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Abstract— In this paper, we present fast algorithms on mining « How to detect anomalies in sensor data? For example,

coevolving time series, with or with out missing values. Oualgo- detecting the outbreak in drinking water by monitoring
rithms could mine meaningful patterns effectively and effigently. the chlorine levels in drink water system

With those patterns, our algorithms can do forecasting, corpres- H to find i t ob fi ..
sion, and segmentation. Furthermore, we apply our algoritim to ¢ HOW 10 Tind Incorrect observations or recover missing

solve practical problems including occlusions in motion cpture, values in sensor data? It is common to have missing
and generating natural human motions by stitching low-effot observations due to various factors, say out of battery.
motions. We also propose a parallel learning algorithm for IDS Computer network traffic Another important time series
to fully utilize the power of multicore/multiprocessors, which will .
serve as corner stone of many applications and algorithms fo data COMes ffqm the computgr communication, such as portto
time series. port tcp/ip traffic and web click streams . We are particylarl
interested in the following problems:
|. INTRODUCTION AND MOTIVATION . . ) .

i . licati lik « How to find patterns in such time series? How to group
Time sequences appear in numerous applications, like sen- similar traffic patterns together? The challenge lies in the

sor measurements, mobile object tracking, data centertoreni bursty nature of these data sequences.

ing, computer network monitoring, motion capture sequence « How to identify intrusion/anomalies in such computer
environmental monitoring (like automobile traffic and afihe network traffic data?

levels in drinking water ) and many more. In thi K f th
In these scenarios, it is very important to understand the n this paper, we present our work on some of these

patterns in the data such as correlation and evolving behavPrOblemS' At large, we focus on the theme of mining multiple

By better mining the patterns, it will help make better peedi co-_evolvmg sequences, with the goal_ of_developmg fast _aI-
tion and many further tasks in individual scenario. Our gsal gorithms for finding patterns, summarization, and anomsalie

to develop algorithms for mining and summarizing any tim thg followm_g sections, we will desc_rlbe our approaghes

series data, and we list here a few motivation settings. to mine meaningful patterns from multlple_ coevolving time .
Motion capture sequencesMotion capture (mocap) is sequences and use those patterns for_sol_vmg real_ problems i

a technique for creating realistic motion animations. SucRotion capture and sensor data monitoring. Particularty, w

technique is not a puppy creature, but widely used in seveP§fSent three pieces of work here:

multi-billion industries such as computer game and movie 1) Mining with missing values;

industry. The revenue merely in game industry spans over 102) Natural motion stitching;

billion in US dollars. 3) Parallelizing on multicore/multiprocessor computers.
We are particularly interested in the following importanFor each work, we will describe the basic problem setting, th
problems: main idea of our proposed methods, and the results.

« How to create new and natural human motions from a

motion capture database? Il. MINING WITH MISSING VALUES

« How to characterize natural human motions? A. Problem Definition
« How to recover the occlusion that is common in mocap Given multiple time sequences with missing values, we
sequences? propose DynaMMo which summarizes, compresses, and finds

Sensor dataWireless sensors are useful in many situationstent variables. The idea is to discover hidden variabtes a

where resource (e.g. power) are limited for measuremeatt, Stearn their dynamics, making our algorithm able to function
as monitoring chlorine levels in drinking waters systemd areven when there are missing values.

automobile traffic in major infrastructure roads . Sensdada .
are usually in streaming fashion, and well suited in the exnt B- Main Idea
of our time series mining algorithms. Our main idea is to simultaneously exploit smoothness
Some typical problems in sensor data include: and correlation. Smoothness is what splines and linear in-
« How to find patterns, such as correlation and time shifterpolation exploit: for a single time-sequence (say, &fé |
ing, in sensor data? elbow x-value over time), we expect successive entries to
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Fig. 1. Occlusion in handshake motion. 66 joint angles (Jovicr ~ 200
frames. Dark color indicates a missing value due to occlushdotice that
occlusions are clustered.

Fig. 2. Reconstruction for a jump motion with 322 frames ind@®ensions
of bone coordinates. Blue line: the original signal foot bonez-coordinate
- the dash portion indicates occlusion from frame 100 to 20®& proposed
DynaMMo, in red, gets very close to the original, outperforgnall competi-
tors.

have nearby valuestf =~ z,.1). Correlation reflects the fact
that sequences are not independent; for a given motion (say, 0.025
“walking”), the left-elbow and the right-elbow are corredd, 0.02
lagging each other by half a period. Thus, when we are missing
x,, say, the left elbow at time-tick, we can reconstruct it by
examining the corresponding values of the right elbow (say,
Yn—1,Yn,Ynr1)- This two-prong approach can help us handle 0.005f e
even ‘black-outs, which we define as time intervals where e .
we lose track of all the time-sequences. A

The main _contnbutlon of our approach is that it ShOWIgig. 3. Average error for missing value recovery on a sampteap data
how to exploit both sources of redundancy (smoothness a@@bject#16.22). Average rmse over 10 runs, versus averaggng length
correlation) in a principled way. Specifically, we show howfrom 10 to 100). Randomly 10.44% of the values are treatetinéssing”.
to set up the problem as a Dynamic Bayesian Network aR&naMMo (in red solid line) wins. Splines are off the scale.
solve it efficiently, yielding results with the best recamstion
error and agreeing with human intuition. Furthermore, we

propose several variants based on DynaMMo for additionat" provide high compression for little loss of reconsfurct

time series mining tasks such as forecasting, compressiny, accuracy, and (c) can_extr_act compa_Lct, but powerful fe_alure
segmentation. for sequence forecasting, interpretation and segmentg(it)

One benefit of DynaMMo is that it helps compress timgcalable or_w durz?\tlo_n of time .ser|es.
series more compactly and accurately. The basic compressio RECOVEring missing valuesigure 2 shows the reconstructed
idea is to store the learned parameters by DynaMMo afitgnal for an occluded jumping motion. DynaMMo gives the
values of hidden variables for a subset of time ticks. Bas@§St result close to the original value. Figure 3 shows the
on different strategies to choose the subsets, hence cod§&onstruction error versus the occlusion length on motion
quently different compression ratio and accuracy, we psedo capture dataset: the error grows little Wlth increasindusion
three variants of DynaMMo compression, fixed compressidfndth- Compared with other alternative methods, DynaMMo
(DynaMMoy), adaptive compression (DynaMM) and opti- achieves the bes_t performance among the four methoqls_. The
mal compression (DynaMMy). results are confirmed by experiments on other additional

As a further merit, DynaMMo is able to segment thdatasets [1]'_ i ) .
data sequence. Intuitively, this is possible because DylaM ~ Compression Figure 4 shows the decompression error (in
identifies the dynamics and patterns in data sequences,!&@ns of reconstruction square error) with respect to cespr
segments with different patterns can be expected to hai/@n ratio compared with the baseline compression using a
different model parameters and latent variables. We use #fgnbined method SVD and Linear Interpolation. DynaMMo
reconstruction error as an instrument of segmentationjmgakWins especially in high compression ratio.
pieces whenever the error spikes. SegmentationFigure 5 shows the reconstruction error from

We refer reader to [1] for more technical details on Dysegmentation experiment on a real human motion sequence in
naMMo, its compression, decompression and segmentati®¥fich an actor running to a complete stop. Two (y-coordisiate
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algorithms. of left hip and femur) of 93 joint coordinates are shown in the
top of the plot. Note the spikes in the error plot coincidehwit
C. Results the slowdown of the pace and transition to stop.
We presented experiments on motion capture sequknces
and chlorine measurements and demonstrated that our pro- I1l. NATURAL MOTION STITCHING

posed DynaMMo method and its extensions (a) can SUg- problem Definition

cessfully learn the latent variables and their evolutids), ( _ )
Given two motion-capture sequences that are to be stitched

Lhitp://mocap.cs.cmu.edu together, how can we assess the goodness of the stitching?
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Fig. 4. Compression for Chlorine dataset: Reconstructiomreversus
compression ratio. Lower is better. DynaMiIdin red solid) is the best.
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Fig. 5. Reconstruction error plot for segmentation on a neafion capture
sequence in 93 dimensions (subject#16.8) with 250 franmea¢t@r running to
a complete stop, with left hip and femur y-coordinates showiep plots. The
spikes in bottom plot coincide with the slowdown of the paod &ansition
to stop.

the whole motion capture database to find the best stitching
motions.

B. Main Idea

The main contribution of our work is that we propose an
intuitive, first-principles approach, by computing the oeff
that is needed to do the transition (laziness-effort, or “L-
score”). Our conjecture is that, the smaller the effort, the
more natural the transition will seem to humans. Moreover,
we propose the elastic L-score which allows for elongated
stitching, to make a transition as natural as possible. We
present preliminary experiments on both artificial and real
motions which show that our L-score approach indeed agrees
with human intuition, it chooses good stitching points, and
generates natural transition paths.

C. Results

We capture a set of waving, walking, running and jumping
motions at 30 frames per second. Motions are 300 to 2000
frames in length and have=93 dimensional joint positions in
body local coordinates. We use one Kalman filter (=LDS) for
each of them=93 features, and set the parameters according
to physics [2]. We have informally viewed a large variety of
transitions within this database and find that our approach
consistently performs as well or better than the Euclidean
distance metric at generating pleasing transitions.

In order to assess the quality of the stitching found by our
elastic L-score, we blank out a short interval (2 frames) and
a long interval (11 frames) from the transition made by the
human actor during 2 waving circle motions, and we compare
the actual trajectory against the transition trajectoesanated
by theelasticL-score. The processing time is around two and
a half hours on a Pentium class machine. The observations
(see Figure 6) are as follows:

o Our method computes the correct value of blanked-out
frames, or gets very close to it.

A good distance function is important for the generation | . generated trajectories match very well the actual

of realistic character motion from motion capture database
We propose a novel distance function to pick natural stitghi
points between human motions. To motivate our work, we

trajectories.
More results and details are in [2].

demonstrate that a straightforward, ad-hoc approach nealy le

to poor stitchings like euclidean distance, time-warpimgl a
geodesic joint-angle distance, because none of them wies t -
capture the dynamics of the stitching as explicitly as our

upcoming proposal does.

Problem 1 (Stitching Naturalnessfziven a query se-
guence@ of T points in m-dimensional space with take-

off point ¢,, and a data sequenc¥ of T, points of the
same dimensionality with landing poinat,, find a function

qis---y4a; Ty - - TTy-

The goal is that the “goodness” metric should be low if huma

@) (b)
to assess the goodness of the resulting stitched sequesiceFig. 6. Real motion stitching: Right-hand coordinates ofuanan transition

motion, with the dashed part blanked out (2 blank-out frafoesthe left
figure, 11 for the right)A/O marks the take-off/landing frame, respectively.
d< stand for our reconstructed path usilgsticL-score; notice how close

consider the stitching to be natural. Once we obtain a gedlifithey are to the ground truth (gray dashed line). EhsticL-score either finds
distance function, we can either do a sequential scan or (fg&correctkop: (=2 in left) or gets very close (=14, vs 11, in right)
database indexing techniques to perform a fast search over
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Fig. 7. Graphical illustration of dividing LDS into blocks ithe Cut step. (8) desktop (b) supercomputer

Note Cut introduces additional parameters for each block. Fig. 8. Average speedup of CAS on a commercial multi-corékidgsand

a supercomputer, running on 58 motions. The Sequentialoveis on one
processor, identical to the EM algorithm.

IV. PARALLELIZING ON MULTICORE

A. Problem Definition Figure 8 shows the speedup on the multi-core desktop

In both problems described above, there are estimation (@faximum 4 cores) and a supercomputer at NESAe also
learning steps for Kalman filters or Linear Dynamical Systeninclude the theoretical limit from Amdahl's law. With respe
involved in the corresponding algorithms. The well known EMb quality. both parallel and serial achieve very small eard
algorithm for learning of Linear Dynamical Systems (LDShre similar to each other. Note the reconstruction by CAS is
iterates between computing conditional expectationsadém very close to that by sequential EM algorithm. More discnissi
variables through the forward-backward procedure (Ejsteg in [3].
and updating model parameters to maximize its likelihood (M
step). Although EM algorithm generally produces good rssul
the EM iterations may take long to converge. For example, ourln this paper, we present fast algorithms on mining co-
experimental results show that on a 93-dimensional datdsegevolving time series, with or without missing values. Our
length over 300, the EM algorithm would take over one secomdgorithms could mine meaningful patterns effectively affd
to compute each iteration and over ten minutes to converge@eantly. With those patterns, our algorithms can do foréogs
a high-end multi-core commercial computer. Given multipleompression, and segmentation. Furthermore, we apply our
co-evolving sequences, our goal is to develop a paral@gorithm to solve practical problems including occlusion
algorithm to learn LDS parameters, by taking advantagee®f thh motion capture, and generating natural human motions
quickly developing parallel processing technologies taiege by stitching low-effort motions. We also propose a parallel

V. CONCLUSION AND FUTURE WORK

dramatic speedup. learning algorithm for LDS, which will serve as corner stone
_ of many applications and algorithms for time series.
B. Main Idea In the future, we will continue our exploration on the

Traditionally, the EM algorithm for LDS running on atheme of mining large co-evolving sequences, with the gbal o
multi-core computer only takes up a single core with limitedeveloping fast algorithms for finding patterns, summagzi
processing power, and the current state-of-the-art dymaraind detecting anomalies.
parallelization techniques such as speculative execbtoefit

little to the straightforward EM algorithm due to the nowiai
data dependencies in LDS. [1] L. Li, J. McCann, N. Pollard, and C. Faloutsos, “Dynammnidining

.. . . . and summarization of coevolving sequences with missin |
The basic idea of CAS is to (&ut both the chain of hidden in KDD. New York, NY, USA: gAC,\,ﬁ| 2009. [Online]. A\,g;gﬁe:

variables as well as the observed variables into smallakblo http://Awww.cs.cmu.edu/ leili/pubs/li-kdd09. pdf
; ; _ ; [2] L. Li, J. McCann, C. Faloutsos, and N. Pollard, “Lazinéssa virtue:
(Flgure 7)’ (b) perform intra-block compu_tatlon, and &DFCh Motion stitching using effort minimization,” irshort Papers Proceedings
the local results seamlessly by summarizing sufficienissics of EUROGRAPHICS2008.
and updating model parameters and an additional set of blogk L. Li, W. Fu, F. Guo, T. C. Mowry, and C. Faloutsos, “Cut-
i ; ; d-stitch: efficient parallel learning of linear dynanhicaystems
specific parameters. The algorithm would iterate over 4sstep 2" . .

. . . on smps,” in KDD ’'08: Proceeding of the 14th ACM SIGKDD
where the mOSt time-consuming E-step in EM_ as We_" as the international conference on Knowledge discovery and datainy
two newly introduced steps could be parallelized withdittl ~ New York, NY, USA: ACM, 2008, pp. 471-479. [Online]. Availieh
synchronization overhead. Furthermore, this approxionati http:/fwww.cs.cmu.edu/ leili/paralearn/li-kdd08. pdf
global models by local sub-models sacrifices only a little
accuracy, due to the chain structure of LDS. On the other

hand, it yields almost linear speedup.
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