manual simultaneous interpretation. This idea
inspires Monotonic-segmented Streaming Speech
Translation (MoSST) system. Specifically, we de-
sign a new module that helps to judge the acoustic
boundaries of the input audio. We then propose a
translation strategy that enables the model to de-
cide whether to read the audio stream or write new
tokens given the audio prefix. With the new module
and decoding strategy, the model’s performance on
streaming speech translation has been significantly
improved.

We highlight our innovations and findings as
follows:

• We propose a simple but effective framework,
MoSST for streaming speech translation.

• We introduce a new monotonic segmenta-
tion module to segment audio waveform into
acoustic units, based on which we design
the adaptive decision strategy which dynami-
cally decides when to translate a new word in
streaming scenarios.

• We validate MoSST on the MuST-C dataset.
The results show that our model significantly
outperforms SOTA baselines. Surprisingly,
we also find that MoSST can rival or even

surpass other SOTA systems in non-streaming
speech translation. Furthermore, we conduct a
comprehensive study to analyze the utility of
the proposed module and decoding strategy.

2 Proposed Method: MoSST

This section first formulates the ST task in stream-
ing and non-streaming scenarios. Then, we intro-
duce the detailed architecture of MoSST, as shown
in Figure 2. Finally, we give the training and infer-
ence strategies of MoSST for streaming and non-
streaming cases.

2.1 Problem Formulation
The ST corpus usually contains speech-
transcription-translation triples (x, z,y). Specially,
x = (x1, ..., xTx) is a sequence of acoustic
features. z = (z1, ..., zTz) and y = (y1, ..., yTy)
represents the corresponding transcription in
source language and the translation in target
language respectively. Usually, the acoustic feature
x is much longer than text sequences z and y, as
the sampling rate of audio is usually above 16,000
Hz, and each word syllable (about 300 ms) will be
recorded by thousands of sampling points.

The streaming ST model aims to translate in-
stantly when speech audio streams in, that is, given
a valid audio prefix x<τ , where τ is the time span
of the audio piece, we expect the model can trans-
late enough information y<K , whereK is the maxi-
mum number of tokens that the model can translate



as time τ , i.e.:

Pr(y<K |x<τ ) =
K∏
t=1

Pr(yt|x<τ ,y<t; θ) (1)

where θ is the parameters of the streaming ST
model. Our goal is to find the best θ∗ that max-
imizes the Pr(y<K |x<τ ) in Eq. 1.

Note that in our research scenario, we require
that the translated piece of the sentence shall not be
modified once generated, similar to the settings in
simultaneous machine translation (Ma et al., 2019).

2.2 Model Structure
MoSST consists of an acoustic encoder, a mono-
tonic segmentation, and a standard Transformer.
Acoustic Encoder The conventional acoustic en-
coder using FBANK (log-Mel filterbank, FBANK)
as feature extractors faces reduced performance
with insufficient training data (San et al., 2021),
which is especially the case in speech-to-text trans-
lation tasks. The FBANK also leads to potential
information loss, and may corrupt long-term corre-
lations (Pardede et al., 2019).

To tackle such problems, we apply the recently-
proposed pre-trained acoustic models (Chen et al.,
2020; Baevski et al., 2020) as the feature ex-
tractor for MoSST. Those pre-trained acoustic
models learn the speech representation in a self-
supervised learning (SSL) way. Since pre-trained
acoustic models require only a large amount of
unlabeled speech, which also alleviates the cor-
pus shortage of ST tasks. In this paper, we utilize
Wav2Vec2 (Baevski et al., 2020) as our instance.
Monotonic Segmentation Module The previous
speech translation model generally attends the
whole audio sequence to the translation tokens
with a sequence-to-sequence (seq2seq) framework,
which brings two problems: 1) the model does
not learn the alignment between audio and transla-
tion explicitly, which may confuse the streaming
translation model on whether it has read enough
acoustic information when generating the trans-
lated text; 2) the audio sequences are usually much
longer than text sequences, which is computa-
tionally demanding for the conventional encoder-
decoder speech-to-text model to apply the global
attention mechanism. Such high computational
cost deviates from the requirements in streaming
translation scenarios.

We introduce a Monotonic Segmentation Mod-
ule (MSM), to relieve drawbacks of existing mod-

els. The MSM is inspired by the integrate-and-fire
(IF) model (Abbott, 1999; Dong and Xu, 2020;
Yi et al., 2021). Specifically, IF neuron has two
modes: integrate and firing. In integrate mode, the
IF neuron dynamically receives signals and accu-
mulates information; when the received informa-
tion exceeds a certain threshold, IF neuron enters
firing mode, at which time it outputs a signal (a.k.a.
spiking), where the accumulated state contains in-
formation received in the previous integrate phase;
and finally, the IF neuron will reset itself and re-
enter the integrate mode once the firing mode ends.

In the MSM, we utilize the integrate-and-fire cy-
cle to dynamically locate the boundaries of mean-
ingful speech segments. At the integrate mode, the
model keeps reading and processing speech frames,
while at firing mode the model writes the translated
tokens. MSM takes the representation from the
Acoustic Encoder and uses one of the dimensions
as signals for integrate-and-fire. These signals are
passed through a Sigmoid function to produce inte-
gration weights. Once the weights are accumulated
to a certain threshold (e.g. =1.0), the module marks
the boundary of the current segment and enters a
firing mode. It then aggregates the rest dimensions
of encoder representations according to the weights
within this segment. These are passed to further
processing blocks for WRITE operation.

The MSM operations are defined as follows:

αt = sigmoid(ht,d) (2)

lu =

Su∑
t

α′tht,1:d−1 (3)

n̂ =
T∑
t

αt (4)

α′t =
n∗

n̂
αt, (5)

Where h is the acoustic vector as an output of the
acoustic encoder, and its subscript denotes the scale
value of h at timestamp t and d-th dimension (i.e.,
we use the last dimension as the input of IF neu-
rons). The Sigmoid value of the scale ht,d is the
current weight, denoted as αt. We use the current
weight to decide mode conversion from integrate
to firing: when the accumulated sum of αt exceeds
the threshold value, the model is believed to have
READ sufficient speech signals in this integrate
stage, and the IF neural fires the accumulated in-
formation l = (l1, ..., lu) to fulfill one integrate-
and-fire cycle. And Su represents the firing step



corresponding to lu.
Note that the accumulated information l is cal-

culated as a weighted sum of acoustic vectors ht
at a single integrate stage t. We call it as informa-
tion weight α′t, which helps to scale the amount of
information contained in each integrate stage. We
calculate the information weight α′t by normalizing
the current weight αt with the number of tokens in
the corresponding transcription n∗, which divides
the length of the accumulated acoustic vector n̂.
Transformer block The last module of the MoSST
is the standard Transformer. The Transformer
blocks take the integrated acoustic vector l from the
MSM layer as the input, which aims to extract the
semantic feature (hSE) of the input audio. Since
MSM has significantly compressed the length of
acoustic features, the Transformer can attend the
input and output directly without the excessive com-
putational overhead. Note that to ensure that MSM
learns the correct length of acoustic units, we use
the length of the corresponding transcription as a
supervised signal and introduce length penalty loss
(“LP loss” in Figure 2) to assist MSM’s learning.

Llp(θ;x, z) = ||n∗ − n̂||2, (6)

During inference, an extra rounding operation is
applied on n̂ to simulate n∗. Based on the matched
sequence length, the accumulated acoustic vector l
is mapped back into the model size by a randomly
initialized fully connected layer.

2.3 Training Strategies

Multi-task Joint Training with ASR MoSST
jointly fulfills the ST and ASR tasks with the multi-
task learning (MTL) strategy as its main model.
To distinguish two tasks, we add two special task
indicators at the beginning of the text as the BOS
operator for decoding. For example, if the audio
input for "Thank you ." is in English, for ASR,
we use [en] as the BOS and decode z= "[en]
Thank you .". We add [De] at the start of
German translation, thus y is "[De] Danke ."

Both ST and ASR are optimized with cross-
entropy (“CE loss” in Figure 2) losses, defined
in Equation (7) and (8) respectively.

Lst(θ;x,y) = −
Ty∑
i=1

log pθ(yi|y<i,h
SE) (7)

Lasr(θ;x, z) = −
Tz∑
i=1

log pθ(zi|z<i,h
SE) (8)

where the decoder probability pθ is calculated from
the final softmax layer based on the output of the
decoder.

We use the joint training strategy to optimize
all modules. The overall objective function is the
weighted sum for all aforementioned losses:

L(θ;x,y, z) =αLlp(θ;x, z) + βLce (9)

Where Lce represents Lasr or Lst. In the follow-
ing experimental sections, α is set to 0.05, and β is
set to 1 by default.

2.4 Inference Strategies
Wait-k Policy MoSST adopts wait-k policy for
streaming translation, which originates from simul-
taneous machine translation (Ma et al., 2019). Wait-
k policy waits for K source tokens and then trans-
lates target tokens concurrently with the source
streams in (i.e., outputN tokens when givenN+K
source tokens).

The previous online ST systems adopt Pre-fix
Decision (Ma et al., 2021b, 2020b) for wait-k pol-
icy, where a fixed time span (usually 280ms) of the
source waveform is regarded as a new unit. How-
ever, the pre-fixed decision is limited on real-world
scenarios since the speech speed of speakers and
the length of acoustic units are distinct, where a
fixed time stride guarantees neither sufficient infor-
mation if the phonemes are too long, nor a proper
translation latency if the phonemes are too short.
Adaptive Decision We propose a new decision
strategy for streaming speech translation, namely
Adaptive Decision. Our new strategy dynamically
decides when to write the new token according to
the integrated state length of MSM (i.e., |lu| in
Equation ( 5) ).

Since MSM scales up the acoustic information
monotonically, the model can estimate the acous-
tic boundary for each units in the audio. We use
such integrate feature as a basis to tell whether the
information carried by the waveform segment is
sufficient; hence the proposed adaptive decision
revises the drawbacks in fixed decision.

We propose our new decoding policy in Algo-
rithm 1. The new policy utilizes wait-k to decide
when to write new translation tokens and adaptive
decisions to decide how long the input is regarded



Algorithm 1: Adaptive Decision Strategy
Input: The waveform sequence x, the MSM model

M, wait lagging K
Output: The translated sentence ŷ

1 initialization: the read waveform segment x̂ = [], the
output sentence ŷ = [];

2 while ŷi−1 is not EndOfSentence do
3 calculate MSM integrated state lu ;
4 if x̂ == x ;
5 then

/* the waveform is finished
*/

/* write new token */
6 ŷ = ŷ + decoder.predict();
7 M.decoder.update(ŷ) ;
8 else if |lu| − |ŷ| < K ;
9 then

/* read waveform */
10 x̂ = x̂+ new_segment(x);
11 M.encoder.update(x̂)
12 else

/* write new token */
13 ŷ = ŷ + decoder.predict();
14 M.decoder.update(ŷ) ;
15 end
16 return ŷ ;

as a unit. Specifically, during the online ST trans-
lation, the model shall decide whether to read new
audio frames or translate a new word at any time,
called the READ/WRITE decision. We denote
x̂ as the audio sub-sequence that the model has
READ from the source and ŷ as the sentence prefix
that has been already generated. The wait-k policy
makes the READ/WRITE decision according to
the length difference between the MSM integrated
state |lu| and the generated sentence |ŷ|. When the
integrated state |lu| isK word behind the generated
|ŷ|, the MoSST generates a new token (line 12) and
updates decoder states recursively, otherwise, the
model waits and reads the audio streaming (line 9),
and updates the encoder states.

Train-full Test-k Streaming translation needs to
predict the output based on part of the input. If the
train-full test-k paradigm is applied, the streaming
performance will decrease a lot due to the mis-
match between training and inferring. The pre-
vious streaming work generally uses a prefix-to-
prefix training framework (Ma et al., 2019), imple-
mented by a unidirectional encoder and decoder,
and equipped with the waik-k policy. In MoSST,
the learned monotonic segmentation module allows
our model to have streaming decoding capability
without performance drop.

3 Experiments

3.1 Dataset

MuST-C1 (Di Gangi et al., 2019a) is a multilin-
gual ST corpus with triplet data sources: source
audio, transcripts, and text translations. To the best
of our knowledge, MuST-C is currently the largest
ST dataset available. It includes data from En-
glish TED talks with auto-aligned transcripts and
translations at the sentence level. We mainly con-
duct experiments on English-German and English-
French language pairs. And we use the dev and
tst-COMMON sets as our development and test
data, respectively.

k 1 3 5 7 9 inf

SimulSpeech † 10.73 15.52 16.90 17.46 17.87 18.29
MoSST 11.76 15.57 18.23 18.71 19.37 19.95

Table 1: Comparison with SimulSpeech on MuST-C
EN-DE tst-COMMON test set. † represents results
from Ren et al. (2020).

3.2 Preprocessing

For speech input, the 16-bit raw wave sequences
are normalized by a factor of 215 to the range of
[−1, 1). For text input, on each translation pair, all
texts (including transcript and translation) are pre-
processed in the same way. Texts are case-sensitive.
We keep and normalize the punctuations, but re-
move non-print characters. We tokenize sentences
with Moses tokenizer 2 and filter out samples longer
than 250 words. For subword modeling, we use
a unigram sentencepiece (Kudo and Richardson,
2018) with a dictionary size of 10000. On each
translation direction, the sentencepiece model is
learned on all text data from ST corpora.

3.3 Model and Experimental Configuration

Model Configuration For audio input, the
Wav2Vec2 module follows the base3 configuration
in Baevski et al. (2020). It uses parameters self-
supervised pre-trained on LibriSpeech audio data
only. The subsequently shared Transformer mod-
ule has a hidden dimension of 768 and 4 attention
heads. The encoder is 8 layers, and the decoder

1https://ict.fbk.eu/must-c/
2https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

3https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_small.pt

https://ict.fbk.eu/must-c/
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt


is 6 layers. We use the simplified version of the
Continuous IF implementation (Yi et al., 2021)
for MSM module, which introduces no additional
parameters except for a fully connected layer.
Experimental Configuration We use an Adam
optimizer with β1 = 0.9, β2 = 0.98, and 4k warm-
up updates. We set the maximum training batch of
the waveform audio token to be 3.2 million. We
apply an inverse square root schedule algorithm
for the learning rate. We average 10 consecutive
checkpoints around the one with the best dev loss
and adopt a beam size of 5. We implement our
models in Fairseq (Ott et al., 2019).

3.4 Evaluation

For offline translation, the model’s performance is
mainly evaluated with quality metrics. While for
streaming translation, ST model is evaluated by the
latency-quality trade-off curves.
Quality Metrics We quantify translation accuracy
with detokenized BLEU (Papineni et al., 2002) us-
ing sacreBLEU 5.
Latency Metrics Existing simultaneous transla-
tion work mainly focuses on the latency evalua-
tion of text translation, and has proposed computa-
tion unaware metrics, such as Average Proportion
(AP) (Cho and Esipova, 2016), Average Latency
(AL) (Ma et al., 2019), Continues Wait Length
(CW) (Gu et al., 2017b) and Differentiable Aver-
age Lagging (DAL) (Cherry and Foster, 2019). Ma
et al. (2020a) extends the latency metrics of text
translation into ST, including AL, AP, and DAL.
The latency metrics for streaming MoSST are eval-
uated by AL, DAL, and AP based on the SimulEval
toolkit 6 (Ma et al., 2020a).

3.5 Experimental Results

3.5.1 Streaming Speech-to-text Translation
We compare the performance of our method
with published work on streaming ST tasks.
SimulST (Ma et al., 2020b) introduces the wait-
k training strategy in simultaneous text transla-
tion into simultaneous ST tasks. The comparison
result on MuST-C EN-DE tst-COMMON set is
shown in Figure 3. It can be seen that MoSST
is significantly better than the baseline system in

4https://github.com/pytorch/fairseq/
blob/main/examples/speech_to_text/docs/
simulst_mustc_example.md

5https://github.com/mjpost/sacrebleu
6https://github.com/facebookresearch/

SimulEval

all the three latency metrics and the quality met-
ric. SimulSpeech (Ren et al., 2020) also adopts
the wait-k strategy and leverages the connection-
ist temporal classification (CTC) decoding to split
the input streaming speech chunk in real-time. Be-
sides, SimulSpeech introduces attention-level and
data-level knowledge distillation (KD) to improve
performance. The comparison result on MuST-C
EN-DE tst-COMMON set is shown in Table 1. It
can be seen that when k ranges from 1 to infinite,
our method significantly outperforms SimulSpeech.
Existing work all uses the wait-k training strategy
implemented with a unidirectional mask, which
would damage the performance of offline evalua-
tion in full context. While MoSST can serve well
both non-streaming and streaming translation. At
the same time, the shrinking mechanism based on
the MSM can speed up model convergence, which
we give a detailed analysis in Sec A.2.2 of the Ap-
pendix.

3.5.2 No-streaming Speech-to-text
Translation

We also compare the performance of our method
with published work on offline ST tasks under
experimental settings without external supervised
training data. The result is shown in Table 2.
Fairseq (Wang et al., 2020a), ESPnet (Inaguma
et al., 2020), and NeurST (Zhao et al., 2021) are re-
cently emerging R&D toolkits for ST. Transformer
ST uses a standard SpeechTransformer (Dong et al.,
2018) model structure, with a pre-trained ASR
model to initialize the encoder and a pre-trained
MT model to initialize the decoder. Zhang et al.
(2020a) propose adaptive feature selection (AFS)
for ST, which applies L0DROP (Zhang et al., 2021)
to dynamically estimate the importance of each en-
coded speech feature. STAST (Liu et al., 2020b)
uses a speech-to-text adaptation method to bridge
the modality gap in the semantic space by MTL
and representation regulation with MT. Le et al.
(2020) adapt the dual-decoder transformer with a
dual-attention mechanism to joint ASR and ST for
both bilingual (BL) and multilingual (ML) settings.
Compared with the best results published so far,
MoSST can achieve an improvement of 1.3 BLEU
and 0.7 BLEU respectively. It should be noted that
the previous methods can be integrated into MoSST
to expect better performance. We will leave it for
further exploration.

https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/simulst_mustc_example.md
https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/simulst_mustc_example.md
https://github.com/pytorch/fairseq/blob/main/examples/speech_to_text/docs/simulst_mustc_example.md
https://github.com/mjpost/sacrebleu
https://github.com/facebookresearch/SimulEval
https://github.com/facebookresearch/SimulEval
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Figure 3: The translation quality against the latency metrics (DAL, AP and AL) on the tst-COMMON set of MuST-
C En-De dataset. Decoding strategy here is pre-fixed decision. k in SimulEval is set to 5 as default. The result of
SimulST is reproduced by Fairseq 4.

Model MuST-C EN-X
EN-DE EN-FR

Transformer ST Fairseq (Wang et al., 2020a) 22.7 32.9
Transformer ST ESPnet (Inaguma et al., 2020) 22.9 32.8
Transformer ST NeurST (Zhao et al., 2021) 22.8 33.3
AFS ST (Zhang et al., 2020a) 22.4 31.6
STAST (Liu et al., 2020b) 23.1 -
Dual-Decoder Transformer (BL) (Le et al., 2020) 23.6 33.5
Wav2Vec2 + Transformer (Han et al., 2021) 22.3 34.3
W-Transf (Ye et al., 2021) 23.6 34.6
RealTranS (Zeng et al., 2021a) 22.99 -
MoSST 24.9† 35.3†

Table 2: Results of non-streaming ST models on MuST-
C EN-DE and EN-FR tst-COMMON test set. † indi-
cates our improvement is statistically significant.

Model EN-DE EN-FR
BLEU 5 BLEU 5

MoSST 24.9 - 35.3 -
w/o MSM 22.7 -2.2 34.4 -0.9
w/o MTL 21.9 -0.8 33.8 -0.6
w/o Pretrain 20.0 -1.9 31.6 -2.2

Table 3: Results of ablation study on MuST-C EN-DE
and EN-FR tst-COMMON test set. “w/o MSM” stands
for MoSST augmented without the monotonic seg-
mentation module in the acoustic encoder.“w/o MTL”
means removing multi-task joint learning with ASR
task. “w/o Pretrain” represents using FBANK as input
instead of the self-supervised acoustic representation.

4 Analysis

4.1 Ablation Studies

We conduct ablation studies to demonstrate the ef-
fectiveness of the design of MoSST, including the
monotonic segmentation module, multi-task joint
training with ASR, and self-supervised acoustic
representation. The ablation study results can be
seen in Table 3. The translation quality decreases
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Figure 4: The translation quality against the latency
metrics (DAL) on the tst-COMMON set of MuST-C
En-De dataset. Decoding strategy here is pre-fixed de-
cision. Points on the curve correspond to k in SimulE-
val with 5, 7, 9, 15 and 20, respectively.

significantly when each of the modules or strate-
gies is emitted successively. The self-supervised
acoustic representation can bring almost 2 BLEU
on both EN-DE and EN-FR datasets, which shows
that large-scale SSL brings hope to solving the data
scarcity problem of end-to-end ST. For EN-DE lan-
guage pair, joint training with the auxiliary ASR
task has a performance gain of 0.8 BLEU. And the
monotonic segmentation module has an additional
2.2 performance gain to our method. The results
show a consistent performance improvement on
EN-FR language pair. This verifies the outstanding
advantage of the monotonic soft attention mech-
anism of MSM in extracting contextual acoustic
representations.

4.2 Effects of Decoding Strategy

4.2.1 Pre-fix Decision

For the pre-fixed decision decoding strategy, the
parameter setting of stride is very important. In Fig-
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Figure 5: The translation quality against the latency
metrics (DAL) on the tst-COMMON set of MuST-C
En-De dataset. Pre-fixed decision is tested with the
stride size of 320ms.

ure 4, we compare the influence of different strides
on the pre-fixed decision strategy. It can be seen
that increasing stride within a certain range will
have a positive impact on the latency-bleu trade-off.
But the model also tends to fall into the field of a
larger latency.

4.2.2 Adaptive Decision

We have proposed an adaptive decision in Sec-
tion 2.4. To better emphasize the latency factor, we
compare the performance of the adaptive decision
and the pre-fixed decision on the tst-COMMON
test subset of MuST-C EN-DE. The results are
shown in Figure 5. Compared with the pre-fixed
strategy decoding method, the adaptive strategy de-
coding method has a better balance between delay
and quality. Through observation, it is found that
the adaptive strategy can ignore the silent frames.
For example, after predicting a punctuation, it will
read continuously to accumulate enough source
acoustic information. In addition, the adaptive
strategy can further reduce the delay by setting
the number of WRITE operations after the accu-
mulated information is sufficient according to the
length ratio of the source sentences and the target
sentences between different language pairs, which
requires further exploration.

4.2.3 Alignment Visualization

In Figure 6, we show the ground truth align-
ment and the predicted firing positions learned by
MoSST. We can see that what MSM learned is the
acoustic boundary, not to mimic wait-k. Therefore,
the length of the audio chunk can be adaptively
read in during streaming decoding, while ensuring
that each chunk includes a complete acoustic unit.

5 Related Work

Speech Translation Bérard et al. (2016) have
given the first proof of the potential for end-to-end
speech-to-text translation without using the inter-
mediate transcription. The training method based
on pre-training (Weiss et al., 2017; Berard et al.,
2018; Bansal et al., 2019a,b; Alinejad and Sarkar,
2020; Stoian et al., 2020; Dong et al., 2021a) can
effectively use pre-trained models with better per-
formance as initialization to speed up the conver-
gence of the ST model. Multi-task learning (Weiss
et al., 2017; Berard et al., 2018; Liu et al., 2020a;
Indurthi et al., 2020; Han et al., 2021; Ye et al.,
2021) can fully optimize the model parameters and
improve the performance with the aid of auxiliary
tasks. Knowledge distillation has been proved to be
efficient to learn from pre-trained models (Liu et al.,
2019, 2020b; Dong et al., 2021b). Le et al. (2021)
introduce adapter for multilingual speech transla-
tion. Similarly, Kano et al. (2017); Wang et al.
(2020b) introduce curriculum learning methods, in-
cluding different learning courses of increasing dif-
ficulty. To overcome data scarcity, Jia et al. (2019);
Pino et al. (2019) augment data with pseudo-label
generation, and Bahar et al. (2019); Di Gangi et al.
(2019b); McCarthy et al. (2020) introduce noise-
based spectrum feature enhancement. Zhang et al.
(2020a) propose adaptive feature selection to elim-
inate uninformative features and improve perfor-
mance.
Streaming Speech Translation Traditional
streaming ST is usually formed by cascading a
streaming ASR module and a streaming machine
translation module (Oda et al., 2014; Dalvi et al.,
2018). The ASR system continuously segments
and recognizes the transcription of the audio seg-
ment, and then the machine translation system con-
tinuously translates the text segment output from
the upstream. Most of the previous work focuses on
simultaneous text translation (Gu et al., 2017a). Gu
et al. (2017a) learn an agent to decide when to read
or write. Ma et al. (2019) propose a novel wait-k
strategy based on the prefix-to-prefix framework to
synchronize output after reading k history tokens.
Many following work propose some improvement
strategies based on adaptive wait-k (Zheng et al.,
2019; Zhang et al., 2020b; Zhang and Zhang, 2020)
and efficient decoding (Elbayad et al., 2020; Zheng
et al., 2020). Some monotonic attention meth-
ods (Arivazhagan et al., 2019; Ma et al., 2020c;
Schneider and Waibel, 2020) have been proposed
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Figure 6: An example speech and its corresponding learned firing positions by MoSST. Top: the waveform of
speech sequence and the true segmentation boundary corresponding to each word. Middle: the learned weights
(corresponding to α in Eq.(2)) using the last dimension from acoustic encoder states. Bottom: the integrated
weights by MSM in MoSST. MSM will fire and start to compute the segment’s representation once the accumulated
weights exceed a certain threshold (=1.0).

to model the monotonic alignment of input and
output. Arivazhagan et al. (2020a,b) propose a re-
translation strategy, allowing the model to modify
the decoding history to improve the performance of
streaming translation. Ma et al. (2020b) propose
SimulST, which applies the wait-k method from
streaming machine translation (Ma et al., 2019)
into streaming ST. Ren et al. (2020) propose Simul-
Speech, which uses knowledge distillation to guide
the training of the streaming model and the con-
nectionist temporal classification (CTC) decoding
to segment the audio stream in real-time. Ma et al.
(2021a) enable the streaming model to handle long
input by equipping with an augmented memory
encoder. Chen et al. (2021) use a separate and
synchronized ASR decoder to guide the ST decod-
ing policy. Zeng et al. (2021b) introduce a blank
penalty to enhance performance in simultaneous
scenarios.

6 Conclusion

We propose MoSST, a simple and effective frame-
work for online speech-to-text translation. MoSST
consists of a pretrained acoustic model, a mono-
tonic segmentation module, and a standard Trans-
former, along with the multitask training strategy
and the adaptive decision strategy. The monotonic
segmentation module and the adaptive decision
strategy tell our method when to translate. More-
over, the pre-trained acoustic encoder and the mul-
titask training strategy boost our method’s ability
to predict what to generate.

The experiment on MUST-C datasets validates
the effectiveness of MoSST over previous work.
The results show that MoSST can achieve a better
trade-off between quality and latency over prior
end-to-end models and cascaded models in diverse
latency settings. Besides, we also find MoSST
can rival non-streaming speech translation SOTA
systems given the complete audio waveform.
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A Appendix

A.1 Case Study
A.1.1 Streaming Translation
In Table 9, we show an example of simultaneous
decoding for cascaded systems and end-to-end sys-
tems. The cascade system has the drawbacks of
error accumulation and delay accumulation. While
the end-to-end model has inherent advantages in
this respect. For example, in this example, our
method can attend to the speaker’s prosody in-
formation from the original audio input, such as
pauses, so it can accurately predict the punctuation
in the target language text.

A.2 Effects of MSM
A.2.1 Performance on ASR
We also validate the effects of MSM with FBANK
as input on the ASR task on MuST-C EN-DE tst-
COMMON set. The results are shown in Table 4.
There is also a performance improvement of 1.5
points, indicating that the integrate-and-fire model
indeed plays an important role in learning encoded
shrunk acoustic representation.

Model ASR (WER ↓)

SpeechTransformer 15.95
SpeechTransformer w/ MSM 14.48

Table 4: Results of ASR models on MuST-C EN-DE
tst-COMMON set.

A.2.2 Training Time
Our method can be trained in parallel without the
help of wait-k strategy, which observably improves
training efficiency. And the integration mechanism
of MSM module can effectively reduce the output
length of the encoder, which can reduce memory
usage and increase training batch size. We exper-
iment with FBANK feature as input on MuST-C
EN-DE data set. The training time (4 Tesla-V100)
for different structures is shown in Table 5.

Model Training Time ↓

SpeechTransformer w/ wait-k 18 hours
SpeechTransformer w/ MSM 13 hours

Table 5: Training time of ST models on MuST-C EN-
DE data set.

A.3 Numeric Results for Figures

SimulST

BLEU 0.25 3.60 10.88 14.17 15.99
DAL 930 1500 2946 4361 5271
AP 0.37 0.62 0.88 0.96 0.99
AL 604 1097 2165 2774 3049

MoSST

BLEU 1.35 6.75 16.34 19.77 19.97
DAL 642 1182 2263 3827 4278
AP 0.29 0.53 0.79 0.93 0.96
AL 208 818 1734 2551 2742

Table 6: Numeric results for Figure 3.

Stride=280ms

BLEU 3.43 5.12 6.87 11.17 13.66
DAL 900 1166 1426 2142 2741

Stride=320ms

BLEU 4.93 7.15 9.08 13.27 15.65
DAL 1036 1339 1628 2415 3041

Stride=400ms

BLEU 8.59 11.07 13.27 16.65 18.28
DAL 1333 1701 2042 2928 3568

Stride=480ms

BLEU 12.34 14.60 16.11 18.58 19.49
DAL 1688 2098 2480 3403 4023

Table 7: Numeric results for Figure 4.

pre-fix decision

BLEU 4.93 7.15 9.08 13.27 15.65
DAL 1036 1339 1628 2415 3041

adaptive decision

BLEU 7.07 9.04 11.52 16.44 17.31
DAL 992 1142 1332 2244 2795

Table 8: Numeric results for Figure 5.

A.4 Compared with Cascaded System
We build a streaming cascaded system as a base-
line system by cascading a streaming speech recog-
nition model and a text translation model. Note
that the transcription generated by ASR system in
the cascade streaming system is also uncorrectable.
The results are shown in Table 10. The error accu-
mulation problem of the cascade system still exists
in the streaming model. Compared with the results
of the cascaded system, MoSST also has obvious
performance advantages in terms of quality met-
rics.



1 2 3 4 5 6 7 8 9 10 11 12 13 14
En (Source) If you have something to give , give it now .
De (target) Wenn Sie etwas zu geben haben , geben Sie es jetzt .

ASR If you have something to give and give it now .
Cascades Wenn Sie etwas zu geben haben und es jetzt geben .

MoSST Wenn Sie etwas geben , geben Sie es jetzt .

Table 9: An example from the test set of MuST-C En-De dataset. “ASR” means a streaming system with 440ms’
waiting latency. “Cascades” means a streaming pipeline contains ASR (wait-440ms) and NMT (wait-3). MoSST
represents MoSST with the pre-fixed decision and wait-3 strategy.

System k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = inf

ASR (WER↓) 51.9 43.9 42.1 40.6 39.6 39.0 38.7 16.25
MT (BLEU↑) 17.11 19.68 22.80 24.93 26.44 27.20 27.83 31.28

Cascaded ST (BLEU↑) 9.72 11.24 12.74 13.92 14.59 15.22 15.51 17.60

Table 10: Results of Cascaded Systems on MuST-C EN-DE tst-COMMON test set. For k = inf, the streaming
model degrades into an offline model without beam search decoding strategy. Here the ASR model is based on
SpeechTransformer (Dong et al., 2018), and the MT model is based on Transformer (Vaswani et al., 2017). Since
the delays of cascaded system involving speech recognition and text translation modules are more complicated,
latency metrics are not reported here. Note that cascaded ST is consisted of streaming ASR (wait-440ms, segment-
40ms) and streaming MT system.


