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ABSTRACT
Multi-core processors with ever increasing number of coresper
chip are becoming prevalent in modern parallel computing. Our
goal is to make use of the multi-core as well as multi-processor
architectures to speed up data mining algorithms. Specifically, we
present a parallel algorithm for approximate learning of Linear Dy-
namical Systems (LDS), also known as Kalman Filters (KF). LDSs
are widely used in time series analysis such as motion capture mod-
eling and visual tracking etc. We proposeCut-And-Stitch (CAS),
a novel method to handle the data dependencies due to the chain
structure of hidden variables in LDS, so as to parallelize the EM-
based parameter learning algorithm. We implement the algorithm
using OpenMP on both a supercomputer and a quad-core commer-
cial desktop. The experimental results show that parallel algorithms
usingCut-And-Stitch achieve comparable accuracy and almost lin-
ear speedups over the serial version. In addition,Cut-And-Stitch
can be generalized to other models with similar linear structures
such as Hidden Markov Models (HMM) and Switching Kalman
Filters (SKF).

Categories and Subject Descriptors:I.2.6 Artificial Intelligence:
Learning - parameter learning D.1.3 Programming Techniques: Con-
current Programming - parallel programming G.3 Probability and
Statistics: Time series analysis

General Terms: Algorithms; Experimentation; Performance.

Keywords: Linear Dynamical Systems; Kalman Filters; OpenMP;
Expectation Maximization (EM); Optimization; Multi-core.

1. INTRODUCTION
Time series appear in numerous applications, including motion

capture [11], visual tracking, speech recognition, quantitative stud-
ies of financial markets, network intrusion detection, forecasting,
etc. Mining and forecasting are popular operations relevant to time
series analysis. Two typical statistical models for such problems
are hidden Markov models (HMM) and linear dynamical systems
(LDS, also known as Kalman filters). Both assume linear transi-
tions on hidden (i.e. ’latent’) variables which are considered dis-
crete for HMM and continuous for LDS. The hidden states or vari-
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ables in both models can be inferred through a forward-backward
procedure involving dynamic programming. However, the maxi-
mum likelihood estimation of model parameters is difficult,requir-
ing the well-known Expectation-Maximization (EM) method [1].
The EM algorithm for learning of LDS/HMM iterates between com-
puting conditional expectations of hidden variables through the forward-
backward procedure (E-step) and updating model parametersto
maximize its likelihood (M-step). Although EM algorithm gen-
erally produces good results, the EM iterations may take long to
converge. Meanwhile, the computation time of E-step is linear
in the length of the time series but cubic in the dimensionality of
observations, which results in poor scaling on high dimensional
data. For example, our experimental results show that on a 93-
dimensional dataset of length over 300, the EM algorithm would
take over one second to compute each iteration and over ten min-
utes to converge on a high-end multi-core commercial computer.
Such capacity may not be able to fit modern computation-intensive
applications with large amounts of data or real-time constraints.
While there are efforts to speed up the forward-backward proce-
dure with moderate assumptions such as sparsity or existence of
low-dimensional approximation, we will focus on taking advan-
tage of the quickly developing parallel processing technologies to
achieve dramatic speedup.

Traditionally, the EM algorithm for LDS running on a multi-core
computer only takes up a single core with limited processingpower,
and the current state-of-the-art dynamic parallelizationtechniques
such as speculative execution [6] benefit little to the straightforward
EM algorithm due to the nontrivial data dependencies in LDS.As
the number of cores on a single chip keeps increasing, soon wemay
be able to build machines with even a thousand cores, e.g. an en-
ergy efficient, 80-core chip not much larger than the size of afinger
nail was released by Intel researchers in early 2007 [10]. This paper
is along the line to investigate the following question: howmuch
speed up could we obtain for machine learning algorithms on multi-
core? There are already several papers on distributed computation
for data mining operations. For example, “cascade SVMs” were
proposed to parallelize Support Vector Machines [9]. Otherarticles
use Google’s map-reduce techniques [8] on multi-core machines to
design efficient parallel learning algorithms for a set of standard
machine learning algorithms/models such as naïve Bayes andPCA,
achieving almost linear speedup [4, 12]. However, these methods
do not apply to HMM or LDS directly. In essence, their techniques
are similar to dot-product-like parallelism, by using divide-and-
conquer on independent sub models; these do not work for models
with complicated data dependencies such as HMM and LDS.1

1Or exactly, models with large diameters. The diameter of a model
is the length of longest acyclic path in its graphical representation.
For example, the diameter of the LDS in Figure 1 isN .



Symbol Definition
Y a multi-dimensional observation sequence
Z the hidden variables (= {z1, . . . , zN})
m the dimension of the observation sequence
H the dimension of hidden variables
N the duration of the observation
F the transition matrix,H × H
G the project matrix from hidden to observation,m × H

Table 1: Symbol table

In this paper, we propose theCut-And-Stitch method (CAS),
which avoids the data-dependency problems. We show that CAS
can quickly and accurately learn an LDS in parallel, as demon-
strated on two popular architectures for high performance comput-
ing. The basic idea of our algorithm is to (a)Cut both the chain
of hidden variables as well as the observed variables into smaller
blocks, (b) perform intra-block computation, and (c)Stitch the lo-
cal results seamlessly by summarizing sufficient statistics and up-
dating model parameters and an additional set of block-specific
parameters. The algorithm would iterate over 4 steps, wherethe
most time-consuming E-step in EM as well as the two newly intro-
duced steps could be parallelized with little synchronization over-
head. Furthermore, this approximation of global models by local
sub-models sacrifices only a little accuracy, due to the chain struc-
ture of LDS (also HMM), as shown in our experiments, which was
our first goal. On the other hand, it yields almost linear speedup,
which was our second main goal.

The rest of the paper is organized as follows. We first describe
the Linear Dynamical System in Section 2 and present our pro-
posedCut-And-Stitch method in Section 3. Then we describe the
programming interface and implementation issues in Section 4. We
present experimental results Section 5, the related work inSec-
tion 6, and our conclusions in Section 7.

2. BACKGROUND
Here we give a brief introduction to Linear Dynamical Systems

(LDS), including its formalization, its learning algorithm and its
connections to hidden Markov models (HMM).

Consider a multi-dimensional sequenceY = y1, . . . , yN of a
length N. For example,Y could be a sequence of marker posi-
tion vectors captured by video cameras, where each vectoryi is
of dimensionalitym. Suppose the evolution of the observation is
driven by a hidden Markov process. For example, in motion capture
modeling, hidden variables may correspond to a sinusoid moving
pattern, while the observed motion could be periodic walking cy-
cles. In LDS, both the transitions among the hidden variables as
well as their projections to the observations are describedas linear
Gaussian models (Eq (2-2)). We denote them as a matrixF for the
transition (H × H) with noises{ωn}; and a matrixG (m × H)
for the projection with the noises{ǫn} at each time-tickn. Fig-
ure 1 provides the graphical representation of following equations
defining an LDS:

z1 = z0 + ω0 (1)

zn+1 = Fzn + ωn (2)

yn = Gzn + ǫn (3)

wherez0 is the initial state of the whole system, andω0, ωi and
ǫi(i = 1 . . . M) are multivariate Gaussian noises:

ω0 ∼ N (0, Γ) ωi ∼ N (0, Λ) ǫj ∼ N (0, Σ)

( z N , )Z 1 Z 2 Z 3 Z N � 1 Z NY 1 Y 2 Y 3 Y N � 1 Y N
z 1 , )( u 0 , ) z 3 , )2 , )( G z 1 , ) z 2 , ) z N � 1 , ) z N � 1 , )

Figure 1: A Graphical Representation of the Linear Dynamical
System:z1, . . . , zN indicate hidden variables;y1, . . . ,yN indi-
cate observation. Arrows indicate Linear Gaussian conditional
probabilistic distributions.

Given the observation sequence, the goal of the learning algo-
rithm is to compute the optimal parameter setθ = (µ0, Γ, F, Λ, G, Σ).
The optimum is obtained by maximizing the log-likelihoodl(Y; θ)
over the parameter setθ. As mentioned in Section 1, the typical
learning method for LDS is the EM algorithm [1], which iteratively
maximizes the expected complete log-likelihood in a coordinate-
ascent manner:

Q(θnew, θold) = Eθold [log p(y1 . . .yN , z1 . . . zN |θnew)]

In brief, the algorithm first guesses an initial set of model param-
etersθ0. Then, at each iteration, it uses a forward-backward algo-
rithm to compute expectations of the hidden variablesẑn = E[zn |
Y; θ0] (n = 1, . . . , N) as well as the second moments and covari-
ance terms, which is the E-step. In the M-step, it maximizes the ex-
pected complete log-likelihood ofE[L(Y, z1...N)] with respect to
the model parameters. Since the computation ofE[zn | Y] depends
on E[zn−1 | Y] andE[zn+1 | Y], the straightforward implemen-
tation of the EM algorithm can not exploit much instruction level
parallelism.

Although we will focus on LDS in the rest of this paper, ourCut-
And-Stitch method could also be adapted to HMMs with a careful
replacement of context, because their graphical models arevery
similar. Figure 1 shows the structure of the graphical representation
of an LDS; notice that the structure remains the same for hidden
Markov models, with the only differences that the hidden (and pos-
sibly observed) variables are discrete and that the conditional distri-
butions should be replaced by multinomial distributions. Accord-
ingly, the forward-backward algorithm of HMM is still tractable
and can be implemented in a similar manner, and the M-step in the
learning algorithm can be modified as well.

3. CUT-AND-STITCH: PROPOSED METHOD
In the standard EM learning algorithm described in Section 2,

the chain structure of the LDS enforces the data dependencies in
both the forward computation fromzn (e.g.E[zn | Y; θ]) to zn+1

and the backward computation fromzn+1 to zn In this section, we
will present ideas on overcoming such dependencies and describe
the details ofCut-And-Stitch parallel learning algorithm.

3.1 Intuition and Preliminaries
Our guiding principle to reduce the data dependencies is to di-

vide LDS into smaller, independent parts. Given a data sequenceY
andk processors with shared memory, we could cut the sequence
into k subsequences of equal sizes, and then assign one proces-
sor to each subsequence. Each processor will learn the parameters,
say θ1, . . . , θk, associated with its subsequence, using the basic,
sequential EM algorithm. In order to obtain a consistent setof pa-
rameters for the whole sequence, we use a non-trivial methodto
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Figure 2: Graphical illustration of dividing LDS into block s in
the Cut step. NoteCut introduces additional parameters for
each block.

summarize all the sub-models rather than simply averaging.Since
each subsequence is treated independently, our algorithm will ob-
tain neark-fold speedup. The main design challenges are: (a) how
to minimize the overhead in synchronization and summarization,
and (b) how to retain the accuracy of the learning algorithm.Our
Cut-And-Stitch method (or CAS) is targeting both challenges.

Given a sequence of observed valuesY with length ofN, the
learning goal is to best fit the parametersθ = (µ0, Γ, F, Λ, G, Σ).
The Cut-And-Stitch (CAS) algorithm consists of two alternating
steps: theCut step and theStitch step. In theCut step, the Markov
chain of hidden variables and corresponding observations are di-
vided into smaller blocks, and each processor performs the local
computation for each block. More importantly, it computes the ini-
tial beliefs (marginal expectation of hidden variables) for its block,
based on the neighboring blocks, and then it computes the im-
proved beliefs for its block, independently. In theStitch step,
each processor computes summary statistics for its block, and then
the parameters of LDS are updated globally to maximize the EM
learning objective function (also known as theexpected complete
log-likelihood). Besides, local parameters for each block are also
updated to reflect changes in the global model. The CAS algorithm
iterates betweenCut andStitch until convergence.

3.2 Cut step
The objective ofCut step is to compute the marginal posterior

distribution ofzn, conditioned on the observationsy1, . . . ,yN given
the current estimated parameterθ: P (zn|y1, . . . ,yN; θ). Given
the number of processorsk and the observation sequence, we first
divide the hidden Markov chain intok blocks: B1,. . . , Bk, with
each block containing the hidden variablesz, the observationsy,
and four extra parametersυ, Φ, η, Ψ. The sub-model fori-th block
Bi is described as follows (see Figure 2):

P (zi,1) = N (υi, Φi) (4)

P (zi,j+1|zi,j) = N (Fzi,j , Λ) (5)

P (z′

i,T |zi,T ) = N (Fzi,T , Λ) (6)

P (yi,j |zi,j) = N (Gzi,j , Σ) (7)

where the block sizeT = N
k

andj = 1 . . . T indicatingj-th vari-
ables ini-th block (zi,j = z(i−1)∗T+j andyi,j = y(i−1)∗T+j ). ηi,
Ψi could be viewed as messages passed from next block, through
the introduction of an extra hidden variablez′

i,T .

P (z′

i,T ) = N (ηi, Ψi) (8)

Intuitively, the Cut tries to approximate the global LDS model
by local sub-models, and then compute the marginal posterior with
the sub-models. The blocks are both logical and computational,
meaning that most computation about each logical block resides on
one processor. In order to simultaneously and accurately compute

all blocks on each processor, the block parameters should bewell
chosen with respect to the other blocks. We will describe thepa-
rameter estimation later but here we first describe the criteria. From
the Markov properties of the LDS model, the marginal posterior of
zi,j conditioned onY is independent of any observedy outside the
blockBi, as long as the block parameters satisfy:

P (zi,1|y1, . . . ,yi−1,T ) = N (υi, Φi) (9)

P (zi+1,1|y1, . . . ,yN) = N (ηi, Ψi) (10)

Therefore, we could derive a local belief propagation algorithm to
compute the marginal posteriorP (zi,j |yi,1 . . .yi,T ; υi, Φi, ηi, Ψi, θ).
Both computation for the forward passing and the backward pass-
ing can reside in one processor without interfering with other pro-
cessors except possibly in the beginning. The local forwardpass
computes the posterior up to current time tick within one block
P (zi,j |yi,1 . . .yi,j), while the local backward pass calculates the
whole posteriorP (zi,j |yi,1 . . .yi,T ) (to save space, we omit the
parameters). Using the properties of linear Gaussian conditional
distribution and Markov properties (Chap.2 &8 in [1]), one can eas-
ily infer that both posteriors are Gaussian distributions,denoted as:

P (zi,j |yi,1 . . .yi,j) = N (µi,j , Vi,j) (11)

P (zi,j |yi,1 . . .yi,T ) = N (µ̂i,j , V̂i,j) (12)

We can obtain the following forward-backward propagation equa-
tions from Eq (4-8) by substituting Eq (9-12) and expanding.

Pi,j−1 = FVi,j−1F
T + Λ (13)

Ki,j = Pi,j−1G
T (GPi,j−1G

T + Σ)−1 (14)

µi,j = Fµi,j−1 + Ki,j(yi,j − GFµi,j−1) (15)

Vi,j = (I −Ki,j)Pi,j−1 (16)

The initial values are given by:

Ki,1 = ΦiG
T (GΦiG

T + Σ)−1 (17)

µi,1 = υi + Ki,1(yi,1 − Gυi) (18)

Vi,1 = (I− Ki,1)Φi (19)

The backward passing equations are:

Ji,j = Vi,jF
T (Pi,j)

−1 (20)

µ̂i,j = µi,j + Ji,j(µ̂i,j+1 − Fµi,j) (21)

V̂i,j = Vi,j + Ji,j(V̂i,j+1 − Pi,j)J
T
i,j (22)

The initial values are given by:

Ji,T = Vi,T F
T (FVi,T F

T + Λ)−1 (23)

µ̂i,T = µi,T + Ji,T (ηi − Fµi,T ) (24)

V̂i,T = Vi,T + Ji,T (Ψi − FVi,T F
T − Λ)JT

i,T (25)

Except for the last block:

µ̂k,T = µi,T V̂k,T = Vi,T (26)

3.3 Stitch step
In the Stitch step, we estimate the block parameters, collect the

statistics and compute the most suitable LDS parameters forthe
whole sequence. The parametersθ = (µ0, Γ, F, Λ, G, Σ) is up-
dated by maximizing over the expected complete log-likelihood
function:

Q(θnew , θold) = Eθold [log p(y1 . . .yN , z1 . . . zN |θnew)] (27)

Now taking the derivatives of Eq 27 and zeroing out give the up-
dating equations (Eq (34-39)). The maximization is similarto the



M-step in EM algorithm of LDS, except that it should be computed
in a distributed manner with the availablek processors. The solu-
tion depends on the statistics over the hidden variables, which are
easy to compute from the forward-backward propagation described
in Cut.

E[zi,j ] = µ̂i,j (28)

E[zi,jz
T
i,j−1] = Ji,j−1V̂i,j + µ̂i,j µ̂

T
i,j−1 (29)

E[zi,jz
T
i,j ] = V̂i,j + µ̂i,j µ̂

T
i,j (30)

where the expectations are taken over the posterior marginal distri-
butionp(zn|y1, . . . ,yN ). The next step is to collect the sufficient
statistics of each block on every processor.

τi =
T

X

j=1

yi,jE[zT
i,j ] (31)

ξi = E[zi,1z
T
i−1,T ] +

T
X

j=2

E[zi,jz
T
i,j−1] (32)

ζi =
T

X

j=1

E[zi,jz
T
i,j ] (33)

To ensure its correct execution, statistics collecting should be run
after all of the processors finish theirCut step, enabled through
thesynchronization among processors. With the local statistics for
each block,

µnew
0 = µ̂1,1 (34)

Γ
new
0 = V̂1,1 (35)

F
new =

„ k
X

i=1

ξi

«„ k
X

i=1

ζi − E[zNz
T
N ]

«

−1

(36)

Λ
new =

1

N − 1

„ k
X

i=1

(ζi − F
newξT

i − ξi(F
new)T )

+F
new(

k
X

i=1

ζi − E[zNz
T
N ])(Fnew)T − E[z1,1z

T
1,1]

«

(37)

G
new =

„ k
X

i=1

τi

«„ k
X

i=1

ζi

«

−1

(38)

Σ
new =

1

N

„

Cov(Y) +
k

X

i=1

(−G
newτT

i

−τi(G
new)T + G

newζi(G
new)T )

«

(39)

whereCov(Y) is the covariance of the observation sequences and
could be precomputed.

Cov(Y) =
N

X

n=1

yny
T
n

As we estimate the block parameters with the messages from
the neighboring blocks, we could reconnect the blocks. Recall the
conditions in Eq (9-10), we could approximately estimate the block
parameters with the following equations.

υi = Fµi−1,T (40)

Φi = FVi,T F
T + Λ (41)

ηi = µ̂i+1,1 (42)

Ψi = V̂i+1,1 (43)

Except for the first block (no need to computeηk andΨk for the
last block):

υ1 = µ0 Φ1 = Γ (44)

In summary, the parallel learning algorithm works in the follow-
ing two steps, which could be further divided into four sub-steps:

Cut divides and builds small sub-models (blocks), and then each
processorestimate (E) in parallel posterior marginal distri-
bution in Eq (28-30), which includesforward andbackward
propagation of beliefs.

Stitch estimates the parameters throughcollecting (C) local statis-
tics of hidden variables in each block Eq (31-33), taking
the maximization (M) of the expected log-likelihood over
the parameters Eq (34-39), and connecting the blocks byre-
estimate (R) the block parameters Eq (40-44).

To extract the most parallelism, any of the above equations inde-
pendent of each other could be computed in parallel. Computation
of the local statistics in Eq (31-33) is done in parallel onk proces-
sors. Until all local statistics are computed, we use one processor
to calculate the parameter using Eq (34-39). Upon the completion
of computing the model parameters, every processor computes its
own block parameters in Eq (40-44). To ensure the correct execu-
tion, Stitch step should run after all of the processors finish their
Cut step, which is enabled through the synchronization among pro-
cessors. Furthermore, we also use synchronization to ensure Maxi-
mization part afterCollecting andRe-estimate afterMaximization.
An interesting finding is that our method includes the sequential
version of the learning algorithm as a special case. Note if the
number of processors is 1, theCut-And-Stitch algorithm falls back
to the conventional EM algorithm sequentially running on single
processor.

3.4 Warm-up step
In the first iteration of the algorithm, there are undefined ini-

tial values of block parametersυ,Φ,η andΨ, needed by the for-
ward and backward propagations inCut. A simple approach would
be to assign random initial values, but this may lead to poor per-
formance. We propose and use an alternative method: we run a
sequential forward-backward pass on the whole observation, esti-
mate parameters, i.e. we execute theCut step with one processor,
and theStitch step withk processors. After that, we begin nor-
mal iterations ofCut-And-Stitch with k processors. We refer to this
step as thewarm-up step. Although we sacrifice some speedup, the
resulting method converges faster and is more accurate. Figure 3
illustrates the time line of the whole algorithm on four CPUs.

4. IMPLEMENTATION
We will first discuss properties of our proposedCut-And-Stitch

method and what it implies for the requirements of the computer
architecture:

• Symmetric: TheCut step creates a set of equally-sized blocks
assigned to each processor. Since the amount of computation
depends on the size of the block, our method achieves good
load balancing on symmetric processors.

• Shared Memory: TheStitch step involves summarizing suf-
ficient statistics collected from each processor. This stepcan
be done more efficiently in shared memory, rather than in
distributed memory.
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Figure 3: Graphical illustration of Cut-And-Stitch algorithm on
4 CPUs. Arrows indicates the computation on each CPU. Tilt-
ing lines indicate the necessary synchronization and data trans-
fer between the CPUs and main memory. Tasks labeled with
“E” indicate the (parallel) estimation of the posterior marginal
distribution, including the forward-backward propagatio n of
beliefs within each block as shown in Figure 2. (C) indi-
cates thecollection of local statistics of the hidden variables in
each block; (M) indicates themaximization of the expected log-
likelihood over the parameters, and then itre-estimates (R) the
block parameters.

• Local Cache: In order to reduce the impact of the bottle-
neck of processor-to-memory communication, local caches
are necessary to keep data for each block.

The current Symmetric MultiProcessing (SMP) technologiespro-
vide opportunities to match all of these assumptions. We imple-
ment our parallel learning algorithm for LDS using OpenMP, a
multi-programming interface that supports shared memory on many
architectures, including both commercial desktops and supercom-
puter clusters. Our choice of the multi-processor API is based on
the fact that OpenMP is flexible and fast, while the code generation
for the parallel version is decoupled from the details of thelearning
algorithm. We use the OpenMP to create multiple threads, share the
workload and synchronize the threads among different processors.
Note that OpenMP needs compiler support to translate parallel di-
rectives to run-time multi-threading. And it also includesits own
library routines (e.g. timing) and environment variables (e.g. the
number of running processors).

The algorithm is implemented in C++. Several issues on config-
uring OpenMP for the learning algorithm are listed as follows:

• Variable Sharing Conditional expectation in the E-step are
stored in global variables of OpenMP, visible to every pro-
cessor. There are also several intermediate matrices and vec-
tors results for which only local copies need to be kept; they
are temporary variables that belong to only one processor.
This also saves the computational cost by preserving locality
and reducing cache miss rate.

• Dynamic or Static SchedulingWhat is a good strategy to
assign blocks to processors? Usually there are two choices:
static and dynamic. Static scheduling will fix processor to
always operate on the same codes while dynamic scheduling
takes an on-demand approach. We pick the static scheduling
approach (i.e. fix the block-processor mapping), for the fol-
lowing reasons: (a) the computation is logically block-wise
and in a regular fashion and (b) we have performance gains
by exploiting the temporal locality when we always asociate
the same processor with the same block. Furthermore, in our
implementation, we improve the M-step by using four pro-
cessors to calculate model parameters in Eq (34-39): two for
Eq (34-35), one for Eq (36-37) and one for Eq (38-39).

• Synchronization As described earlier, theStitch step of the
learning algorithm should happen only after theCut step has
completed, and the order of stages insideStitch should be
collecting, maximization andre-estimate. We put barriers af-
ter each step/stage to synchronize the threads and keep them
in the same pace. Each iteration would include four barriers,
as shown in Figure 3.

5. EXPERIMENTS
To evaluate the effectiveness and usefulness of our proposed Cut-

And-Stitch method in practical applications, we tested our imple-
mentation on SMPs and did experiments on real data. Our goal is
to answer the following questions:

• Speedup: how would the performance change as the number
of processors/cores increase?

• Quality: how accurate is the parallel algorithm, compared to
serial one?

We will first describe the experimental setup and the datasetwe
used.



# of Procs time (sec.) avg. of norm. time

1(serial) 3942 1
2 1974 0.5
4 998 0.256
8 510 0.134
16 277 0.0703
32 171 0.0438
64 117 0.0342
128 115 0.0335

Table 2: Wall-clock time for the case of Walking Motion (#22)
on multi-processor/multi-core (in seconds), and the average of
normalized running time on 58 motions (serial time= 1).

#of operation

E N · (m3 + H · m2 + m · H2 + 8H3)

C N · H3

M 2k · H2 + 4H3 + k · m · H + 2m · H2 + m2 · H
R 2k · H3

Table 3: Rough estimation of the number of arithmetic oper-
ations (+,−,×, /) in E, C, M, R sub steps ofCut-And-Stitch.
Each type of operation is equally weighted, and only the largest
portions in each step are kept.

5.1 Dataset and Experimental Setup
We run the experiments on a supercomputer as well as on a com-

mercial desktop, both of which are typical SMPs.

• The supercomputer is an SGI Altix system2, at National Cen-
ter for Supercomputing Applications (NCSA). The cluster
consists of 512 1.6GHz Itanium2 processors, 3TB of total
memory and 9MB of L3 cache per processor. It is config-
ured with an Intel C++ compiler supporting OpenMP.

• The test desktop machine has two Intel Xeon dual-core 3.0GHz
CPUs (a total of four cores), 16G memory, running Linux
(Fedora Core 7) and GCC 4.1.2 (supporting OpenMP).

We used a 17MB motion dataset from CMU Motion Capture
Database3. It consists of 58 walking, running and jumping mo-
tions, each with 93 bone positions in body local coordinates. The
motions span several hundred frames long (100∼500). We use our
method to learn the transition dynamics and projection matrix of
each motion, usingH=15 hidden dimensions.

5.2 Speedup
We did experiment on all of the 58 motions with various number

of processors on both machine. The speedup fork processors is
defined as

Sk =
running time with a single processor

running time withk processors

According to Amdahl’s law, the theoretical limit of speedupis

Sk ≤
1

(1 − p) + p

k

< k

wherep is the proportion of the part that could run in parallel, and
(1 − p) is the part remains serial. To determine the speedup limit,
2cobalt.ncsa.uiuc.edu
3http://mocap.cs.cmu.edu/

we provide an analysis of the complexity of our algorithm by count-
ing the basic arithmetic operations. Assume that the matrixmulti-
plication takes cubic time, the inverse uses Gaussian elimination,
there is no overhead in synchronization, and there is no memory
contention. Table 3 lists a rough estimate of the number of basic
arithmetic operations in theCut andStitch steps with E, C, M, and
R sub steps. As we mentioned in Section 3, the E,C,R sub steps
can run onk processors in parallel, while the M step in principle,
has to be performed serially on a single processor (or up to four
processors with a finer breakdown of the computation).

In our experiment,N is around 100-500,m = 93, H = 15, thus
p is approximately99.81% ∼ 99.96%.

Figure 4 shows the wall clock time and speedup on the super-
computer with a maximum of 128 processors. Figure 5 shows the
wall clock time and speedup on the multi-core desktop (maximum
4 cores). We also include the theoretical limit from Amdahl’s law.
Table 2 lists the running time on the motion set. In order to com-
pute the average running time, we normalized the wall clock time
relative to the serial one, defined as

tnorm =
tk

t1
=

1

Sk

wheretk is wall clock time withk processors.
The performance results show almost linear speedup as we in-

crease the number of processors, which is very promising. Taking
a closer look, it is near linear speedup up to 64 processors. The
speedup for 128 processors is slightly below linear. A possible ex-
planation is that we may hit the bus bandwidth between processors
and memory, and the synchronization overhead increases dramati-
cally with a hundred processors.

5.3 Quality
In order to evaluate the quality of our parallel algorithm, we run

our algorithm on a different number of processors and compare the
error against the serial version (EM algorithm on single processor).
Due to the non-identifiability problem, the model parameters for
different run might be different, thus we could not directlycompute
the error on the model parameters. Since both the serial EM learn-
ing algorithm and the parallel one tries to maximize the datalog-
likelihood, we define the error as the relative difference between
log-likelihood of the two, where data log-likelihood is computed
from the E step of the EM algorithm.

errork =
l(Y; θ̂1) − l(Y; θ̂k)

l(Y; θ̂1)
× 100%

whereY is the motion data sequence,θ̂k are parameters learned
with k processors andl(·) is the log-likelihood function. The er-
ror from the experiments is very tiny, with a maximum0.3% and
mean0.17%, and no clear evidence of increasing error with more
processors. In some cases, the parallel algorithm even found higher
(0.074%) likelihood than the serial EM. Note there are limitations
of the log-likelihood criteria, namely higher likelihood does not
necessarily indicate better fitting, since it might get over-fitting.
The error curve shows the quality of parallel is almost identical
to the serial one.

5.4 Case study
In order to show the visual quality of the parallel learning algo-

rithm, we observe a case study on two different sample motions:
walking motion (Subject 16 #22, with 307 frames), jumping mo-
tion (Subject 16 #1, with 322 frames), and running motion (Subject
16 #45, with 135 frames). We run the CAS algorithm with 4 cores
to learn model parameters on the multi-core machine, and then use
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Figure 4: Performance ofCut-And-Stitch on multi-processor supercomputer, running on the 58 motions. The Sequential version is on
one processor, identical to the EM algorithm. (a) Running time for a sample motion (subject 16 #22, walking, 307 frames) in log-log
scales; (b) Speedup for walking motion(subject 16 #22) compared with the sequential algorithm; (c) Average running time (red line)
for all motions in log-log scales. (d) Average speedup for all motions, versus number of processorsk.
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Figure 5: Performance of Cut-And-Stitch on multi-core desktop, running on the 58 motions. The Sequential version is on one
processor, identical to the EM algorithm. (a) running time for all motions in log-log scales; (b) average speedup for the58 motions,
versus number of coresk.



method Walking Jumping Running

Serial 1.929% 1.139% 0.988%
Parallel(4-core) 1.926% 1.140% 0.985%

Table 4: Normalized Reconstruction Error

these parameters to estimate the hidden states and reconstruct the
original motion sequence. The test criteria is the reconstruction
error (NRE) normalized to the variance, defined as

NRE =

v

u

u

t

PN

i=1 ||yi − ŷi||2
PN

i=1 ||yi −
PN

j=1 yj/N ||2
× 100%

whereyi is the observation fori-th frame and̂yi is the reconstructed
with model parameters from 4-core computation. Table 4 shows the
reconstruction error: both parallel and serial achieve very small er-
ror and are similar to each other. Figure 6 and Figure 7 show the
reconstructed sequences of the feet coordinates. Note our recon-
struction (red lines) is very close to the original signal (blue lines).

6. RELATED WORK
Data mining and parallel programming receives increasing inter-

est. Parthasarathy et al. [2] develop parallel algorithms for mining
terabytes of data for frequent itemsets, demonstrating a near-linear
scale-up on up to 48 nodes.

Reinhardt and Karypis [13] used OpenMP to parallelize the dis-
covery of frequent patterns in large graphs, showing excellent speedup
of up to 30 processors.

Cong et al. [7] develop the Par-CSP algorithm that detects closed
sequential patterns on a distributed memory system, and report
good scale-up on a 64-node Linux cluster.

Graf et al. [9] developed a parallel algorithm to learn SVM through
cascade SVM. Collobert et al. [5] proposed a method to learn amix-
ture of SVM in parallel. Both of them adopted the idea of splitting
dataset into small subsets, training SVM on each, and then combin-
ing those SVMs. Chang et al. [3] proposed PSVM to train SVMs
on distributed computers through approximate factorization of the
kernel matrix.

There is an attempt to use Google’s Map-Reduce [8] to paral-
lelize a set of learning algorithm such as naïve-Bayes, PCA,linear
regression and other similar algorithms [4,12]. Their framework re-
quires the summation form (like dot-product) in the learning algo-
rithm, and hence could distribute independent calculations to many
processors and then summarize them together. Therefore thesame
techniques could hardly be used to learn long sequential graphi-
cal models such as Hidden Markov Models and Linear Dynamical
Systems.

7. CONCLUSIONS
In this paper, we explore the problem of parallelizing the learning

algorithm for LDS models on symmetric multiprocessor architec-
tures. The main contributions are as follows:

• We propose an approximate parallel learning algorithm for
Linear Dynamic Systems, and implement it using the OpenMP
API on shared memory machines.

• We performed experiments on a large collection of 58×93
real motion capture sequences spanning 17 MB.Cut-And-
Stitch showed near-linear speedup on typical settings (a com-
mercial multi-core desktop, as well as a super computer). We
showed that our reconstruction error is almost identical tothe
serial algorithm.

Future work could extend ourCut-And-Stitch method to models
with similar chain structure such as HMMs. Another direction is to
extendCut-And-Stitch for switching Kalman filters (SKF).
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Figure 6: Visual effects: the reconstructed x, y, z coordinates using learned parameters on 4 cores. Horizontal axis is frame index
(time tick). (a) right foot coordinates (x,y,z) for the walking motion (subject 16 #22). (b) left foot coordinates for the jumping motion
(subject 16 #1). (c) right foot coordinates for the running motion (subject 16 #45). (d) magnification of the x coordinate(the upper
curve in (b)). Note that the reconstructed sequences (red lines) are so close to the original signals (blue lines), that the plots looks like
a set of purple lines; this illustrates the high accuracy ofCut-And-Stitch.
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Figure 7: Scatter plot: reconstructed value versus true value. For clarity, we only show the 500worst reconstructions - even then,
the points are very close on the ’ideal’, 45 degree line. (a) walking motion (subject 16 #22). (b) jumping motion (subject16 #1). (c)
running motion (subject 16 #45).


