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Why time series clustering?
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• Application of motion capture

– Game ($57B) 

– Movie industry

• Goal:

– Understand human motion

– Generate new natural motion

• Sub-goal:

– automatic labeling 
3

Motion Capture

Right hand

Left hand
walking motion

[Li et al, 2008a]



Answering similarity queries

SELECT *  FROM

WHERE time_seq.

LIKE
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[Li et al, 2010]



Central Problem

• Estimate “Similarity” among time sequences

Are they 
Similar ?

Extract features

Features (e.g. average, Fourier) features

Distance( , )
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What are good features?

e.g. Mocap sequences
Chlorine measurements in water
temperatures in machine room

Requirements 
of good features:
0. Agree with 

human 
intuition

1. Time lag
2. Frequency 

proximity
3. more (next)
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Basic idea

learning basis/harmonics
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Mixing weights 
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Preview of CLDS Result
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• running

◊ walking
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Complex Normal Distribution
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• Example: 
standard complex normal distribution



Complex Normal Distribution
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• x is said to follow the complex normal 
distribution, if its p.d.f

H is hermitian matrix,   

[Goodman, 1963]



Compare to Normal Distribution

12

H is hermitian matrix,   

Complex Normal Distribution

H is hermitian matrix,   

Normal Distribution
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(Complex) Linear Dynamical Systems
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Example
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A: transition matrix
C: output matrix



Parameter Learning
min
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EM algorithm (complex-Fit)
•E-step: compute posterior                            and 

•M-step: update the parameters to optimize 



Optimizing real-valued functions of complex variables

• With real variables:

–

– Gradient descent: 

• With complex variables:

– AND

• EM algorithm (complex-Fit)
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CLDS versus LDS

min

min

CLDS

LDS
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CLDS for Clustering

20

Enforcing A to be diagonal,
for learning a and Q:

Rationale: 
• Faster
• More robust
• Better clustering



Features
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• z’s will be basis
• C will contain features
• To eliminate time shift, take magnitude of C



Example
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A: transition matrix
C: output matrix



Simple interpretation for “Complex” solution
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f=1/30

f=1/110

f=1/100



Simple interpretation for “Complex” solution
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Feature
Matrix
F

0 1 0

0 1 0

0 1 0

1 0 1

1 0 1

Take magnitude
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DFT as a special case
For single signal,
If 

C will be Fourier specturm
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Results

• Datasets:

– MOCAPPOS: 

• 49 motion sequences

• marker positions

• running v.s. walking

– MOCAPANG: 

• 33 sequences

• joint angles

• Metric: conditional entropy of the confusion 
matrix M
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Results
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Conditional Entropy

[Gunopulos 2001]

[Bishop 2006]

[Buzan 2004]



Visualization of CLDS Features
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Conclusion

• Proposed Complex Linear Dynamical Systems

– Complex Normal Distributions for lag and 
harmonics

– Diagonal transition matrix for time series 
clustering 

• Complex-Fit for learning parameters

• Advantages:

– Faster

– More robust

– Better clustering 30



Thanks!

• www.cs.cmu.edu/~leili

• Lei Li, leili@cs.cmu.edu

• B. Aditya Prakash, badityap@cs.cmu.edu
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