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SUMMARY Quad-core cpus have been a common desktop configura-

tion for today’s office. The increasing number of processors on a single

chip opens new opportunity for parallel computing. Our goal is to make

use of the multi-core as well as multi-processor architectures to speed up

large-scale data mining algorithms. In this paper, we present a general par-

allel learning framework, Cut-And-Stitch, for training hidden Markov chain

models. Particularly, we propose two model-specific variants, CAS-LDS

for learning linear dynamical systems (LDS) and CAS-HMM for learning

hidden Markov models (HMM). Our main contribution is a novel method to

handle the data dependencies due to the chain structure of hidden variables,

so as to parallelize the EM-based parameter learning algorithm. We imple-

ment CAS-LDS and CAS-HMM using OpenMP on two supercomputers

and a quad-core commercial desktop. The experimental results show that

parallel algorithms using Cut-And-Stitch achieve comparable accuracy and

almost linear speedups over the traditional serial version.

key words: Linear Dynamical Systems; Hidden Markov Models; OpenMP;

Expectation Maximization (EM); Optimization; Multi-core.

1. Introduction

Time series, no matter categorical or continuous valued,

appear in numerous applications, including motion cap-

ture [1], visual tracking, speech recognition, quantitative

studies of financial markets, network intrusion detection,

bio-informatics etc. Mining and forecasting are popular op-

erations relevant to time series analysis. Hidden Markov

chain models, typically example including hidden Markov

models (HMM) and linear dynamical systems (LDS, also

known as Kalman filters), are often used to model those se-

quences and their generation process. Both assume linear

transitions on hidden (i.e. ’latent’) variables which are con-

sidered discrete for HMM and continuous for LDS. In this

paper, we will focus on the parallelizing of learning algo-

rithm for hidden Markov chain models. We will propose a

general scheme and two model-specific variants CAS-LDS

for the Linear Dynamical System, and CAS-HMM for Hid-

den Markov Model. We will focus on the message pass-

ing algorithm(computation of posterior marginal), which is

the basic inference algorithm for both Bayesian Network

and Markov Random Fields. Traditionally, learning those

model parameters is difficult, requiring the well-known

Expectation-Maximization (EM) method [2]. The EM algo-

rithm for learning of LDS/HMM iterates between comput-

ing conditional expectations of hidden variables through the

forward-backward belief propagation (E-step) and updating

model parameters to maximize its likelihood (M-step). Al-
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though EM algorithm generally produces good results, the

EM iterations may take long to converge. Meanwhile, the

computation time of E-step is linear in the length of the time

series but super linear in the dimensionality of observations

and hidden variable, which results in poor scaling on high

dimensional data. For example, our experimental results

show that on a 93-dimensional dataset of length over 300,

the EM algorithm for LDS would take over one second to

compute each iteration and over ten minutes to converge on

a high-end multi-core commercial computer. Such capacity

may not be able to fit modern computation-intensive appli-

cations with large amounts of data or real-time constraints.

While there are efforts to speed up the forward-backward

procedure with moderate assumptions such as sparsity or ex-

istence of low-dimensional approximation, we will focus on

taking advantage of the quickly developing parallel process-

ing technologies to achieve dramatic speedup.

Traditionally, the EM algorithm running on a multi-

core computer only takes up a single core with limited

processing power, and the current state-of-the-art dynamic

parallelization techniques such as speculative execution [3]

benefit little to the straightforward EM algorithm due to the

nontrivial data dependencies in Markov chain models. As

the number of cores on a single chip keeps increasing, soon

we may be able to build machines with even a thousand

cores, e.g. an energy efficient, 80-core chip not much larger

than the size of a finger nail was released by Intel researchers

in early 2007 [4]. Earlier this year (2010), Intel developed

another chip that consists of 48 Pentium-class IA-32 cores

which supports fast intercore communication [5]. This pa-

per is along the line to investigate the following question:

how much speed up could we obtain for machine learning

algorithms on multi-core? There are already several pa-

pers on distributed computation for data mining operations.

For example, “cascade SVMs” were proposed to parallelize

Support Vector Machines [6]. Other articles use Google’s

map-reduce techniques [7] on multi-core machines to design

efficient parallel learning algorithms for a set of standard

machine learning algorithms/models such as naı̈ve Bayes

and PCA, achieving almost linear speedup [8, 9]. However,

these methods do not apply to HMM or LDS directly. In

essence, their techniques are similar to dot-product-like par-

allelism, by using divide-and-conquer on independent sub

models; these do not work for models with complicated data

dependencies such as HMM and LDS. ∗

∗Or exactly, models with large diameters. The diameter of a

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 1 Symbols and annotations.

(a) LDS

Symbol Definition

Y a multi-dimensional observation sequence

Z the hidden variables (= {z1, . . . , zN})

m the dimension of the observation sequence

H the dimension of hidden variables

N the duration of the observation

F the transition matrix, H ×H
G the project matrix from hidden to observation, m ×H

(b) HMM

Symbol Definition

Y observation sequence (= {y1, . . . ,yN})

Z the hidden variables (= {z1, . . . , zN})

N the duration of the observation

M number of discrete values of observation variables

V possible values for observation variables (= {v1, . . . ,vM})

K number of discrete values of hidden variables

S possible values for hidden variables (= {s1, . . . , sK})

A the transition matrix, K ×K
B the project matrix from hidden to observation, K ×M
Π the initialization vector, (= {π1, . . . , πK})

In this paper, we extend our earlier work [10] on

the Cut-And-Stitch method (CAS), which avoids the data-

dependency problems. We propose algorithms for quickly

and accurately learning LDS and HMM in parallel, and

demonstrate on two popular architectures for high perfor-

mance computing. The basic idea of our algorithms is to

(a) Cut both the chain of hidden variables as well as the ob-

served variables into smaller blocks, (b) perform intra-block

computation, and (c) Stitch the local results seamlessly by

summarizing sufficient statistics and updating model param-

eters and an additional set of block-specific parameters. The

algorithm (CAS-LDS and CAS-HMM) will iterate over 4

steps, where the most time-consuming E-step in EM as well

as the two newly introduced steps could be parallelized with

little synchronization overhead. Furthermore, this approxi-

mation of global models by local sub-models sacrifices only

a little accuracy, due to the structure of hidden Markov chain

models, as shown in our experiments, which was our first

goal. On the other hand, it yields almost linear speedup,

which was our second main goal.

The rest of the paper is organized as follows. We first

describe the Linear Dynamical System in Section 2 and

present our proposed Cut-And-Stitch method in Section 3.

Then we describe the programming interface and implemen-

tation issues in Section 4. We present experimental results

Section 5, the related work in Section 6, and our conclusions

in Section 7.

2. Background

Markov chain models are often used in capturing the tempo-

ral behavior of a system. Hidden Markov chain models are

model is the length of longest acyclic path in its graphical repre-
sentation. For example, the diameter of the LDS in Figure 1 is
N .
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Fig. 1 A Graphical Representation of the Linear Dynamical System:

z1, . . . , zN indicate hidden variables; y1, . . . ,yN indicate observation.

Arrows indicate Linear Gaussian conditional probabilistic distributions.

those with random variables unobserved in Markov chains.

Both linear dynamical systems (LDS) and hidden Markov

models (HMM) fall into this framework. The chain of hid-

den variables, for example, could represent the (unknown)

functions of a genetic sequences modeled by HMM, or ve-

locities and accelerations of rockets by Kalman filters. In the

following, we will first introduce the general framework of

hidden Markov chain models, and describe traditional algo-

rithms for learning those models respectively. Table 1 lists

the symbols and annotations used in both LDS and HMM.

In hidden Markov chain models, a sequence of obser-

vations Y (= ~y1, . . . ,yN) are drawn from an emission prob-

ability distribution P (yn|zn), and hidden variables zn from

a Markov chain with the transition probability distribution

P (zn+1)|zn. The joint pdf of the model is as follows:

P (Y,Z) = P (z1)

N
∏

n=2

P (zn+1|zn)
∏

n=1

P (yn|zn) (1)

2.1 Linear Dynamical Systems

In LDS, both the transitions among the hidden variables as

well as their projections to the observations are described

as linear Gaussian models (Eq (3-3)). We denote them as

a matrix F for the transition (H × H) with noises {ωn};

and a matrix G (m ×H) for the projection with the noises

{ǫn} at each time-tick n. Figure 1 provides the graphical

representation of following equations defining an LDS:

P (z1) = N (z0,Γ) (2)

P (zn+1|zn) = N (F · zn,Λ) (3)

P (yn|zn) = N (G · zn,Σ) (4)

where z0 is the initial state of the whole system.

Given the observation sequence, the goal of the learn-

ing algorithm is to compute the optimal parameter set θ =
(µ0,Γ, F,Λ, G,Σ). The optimum is obtained by maximiz-

ing the log-likelihood l(Y; θ) over the parameter set θ. As

mentioned in Section 1, the typical learning method for LDS

is the EM algorithm [2], which iteratively maximizes the ex-

pected complete log-likelihood in a coordinate-ascent man-

ner:

Q(θnew , θold) = Eθold [log p(y1 . . .yN , z1 . . . zN |θnew)]

In brief, the algorithm first guesses an initial set of model
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parameters θ0. Then, at each iteration, it uses a forward-

backward algorithm to compute expectations of the hidden

variables ẑn = E[zn | Y; θ0] (n = 1, . . . ,N) as well as

the second moments and covariance terms, which is the E-

step. In the M-step, it maximizes the expected complete

log-likelihood of E[L(Y, z1...N)] with respect to the model

parameters. Since the computation of E[zn | Y] depends

on E[zn−1 | Y] and E[zn+1 | Y], the straightforward im-

plementation of the EM algorithm can not exploit much in-

struction level parallelism.

2.2 Hidden Markov Model

Hidden Markov Model (HMM) shares the same graphical

model as LDS. However, hidden variables Z for HMM are

discrete and the transitions between them follow the multi-

nomial distributions. The observation Y can be either dis-

crete or continuous. We will describe the discrete case, how-

ever, the learning algorithm is similar.

Assume each observation variable yn of a Hidden

Markov Model has M possible values (v1, v2, ..., vM ), each

hidden variable zn has K possible values (s1, s2, ..., sK).
Then parameter set of the HMM λ includes the transition

matrix Apq (K ×K), observation matrix Bp(vr) (K ×M )

and initialization vector πi (K × 1). The data in the model

flows according to the subsequent equations:

P (z1 = sp) = πp (5)

P (zn = sq|zn−1 = sp) = Apq (6)

P (yn = vr|zn = sp) = Bp(vr) (7)

The training problem for HMM is as follows: given ob-

servations Y , find an optimal λ that maximize the data like-

lihood. With no tractable direct solution, Training problem

can be solved by an EM algorithm as well, which specifi-

cally is known as the Baum-Welch algorithm [11].

3. Cut-And-Stitch: Proposed Method

The traditional learning algorithms for both LDS and HMM

are through expectation-maximization, where in the E-step,

the algorithms run forward and backward to obtain esti-

mation of the posterior distribution of the hidden variables

(z’s). The chain structure of both model enforces the data

dependencies in both the forward computation from zn (e.g.

E[zn | Y; θ]) to zn+1 and the backward computation from

zn+1 to zn In this section, we will present general ideas

on overcoming such dependencies and describe the details

of Cut-And-Stitch parallel learning algorithm, for both LDS

and HMM respectively.

3.1 Intuition and General Scheme

Our guiding principle to reduce the data dependencies is to

divide the hidden chain of variables into smaller, indepen-

dent parts. Given a data sequence Y and k processors with

shared memory, we could cut the sequence into k subse-

quences of equal sizes, and then assign one processor to

2, 2, 2, 2 ...1, 1, 1, 1

Fig. 2 Graphical illustration of dividing LDS into blocks in the Cut step.

Note Cut introduces additional parameters for each block.

each subsequence. Each processor will learn the individ-

ual parameters, θ1, . . . , θk in the case of LDS, associated

with its subsequence, using the basic, sequential EM algo-

rithm. In order to obtain a consistent set of parameters for

the whole sequence, we use a non-trivial method to summa-

rize all the sub-models rather than simply averaging. Since

each subsequence is treated independently, our algorithm

will obtain near k-fold speedup. The main design challenges

are: (a) how to minimize the overhead in synchronization

and summarization, and (b) how to retain the accuracy of the

learning algorithm. Our Cut-And-Stitch method (or CAS) is

targeting both challenges, in two different models.

Given a sequence of observed values Y with length

of N, the learning goal is to best fit the parameters: θ =
(µ0,Γ, F,Λ, G,Σ) for LDS and λ = (π,A,B) for HMM.

In general, the Cut-And-Stitch (CAS) algorithm consists

of two alternating steps: the Cut step and the Stitch step.

In the Cut step, the Markov chain of hidden variables and

corresponding observations are divided into smaller blocks,

and each processor performs the local computation for each

block. More importantly, it computes the initial beliefs

(marginal expectation of hidden variables) for its block,

based on the neighboring blocks, and then it computes the

improved beliefs for its block, independently. In the Stitch

step, each processor computes summary statistics for its

block, and then the parameters of the model are updated

globally to maximize the EM learning objective function

(also known as the expected complete log-likelihood). Be-

sides, local parameters for each block are also updated to

reflect changes in the global model. The CAS algorithm it-

erates between Cut and Stitch until convergence.

3.2 CAS-LDS

3.2.1 Cut step

The objective of Cut step is to compute the marginal

posterior distribution of zn, conditioned on the observa-

tions y1, . . . ,yN given the current estimated parameter θ:

P (zn|y1, . . . ,yN; θ). Given the number of processors k and

the observation sequence, we first divide the hidden Markov

chain into k blocks: B1,. . . , Bk, with each block containing

the hidden variables z, the observations y, and four extra

parameters υ, Φ, η, Ψ. The sub-model for i-th block Bi is

described as follows (see Figure 2):

P (zi,1) = N (υi,Φi) (8)
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P (zi,j+1|zi,j) = N (Fzi,j ,Λ) (9)

P (z′i,T |zi,T ) = N (Fzi,T ,Λ) (10)

P (yi,j |zi,j) = N (Gzi,j ,Σ) (11)

where the block size T = N
k

and j = 1 . . . T indicating

j-th variables in i-th block (zi,j = z(i−1)∗T+j and yi,j =
y(i−1)∗T+j ). ηi, Ψi could be viewed as messages passed

from next block, through the introduction of an extra hidden

variable z′i,T .

P (z′i,T ) = N (ηi,Ψi) (12)

Intuitively, the Cut tries to approximate the global LDS

model by local sub-models, and then compute the marginal

posterior with the sub-models. The blocks are both logical

and computational, meaning that most computation about

each logical block resides on one processor. In order to

simultaneously and accurately compute all blocks on each

processor, the block parameters should be well chosen with

respect to the other blocks. We will describe the parameter

estimation later but here we first describe the criteria. From

the Markov properties of the LDS model, the marginal pos-

terior of zi,j conditioned on Y is independent of any ob-

served y outside the block Bi, as long as the block parame-

ters satisfy:

P (zi,1|y1, . . . ,yi−1,T ) = N (υi,Φi) (13)

P (zi+1,1|y1, . . . ,yN) = N (ηi,Ψi) (14)

Therefore, we could derive a local belief propagation algo-

rithm to compute the marginal posteriorP (zi,j |yi,1 . . .yi,T ;
υi,Φi, ηi,Ψi, θ). Both computation for the forward passing

and the backward passing can reside in one processor with-

out interfering with other processors except possibly in the

beginning. The local forward pass computes the posterior up

to current time tick within one block P (zi,j |yi,1 . . .yi,j),
while the local backward pass calculates the whole poste-

rior P (zi,j |yi,1 . . .yi,T ) (to save space, we omit the param-

eters). Using the properties of linear Gaussian conditional

distribution and Markov properties (Chap.2 &8 in [2]), one

can easily infer that both posteriors are Gaussian distribu-

tions, denoted as:

P (zi,j |yi,1 . . .yi,j) = N (µi,j ,Vi,j) (15)

P (zi,j |yi,1 . . .yi,T ) = N (µ̂i,j , V̂i,j) (16)

We can obtain the following forward-backward propa-

gation equations from Eq (8-12) by substituting Eq (13-16)

and expanding.

Pi,j−1 = FVi,j−1F
T + Λ (17)

Ki,j = Pi,j−1G
T (GPi,j−1G

T +Σ)−1 (18)

µi,j = Fµi,j−1 +Ki,j(yi,j −GFµi,j−1) (19)

Vi,j = (I−Ki,j)Pi,j−1 (20)

The initial values are given by:

Ki,1 = ΦiG
T (GΦiG

T +Σ)−1 (21)

µi,1 = υi +Ki,1(yi,1 −Gυi) (22)

Vi,1 = (I−Ki,1)Φi (23)

The backward passing equations are:

Ji,j = Vi,jF
T (Pi,j)

−1 (24)

µ̂i,j = µi,j + Ji,j(µ̂i,j+1 − Fµi,j) (25)

V̂i,j = Vi,j + Ji,j(V̂i,j+1 −Pi,j)J
T
i,j (26)

The initial values are given by:

Ji,T = Vi,TF
T (FVi,TF

T + Λ)−1 (27)

µ̂i,T = µi,T + Ji,T (ηi − Fµi,T ) (28)

V̂i,T = Vi,T + Ji,T (Ψi − FVi,TF
T − Λ)JT

i,T (29)

Except for the last block:

µ̂k,T = µi,T V̂k,T = Vi,T (30)

3.2.2 Stitch step

In the Stitch step, we estimate the block parameters, col-

lect the statistics and compute the most suitable LDS pa-

rameters for the whole sequence. The parameters θ =
(µ0,Γ, F,Λ, G,Σ) is updated by maximizing over the ex-

pected complete log-likelihood function:

Q(θnew , θold) = Eθold [log p(y1 . . .yN , z1 . . . zN |θnew)]
(31)

Now taking the derivatives of Eq 31 and zeroing out

give the updating equations (Eq (38-43)). The maximiza-

tion is similar to the M-step in EM algorithm of LDS, except

that it should be computed in a distributed manner with the

available k processors. The solution depends on the statis-

tics over the hidden variables, which are easy to compute

from the forward-backward propagation described in Cut.

E[zi,j ] = µ̂i,j (32)

E[zi,jz
T
i,j−1] = Ji,j−1V̂i,j + µ̂i,j µ̂

T
i,j−1 (33)

E[zi,jz
T
i,j ] = V̂i,j + µ̂i,j µ̂

T
i,j (34)

where the expectations are taken over the posterior marginal

distribution p(zn|y1, . . . ,yN ). The next step is to collect

the sufficient statistics of each block on every processor.

τi =
T
∑

j=1

yi,jE[z
T
i,j ] (35)

ξi = E[zi,1z
T
i−1,T ] +

T
∑

j=2

E[zi,jz
T
i,j−1] (36)

ζi =
T
∑

j=1

E[zi,jz
T
i,j ] (37)

To ensure its correct execution, statistics collecting should

be run after all of the processors finish their Cut step, en-

abled through the synchronization among processors. With
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the local statistics for each block,

µnew
0 = µ̂1,1 (38)

Γnew
0 = V̂1,1 (39)

Fnew =

( k
∑

i=1

ξi

)( k
∑

i=1

ζi − E[zNzTN ]

)−1

(40)

Λnew =
1

N − 1

( k
∑

i=1

(ζi − FnewξTi − ξi(F
new)T )

+Fnew(

k
∑

i=1

ζi − E[zNzTN ])(Fnew)T − E[z1,1z
T
1,1]

)

(41)

Gnew =

( k
∑

i=1

τi

)( k
∑

i=1

ζi

)−1

(42)

Σnew =
1

N

(

Cov(Y) +
k
∑

i=1

(−GnewτTi

−τi(G
new)T +Gnewζi(G

new)T )

)

(43)

where Cov(Y) is the covariance of the observation se-

quences and could be precomputed.

Cov(Y) =
N
∑

n=1

yny
T
n

As we estimate the block parameters with the messages

from the neighboring blocks, we could reconnect the blocks.

Recall the conditions in Eq (13-14), we could approximately

estimate the block parameters with the following equations.

υi = Fµi−1,T (44)

Φi = FVi,TF
T + Λ (45)

ηi = µ̂i+1,1 (46)

Ψi = V̂i+1,1 (47)

Except for the first block (no need to compute ηk and Ψk for

the last block):

υ1 = µ0 Φ1 = Γ (48)

To extract the most parallelism, any of the above equa-

tions independent of each other could be computed in paral-

lel. Computation of the local statistics in Eq (35-37) is done

in parallel on k processors. Until all local statistics are com-

puted, we use one processor to calculate the parameter using

Eq (38-43). Upon the completion of computing the model

parameters, every processor computes its own block param-

eters in Eq (44-48). To ensure the correct execution, Stitch

step should run after all of the processors finish their Cut

step, which is enabled through the synchronization among

processors. Furthermore, we also use synchronization to en-

sure Maximization part after Collecting and Re-estimate af-

ter Maximization. An interesting finding is that our method

includes the sequential version of the learning algorithm as

a special case. Note if the number of processors is 1, the

Cut-And-Stitch algorithm falls back to the conventional EM

algorithm sequentially running on single processor.

3.3 CAS-HMM

In order to solve the training problem in Hidden Markov

Model, we used EM algorithm to iteratively update the pa-

rameter set λ. At each iteration, we calculate αn(p) from z1
to zN (forward computation), and βn(p) from zN back to z1
(backward computation). We also define auxiliary variables

γn(p) and ξn(p, q) to help us update the HMM model. The

definitions of α, β, γ and ξ are shown from Eq (49-52).

αn(p) = P (y1, ...yn, zn = sp|λ) (49)

βn(p) = P (yn+1, ...,yN |zn = sp, λ) (50)

γn(p) = P (zn = sp|y1, ...,yN , λ) (51)

ξn(p, q) = P (zn = sp, zn+1 = sq|y1, ...,yN , λ) (52)

In the Cut step with k processors, we again split the

Hidden Markov Model into k blocks: B1, ..., Bk. We still

use the notation zi,j and yi,j to indicate j-th variable in the

i-th block. Same notations also apply to other intermedi-

ate variables like αi,j(p). In order to propagate information

between adjacent blocks, we define two set of parameters

δi(p) and κi(p) for each block Bi, where:

δi(p) = αi−1,T (p) (53)

κi(p) = βi+1,1(p) (54)

Then local HMM blocks can update themselves ac-

cording to Eq (55-63).

α1,1(p) = πpBp(y1,1) (55)

αi,1(p) = Bp(yi,1)Σ
K
q=1δi(q)Aqp (56)

αi,j(p) = Bp(yi,j)Σ
K
q=1αi,j−1(q)Aqp (57)

βk,T (p) = 1 (58)

βi,T (p) = ΣK
q=1κi(q)ApqBq(yi+1,1) (59)

βi,j(p) = ΣK
q=1βi,j+1(q)ApqBq(yi,j+1) (60)

γi,j(p) =
αi,j(p)βi,j(p)

ΣK
q=1αi,j(q)βi,j(q)

(61)

ξi,j(p, q) =
γi,j(p)ApqBq(yi,j+1)βi,j+1(q)

βi,j(p)
(62)

ξi,T (p, q) =
γi,T (p)ApqBq(yi+1,1)κi(q)

βi,T (p)
(63)

In the Stitch step, each block Bi first collect necessary

statistics:

τi(p, q) = ΣT
j=1ξi,j(p, q) (64)
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ζi(p, q) = ΣK
l=1Σ

T
j=1ξi,j(p, l) (65)

ηi(p, vr) = ΣT
j=1,yi,j=vr

γi,j(p) (66)

ϕi(p, vr) = ΣT
j=1γi,j(p) (67)

Except for the last block:

τk(p, q) = ΣT−1
j=1 ξk,j(p, q) (68)

ζk(p, q) = ΣK
l=1Σ

T−1
j=1 ξk,j(p, l) (69)

Subsequently, all blocks work together to update HMM

model λ at Eq (70-72). δi and κi are also updated here ac-

cording to Eq (53-54).

πnew
p = γ1,1(p) (70)

Anew
pq =

Σk
i=1τi(p, q)

Σk
i=1ζi(p, q)

(71)

Bp(vr)
new =

Σk
i=1ηi(p, vr)

Σk
i=1ϕi(p, vr)

(72)

3.4 Warm-Up Step

In the first iteration of the algorithm, there are undefined

initial values of block parameters υ,Φ,η and Ψ, needed by

the forward and backward propagations in Cut. A simple

approach would be to assign random initial values, but this

may lead to poor performance. We propose and use an alter-

native method: we run a sequential forward-backward pass

on the whole observation, estimate parameters, i.e. we ex-

ecute the Cut step with one processor, and the Stitch step

with k processors. After that, we begin normal iterations

of Cut-And-Stitch with k processors. We refer to this step

as the warm-up step. Although we sacrifice some speedup,

the resulting method converges faster and is more accurate.

Figure 3 illustrates the time line of the whole algorithm on

four CPUs.

In summary, the Cut-And-Stitch algorithms (CAS-LDS

and CAS-HMM) work in the following two steps, which

could be further divided into four sub-steps:

Cut divides and builds small sub-models (blocks), and

then each processor estimate (E) in parallel posterior

marginal distribution in Eq (32-34) and Eq (55-63),

which includes forward and backward propagation of

beliefs.

Stitch estimates the parameters through collecting (C) local

statistics of hidden variables in each block Eq (35-

37)and Eq (64-69), taking the maximization (M) of the

expected log-likelihood over the parameters Eq (38-

43) and Eq (70-72), and connecting the blocks by

re-estimate (R) the block parameters Eq (44-48) and

Eq (53-54).

4. Implementation

We will first discuss properties of our proposed Cut-And-

Stitch for both LDS and HMM and what it implies for the

cpu1 cpu2 cpu3 cpu4

E

T
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e
lin

e

E E E E

C C C C
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M

R R R R
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itia

l ite
ra

tio
n

E E E E

C C C C

Cut

Stitch

M

R R R R

C C C C
Stitch

M

R R R R

Ite
ra

tio
n

 1
Ite

ra
tio

n
 2

Fig. 3 Graphical illustration of Cut-And-Stitch algorithm on 4 CPUs. Ar-

rows indicates the computation on each CPU. Tilting lines indicate the

necessary synchronization and data transfer between the CPUs and main

memory. Tasks labeled with “E” indicate the (parallel) estimation of the

posterior marginal distribution, including the forward-backward propaga-

tion of beliefs within each block as shown in Figure 2. (C) indicates the

collection of local statistics of the hidden variables in each block; (M) indi-

cates the maximization of the expected log-likelihood over the parameters,

and then it re-estimates (R) the block parameters.
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requirements of the computer architecture:

• Symmetric: The Cut step creates a set of equally-

sized blocks, no matter whether discrete hidden vari-

ables or continuous, assigned to each processor. Since

the amount of computation depends on the size of the

block, both algorithms expect good load balancing on

symmetric processors.

• Shared Memory: The Stitch step involves summariz-

ing sufficient statistics collected from each processor.

This step can be done more efficiently in shared mem-

ory, rather than in distributed memory.

• Local Cache: In order to reduce the impact of the bot-

tleneck of processor-to-memory communication, local

caches are necessary to keep data for each block.

The current Symmetric MultiProcessing (SMP) technolo-

gies provide opportunities to match all of these assump-

tions. We implement our CAS-LDS and CAS-HMM us-

ing OpenMP, a multi-programming interface that supports

shared memory on many architectures, including both com-

mercial desktops and supercomputer clusters. Alternatively,

it can also be implemented in MPI without significant mod-

ification. We use the OpenMP to create multiple threads,

share the workload and synchronize the threads among

different processors. Note that OpenMP needs compiler

support to translate parallel directives to run-time multi-

threading. And it also includes its own library routines (e.g.

timing) and environment variables (e.g. the number of run-

ning processors).

There are several issues on configuring OpenMP for

both parallel learning algorithm as follows:

• Variable Sharing Posterior expectations computed in

the E-step (Eq. (32-34) and Eq. (51-52)) are stored in

global variables of OpenMP, visible to every proces-

sor. There are also several intermediate matrices and

vectors results for which only local copies need to be

kept; they are temporary variables that belong to only

one processor. This also saves the computational cost

by preserving locality and reducing cache miss rate.

• Dynamic or Static Scheduling What is a good strat-

egy to assign blocks to processors? OpenMP provides

two choices: static and dynamic. Static scheduling will

fix processor to always operate on the same codes while

dynamic scheduling takes an on-demand approach. We

pick the static scheduling approach (i.e. fix the block-

processor mapping), for the following reasons: (a) the

computation is logically block-wise and in a regular

fashion and (b) we have performance gains by exploit-

ing the temporal locality when we always associate the

same processor with the same block. Furthermore, we

maximize any parallelizable computation in each of the

E,C,M,R steps. For example, in our implementation of

CAS-LDS, we improve the M-step by using four pro-

cessors to calculate model parameters in Eq (38-43):

two for Eq (38-39), one for Eq (40-41) and one for

Eq (42-43).

• Synchronization As described earlier, the Stitch step

of the learning algorithm should happen only after the

Cut step has completed, and the order of stages in-

side Stitch should be collecting, maximization and re-

estimate. We put barriers after each step/stage to syn-

chronize the threads and keep them in the same pace.

Each iteration would include four barriers, as shown in

Figure 3.

5. Experiments

To evaluate the effectiveness and usefulness of our proposed

Cut-And-Stitch method in practical applications, we tested

our implementation on SMPs. Our goal is to answer the

following questions:

• Speedup: how would the performance change as the

number of processors/cores increase?

• Quality: while the parallel algorithm is faster than se-

rial algorithm, are we giving up any precision on de-

rived model?

We will first describe the experimental setup and the dataset

we used.

5.1 Dataset and Experimental Setup

We run the experiments on a variety of typical SMPs, two

supercomputers and a commercial desktop.

M1 The first supercomputer is an SGI Altix system†,

at National Center for Supercomputing Applications

(NCSA). The cluster consists of 512 1.6GHz Itanium2

processors, 3TB of total memory and 9MB of L3 cache

per processor. It is configured with an Intel C++ com-

piler supporting OpenMP. We use this supercomputer

to test our LDS algorithm.

M2 The second supercomputer is an SGI Altix system††,

at Pittsburgh Supercomputing Center (PSC). The clus-

ter consists of 384 1.66GHz Itanium2 Montvale 9130M

dual-core processors (a total of 768 cores), 1.5TB of to-

tal memory and 8MB of L3 cache per processor. It is

configured with SuSE Linux and Intel compiler. We

use this supercomputer to test our HMM algorithm.

M3 The test desktop machine has two Intel Xeon dual-core

3.0GHz CPUs (a total of four cores), 16G memory, run-

ning Linux (Fedora Core 7) and GCC 4.1.2 (supporting

OpenMP). We use this supercomputer to test both of

our LDS and HMM algorithm.

To test our LDS algorithm, we used a 17MB motion

dataset from CMU Motion Capture Database †††. It con-

sists of 58 walking, running and jumping motions, each with

93 bone positions in body local coordinates. The motions

span several hundred frames long (100∼500). We use our

†cobalt.ncsa.uiuc.edu
††http://www.psc.edu/machines/sgi/altix/pople.php

†††http://mocap.cs.cmu.edu/
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Table 2 Rough estimation of the number of arithmetic operations

(+,−,×, /) in E, C, M, R sub steps of Cut-And-Stitch in LDS. Each type

of operation is equally weighted, and only the largest portions in each step

are kept.

#of operation of LDS

E N · (m3 +H ·m2 +m ·H2 + 8H3)
C N ·H3

M 2k ·H2 + 4H3 + k ·m ·H + 2m ·H2 +m2 ·H
R 2k ·H3

Table 3 Wall-clock time for the case of Walking Motion (#22) on multi-

processor/multi-core (in seconds), and the average of normalized running

time on 58 motions (serial time= 1).

# of Procs time (sec.) avg. of norm. time

1(serial) 3942 1

2 1974 0.5

4 998 0.256

8 510 0.134

16 277 0.0703

32 171 0.0438

64 117 0.0342

128 115 0.0335

Table 4 Count of arithmetic operations (+,−,×, /) in E, C, M, R

sub steps of Cut-And-Stitch in HMM. Each type of operation is equally

weighted, and only the largest portions in each step are kept.

#of operations of HMM

E 9 ·N ·K2

C 2K ·N · (K +M)
M 2k ·K · (K +M)
R 4k ·K2

method to learn the transition dynamics and projection ma-

trix of each motion, using H=15 hidden dimensions.

For HMM, we used a synthetic dataset, with the obser-

vation sequences randomly generated. The data has K =
100 hidden states and R = 50 different observation values.

The duration of the sequence is N=1536.

5.2 Speedup

The speedup for k processors is defined as

Sk =
running time with a single processor

running time with k processors

According to Amdahl’s law, the theoretical limit of speedup

is

Sk ≤
1

(1− p) + p
k

< k

where p is the proportion of the part that could run in paral-

lel, and (1 − p) is the part remains serial. To determine the

speedup limit, we provide an analysis of the complexity of

both algorithms by counting the basic arithmetic operations.

5.2.1 Speedup for LDS

We did experiment on all of the 58 motions with various

number of processors on both machines (M1 and M3). As-

sume that the matrix multiplication takes cubic time, the in-

verse uses Gaussian elimination, there is no overhead in syn-

chronization, and there is no memory contention. Table 2

lists a rough estimate of the number of basic arithmetic op-

erations in the Cut and Stitch steps with E, C, M, and R sub

steps. As we mentioned in Section 3, the E,C,R sub steps

can run on k processors in parallel, while the M step in prin-

ciple, has to be performed serially on a single processor (or

up to four processors with a finer breakdown of the compu-

tation).

In our experiment, N is around 100-500,m = 93, H =
15, thus p is approximately 99.81% ∼ 99.96%.

Figure 4 shows the wall clock time and speedup on M1

with a maximum of 128 processors. Figure 5 shows the wall

clock time and speedup on M3 (maximum 4 cores). We also

include the theoretical limit from Amdahl’s law. Table 3

lists the running time on the motion set. In order to compute

the average running time, we normalized the wall clock time

relative to the serial one, defined as

tnorm =
tk
t1

=
1

Sk

where tk is wall clock time with k processors.

The performance results show almost linear speedup as

we increase the number of processors, which is very promis-

ing. Taking a closer look, it is near linear speedup up to 64

processors. The speedup for 128 processors is slightly be-

low linear. A possible explanation is that we may hit the bus

bandwidth between processors and memory, and the syn-

chronization overhead increases dramatically with a hun-

dred processors.

5.2.2 Speedup for HMM

The algorithmic complexity of our parallel HMM imple-

mentation is shown in Table 4. Figure 6 and Figure 7 show

the wall clock time and speedup on multi-core desktop and

PSC supercomputer respectively. Comparing to LDS with

similar model size, each iteration of HMM implementa-

tion would take much less time, so the overhead of parallel

framework stands out earlier: the speedup for HMM starts

to getting less impressive when we use about 16 processors.

However, for some Hidden Markov Model applica-

tions such as bioinformatics, sequence length (N ) could be

much larger: for example, each DNA sequence might con-

tain thousands, millions or even more base pairs(pairs of

nucleotides A,T,G,C). We envision that our Cut-And-Stitch

method would exhibit better speedup towards those prob-

lems.

5.3 Quality

In order to evaluate the quality of our parallel algorithm, we

run our algorithm on a different number of processors and

compare the error against the serial version (EM algorithm

on single processor). Due to the non-identifiability problem,
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Fig. 4 Performance of Cut-And-Stitch LDS on NCSA supercomputer, running on the 58 motions. The

Sequential version is on one processor, identical to the EM algorithm. (a) Running time for a sample

motion (subject 16 #22, walking, 307 frames) in log-log scales; (b) Speedup for walking motion(subject

16 #22) compared with the sequential algorithm; (c) Average running time (solid line) for all motions

in log-log scales. (d) Average speedup for all motions, versus number of processors k.

0 1 2 3 4 5
0

500

1000

1500

# of cores

w
al

l c
lo

ck
 ti

m
e 

(s
)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

# of cores

sp
ee

du
p

(a) (b)

Fig. 5 Performance of Cut-And-Stitch LDS on multi-core desktop, running on the 58 motions. The

Sequential version is on one processor, identical to the EM algorithm. (a) running time for all motions;

(b) average speedup for the 58 motions, versus number of cores k.

the model parameters for different run might be different,

thus we could not directly compute the error on the model

parameters. Since both the serial EM learning algorithm and

the parallel one tries to maximize the data log-likelihood,
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Fig. 6 Performance of Cut-And-Stitch HMM on multi-core desktop, (a) running time versus number

of cores k; (b) speedup versus number of cores k.
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Fig. 7 Performance of Cut-And-Stitch HMM on PSC supercomputer, (a) running time versus number

of cores k in log-log scale; (b) speedup versus number of cores k.

we define the error as the relative difference between log-

likelihood of the two, where data log-likelihood is computed

from the E step of the EM algorithm.

errork =
l(Y; θ̂1)− l(Y; θ̂k)

l(Y; θ̂1)
× 100%

where Y is the motion data sequence, θ̂k are parameters

learned with k processors and l(·) is the log-likelihood func-

tion. The error to both of our LDS and HMM experiments

are very tiny: error of LDS algorithm has a maximum of

0.5% and mean of 0.17%; error of HMM algorithm has a

maximum of 1.7% and mean of 1.2%. Furthermore, there is

no clear possitive correlation between error and the num-

ber of processors. In some cases, the parallel algorithm

even found higher (0.074%) likelihood than the serial al-

gorithm. Note there are limitations of the log-likelihood cri-

teria, namely higher likelihood does not necessarily indicate

better fitting, since it might get over-fitting. The error curve

shows the quality of parallel is almost identical to the serial

one.

5.4 Case study for LDS

In order to show the visual quality of the parallel learning al-

gorithm, we observe a case study of our parallel LDS imple-

mentation on two different sample motions: walking motion

(Subject 16 #22, with 307 frames), jumping motion (Sub-

ject 16 #1, with 322 frames), and running motion (Subject

16 #45, with 135 frames). We run the CAS algorithm with 4

cores to learn model parameters on the multi-core machine,

and then use these parameters to estimate the hidden states

and reconstruct the original motion sequence. The test crite-

ria is the reconstruction error (NRE) normalized to the vari-

ance, defined as

NRE =

√

√

√

√

∑N

i=1 ||yi − ŷi||2
∑N

i=1 ||yi −
∑N

j=1 yj/N ||2
× 100%

where yi is the observation for i-th frame and ŷi is the recon-
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structed with model parameters from 4-core computation.

Table 5 shows the reconstruction error: both parallel and se-

rial achieve very small error and are similar to each other.

Figure 8 and Figure 9 show the reconstructed sequences of

the feet coordinates. Note our reconstruction (dotted lines)

is very close to the original signal (solid lines).

Table 5 Normalized Reconstruction Error

method Walking Jumping Running

Serial 1.929% 1.139% 0.988%

Parallel(4-core) 1.926% 1.140% 0.985%

6. Related Work

Hidden Markov Model is first introduced by Leonard E.

Baum et al. [12] and has been widely applied in many tem-

poral applications such as speech technology [13], hand-

writing system, part-of-speech tagging and bioinformatics

[14].

Data mining and parallel programming receives in-

creasing interest. Parthasarathy et al. [15] develop parallel

algorithms for mining terabytes of data for frequent item-

sets, demonstrating a near-linear scale-up on up to 48 nodes.

Reinhardt and Karypis [16] used OpenMP to paral-

lelize the discovery of frequent patterns in large graphs,

showing excellent speedup of up to 30 processors.

Cong et al. [17] develop the Par-CSP algorithm that

detects closed sequential patterns on a distributed memory

system, and report good scale-up on a 64-node Linux clus-

ter.

Graf et al. [6] developed a parallel algorithm to learn

SVM through cascade SVM. Collobert et al. [18] proposed

a method to learn a mixture of SVM in parallel. Both of

them adopted the idea of splitting dataset into small subsets,

training SVM on each, and then combining those SVMs.

Chang et al. [19] proposed PSVM to train SVMs on dis-

tributed computers through approximate factorization of the

kernel matrix.

There is an attempt to use Google’s Map-Reduce [7] to

parallelize a set of learning algorithm such as naı̈ve-Bayes,

PCA, linear regression and other similar algorithms [8, 9].

Their framework requires the summation form (like dot-

product) in the learning algorithm, and hence could dis-

tribute independent calculations to many processors and

then summarize them together. Therefore the same tech-

niques could hardly be used to learn long sequential graphi-

cal models such as Hidden Markov Models and Linear Dy-

namical Systems.

7. Conclusions

Hidden Markov chain models are important tools in analyz-

ing time series data. In this paper, we explore the problem of

parallelizing the learning algorithm on symmetric multipro-

cessor architectures, for two typical such models, linear dy-

namical systems (LDS) and hidden Markov models (HMM)

The main contributions are as follows:

• We propose approximate parallel learning algorithms

CAS-LDS for Linear Dynamic System and CAS-

HMM Hidden Markov Model, and implement them us-

ing the OpenMP API on shared memory machines.

• We performed experiments for LDS on a large collec-

tion 58×93 real motion capture sequences spanning

17 MB. Cut-And-Stitch showed near-linear speedup on

typical settings (a commercial multi-core desktop, as

well as a supercomputer). We showed that our recon-

struction error is almost identical to the serial algo-

rithm.

• Experiments for HMM on a synthetic dataset exhibit

also ideal speedup on multiple processors. Quality

of model generated from parallel Cut-And-Stitch is as

good as from serial algorithm.
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