
Learning Design and Construction with Varying-Sized Materials
via Prioritized Memory Resets

Yunfei Li1, Tao Kong2, Lei Li3 and Yi Wu1,4

designerenv

Replay buffer

Update

Query

𝑠, 𝑟

ID
, poseReset

Teleporter/
Motion generator

Train RL with PMR

low-level
controller

𝜌!
Reset

Simulated trajectory
xArm robot

cliff
cliff

blocks with various size

Real robot deployment

Fig. 1: Bridge design and construction with a collection of varying-sized objects. Left: Task setting. Middle: Overview of
training approach. An RL designer is trained with Prioritized Memory Resets (red shadowed area). The predicted instruction
from designer is executed with a low-level controller. Right: Evaluation in simulation and on a real robot.

Abstract— Can a robot autonomously learn to design
and construct a bridge from varying-sized blocks without a
blueprint? It is a challenging task with long horizon and
sparse reward – the robot has to figure out physically stable
design schemes and feasible actions to manipulate and transport
blocks. Due to diverse block sizes, the state space and action
trajectories are vast to explore. In this paper, we propose
a hierarchical approach for this problem. It consists of a
reinforcement-learning designer to propose high-level building
instructions and a motion-planning-based action generator to
manipulate blocks at the low level. For high-level learning, we
develop a novel technique, prioritized memory resetting (PMR)
to improve exploration. PMR adaptively resets the state to
those most critical configurations from a replay buffer so
that the robot can resume training on partial architectures
instead of from scratch. Furthermore, we augment PMR with
auxiliary training objectives and fine-tune the designer with
the locomotion generator. Our experiments in simulation and
on a real deployed robotic system demonstrate that it is able
to effectively construct bridges with blocks of varying sizes at
a high success rate. Demos can be found at https://sites.google.
com/view/bridge-pmr.

I. INTRODUCTION

Reinforcement learning (RL) has been an increasingly
promising paradigm for solving complex robotic manipula-
tion tasks [1], [2], [3], [4], such as grasping [5], stacking [6],
[7], object rearrangement [8], mobile manipulation [9], [10]
and folding towels [11]. For many tasks that are overly
complicated for classical control methods, RL serves as a

1Institute for Interdisciplinary Information Sci-
ences, Tsinghua University, Beijing, China.
{liyf20@mails,jxwuyi@mail}.tsinghua.edu.cn

2ByteDance AI Lab, Beijing, China. kongtao@bytedance.com
3University of California Santa Barbara. lilei@cs.ucsb.edu
4Shanghai Qi Zhi Institute, Shanghai, China

general solution to enable a learning robot to automatically
solve them assuming minimal domain knowledge.

In this paper, we tackle a challenging task, bridge design
and construction with varying-sized objects (Fig. 1), where
a collection of varying-sized building blocks are given while
the robot needs to select necessary blocks to construct a
stable bridge connecting two distant cliffs. In contrast with
many manipulation tasks in the existing literature, where the
target object configuration is often known in advance [12],
[13], in this task, neither the target bridge architecture nor
the construction instructions are given. The robot needs to
adaptively manipulate blocks with appropriate sizes in the
right order to finish construction based on the given materials
and the cliff width. Moreover, the success signal can be
only obtained after a valid bridge is completely built. Hence,
this problem is particularly difficult for its long horizon and
sparse reward, and requires non-trivial exploration due to
its varying block sizes and cliff width. A similar bridge
design and construction variant is studied in [14], but is less
challenging since it only considers blocks of identical sizes
and utilizes hand-crafted intermediate dense reward.

To tackle this challenge, we adopt a hierarchical solu-
tion consisting of an RL-based high-level designer and a
planning-based low-level action generator. The high-level
designer is trained by RL over object-centric states to de-
compose the long-horizon task into a sequence of single-
block pick-and-place sub-tasks. The low-level policy simply
executes the pick-and-place instructions by motion planning
and produces a collision-free sequence of robot actions. This
is conceptually similar to the ReLMoGen framework [10].
ReLMoGen focuses on the mobile robot setting and produces
state-based sub-goals, such as spatial positions and arm

states, while we consider object configurations. In addition,
ReLMoGen trains the high-level planner with a locomotion
generator throughout the entire training process, which,
however, is computationally expensive and results in poor
exploration in our task. We propose to first train the high-
level designer solely by teleporting the selected block to the
target position and then fine-tune the designer with the action
generator, which achieves a substantially higher success rate.

To effectively overcome the exploration challenge when
training the high-level designer, we propose a novel training
paradigm, Prioritized Memory Resets (PMR). PMR adap-
tively resets the RL environment to a past state selected
from the replay buffer, so that the robot can start from
an intermediate half-done architecture instead of always
restarting from scratch in each training episode. The insight
of PMR is that in this sparse-reward hard-exploration prob-
lem, some close-to-success configurations may be hardly re-
achieved from scratch by the training policy. Therefore, we
can directly reset the environment to those states that may
lead to the biggest learning advancements. PMR is con-
ceptually similar to automatic curriculum learning methods
in goal-conditioned RL [15], [16], which trains the agent
with adaptive target goals for fast policy improvements. By
contrast, PMR resets the initial state of a training episode. In
addition to PMR, we also adopt an auxiliary self-supervised
objective for better representation learning, which further
accelerates learning.

Experiment result shows that our RL-based bi-level so-
lution achieves a success rate of 71.8% in simulation for
constructing a bridge with 7 random-sized blocks and dis-
covers interesting bridge architectures while the standard RL
method fails completely. Ablation studies also demonstrate
that each of our algorithmic components, including PMR,
self-supervised learning, and locomotion fine-tuning, is crit-
ical to the overall performance. We also validate our method
on a real-world robot arm.

Our contributions are summarized as follows:
1) We develop an effective hierarchical RL framework

to tackle the long-horizon sparse-reward varying-sized
bridge construction problem.

2) We propose a novel technique, Prioritized Memory
Reset (PMR), to tackle the exploration challenge in
long-horizon sparse-reward robot learning problems.

3) We show that self-supervised learning and locomotion
fine-tuning substantially improves RL training in com-
plex manipulation tasks.

4) We develop an effective RL-based robot system that
can successfully handle the challenging varying-sized
bridge design and construction task in the real world.

II. RELATED WORK

Robot construction and manipulation tasks [17], [18], [19],
[20], [7], [13], [21] serve as a popular testbed for developing
intelligent manipulators with long-term autonomy. Most of
the construction tasks assume a known target state in a
priori, i.e., the desired configuration designed by a human
expert is provided to the robot. We focus on a bridge

design and construction task with no prior knowledge of
the precise target state. So, the robot has to both design the
bridge architecture and construct the bridge via a sequence
of feasible control actions. There are also works focusing
on generating structure designs under particular constraints
without considering construction [22], [23].

Hierarchical frameworks are commonly adopted in com-
plex long-horizon manipulation tasks. Hierarchical reinforce-
ment learning (HRL) typically learns a bi-level policy, with
the high-level policy generating sub-goals for the low-
level policy to execute [24], [25]. The two policies can
be optimized jointly [26], [27], [28] or separately [29].
ReLMoGen [10] tackles mobile manipulation and interactive
navigation tasks with a combination of a learnable high-level
policy and a fixed low-level motion generator. Our frame-
work is conceptually similar to ReLMoGen, with a high-level
RL designer integrated with a classical motion generator
while our high-level policy considers object configurations
instead of spatial positions or robot states. Moreover, we
only use locomotion to fine-tune the high-level policy for
better designer exploration while ReLMoGen leverages both
parts throughout training.

The proposed prioritized memory reset technique adap-
tively proposes critical intermediate states for the agent
to restart from, which is related to automatic curriculum
learning methods that propose tasks with moderate diffi-
culty [30], [15], [16], [31]. However, these methods mainly
work for goal-conditioned problems or a fixed set of tasks
by generating goals, while we directly reset the environment
to previously visited states. Also, the curriculum learning
methods in goal-conditioned RL typically assume a known
goal space, while PMR does not need to explicitly know
the space of state configurations. PMR enhances exploration
by directly teleporting the agent to previous states without
changing the reward function, which is different from classi-
cal intrinsic-reward-based exploration [32], [33], [34]. PMR
is most related to Go-Explore [35], which also teleports the
agent to promising past states. However, Go-Explore uses
a count-based metric as its state selection criterion, which
exhaustively explores the entire state space. This is infeasible
in complex construction tasks where exponentially many
failure/unstable states exist and only a few architectures
are crucial for success. Hence, PMR adopts a value-error-
based criterion, which gradually learns to only focus on
stable states as training proceeds. We remark that some
model-based RL methods [36] also restore a visited state
to perform monte-carlo tree search. However, these methods
require an accurate forward model while PMR is model-free.
Finally, we use inverse dynamics prediction as an auxiliary
task for better representation learning. This self-supervised
objective has been also applied in other problems including
exploration [37] and meta-learning [38].

III. TASK SETUP

In our bridge design and construction task, there are N
building blocks on the table and two “cliffs” at a random
distance from each other. All the building blocks are of width

and height 5cm while their lengths are sampled from the
following three categories: standard length L which is equal
to the cliff height; shorter length uniformly sampled from
0.5L to 0.9L; longer length uniformly sampled from 1.1L
to 1.25L. A 7 DoF xArm robot is mounted on the side of
the table to manipulate the building blocks. The robot aims
to design and construct a bridge using the building blocks
that can connect the cliffs. The simulated environment is built
with PyBullet [39]. We tackle this long-horizon manipulation
task with a hierarchy of a high-level RL-based designer that
sequentially instructs one object to a new pose at each time,
and a low-level controller that generates collision-free robot
motions to accomplish the high-level instructions.

A. Problem Formulation

The low-level control problem is a standard motion-
planning task while the high-level bridge design problem is
formulated as a Markov decision process defined as follows:

Observation: In each step, the agent observes the posi-
tions, orientations, velocities, and sizes of all the building
blocks and cliffs.

Action: The agent can instruct one building block to a new
pose within the vertical plane that goes through the centers of
cliffs. Each action is a vector of 4 elements (ID, y, z, angle),
where ID denotes which block to move, y and z specify the
target position of the block’s center of mass, angle denotes
the 1-D rotation within the plane.

Reward: For each step, the agent can get a 0.1 reward
only if a bridge is successfully built; otherwise it receives no
reward. We cast multiple rays downwards onto the structure
inside the valley to detect its height. If the height of all the
detected points is greater than the cliff height plus the block
thickness, we consider the structure successful.

Horizon: Each episode lasts a fixed length of 30 steps.
Initial state distribution ρ0: When the environment

resets, the distance between the cliffs is sampled from
[0.75L, 3.75L]. We then sample a set of building blocks
consisting of bN/2c standard blocks, dN/4e long blocks,
and (dN/2e − dN/4e) short blocks. All the building blocks
are aligned on the table outside the valley.

B. Policy Architecture

The high-level RL designer is instantiated as an actor
πθ and a critic Vφ with a shared transformer-based [40]
encoder ψ. ψ stacks 3 self-attention blocks to extract ob-
ject features h[N+2]

t from s
[N+2]
t , where the superscript [i]

denotes a sequence from 1 to i and the subscript t denotes
the time step. Then we feed ht into πθ and Vφ to get action
and value prediction. πθ models a joint action distribution
p(ID, y, z, angle) = p(ID)p(y|ID)p(z|ID)p(angle|ID). p(ID)
is represented as a categorical distribution of (N+1) classes.
The first class represents a special “no-op” action, which
means that the agent will not move any object in this
step. It is useful in the steps when the bridge is success-
fully built. The remaining N classes correspond to moving
different building blocks. The raw distribution (logit) of
“ID” is computed as logit(ID = 0) = gno-op(

∑N+2
i=1 hit/N),

logit(ID = i) = gID(h
i
t), i = 1, 2, · · · , N , where gno-op and

gID are linear layers. The three dimensions of the target
pose are each discretized into 64 bins. p(y|ID), p(z|ID) and
p(angle|ID) model the conditional distribution of a target
pose given an object ID. The logits are also computed
with linear transformations on features: logit(y = j|ID =
i) = gy(h

i
t), j = 1, 2, · · · , 64, i = 1, 2, · · · , N . Vφ is a 2-

layer MLP that computes a value scalar from the aggregated
feature

∑N+2
i=1 hit.

The low-level controller is either an object teleporter that
directly teleports the selected block to the target pose, or a
sampling-based motion planner that generates collision-free
trajectories of robot motions to fulfill the instructions given
by the high-level designer.

C. Phasic Policy Gradient

Following [14], our algorithm to train the RL designer is
built upon Phasic Policy Gradient (PPG) [41]. PPG alternates
between the policy phase and the value phase. In the policy
phase, we optimize ψ and πθ with the policy loss

Lπ = E[min(ρÂ, clip(ρ, 1−ε, 1+ε)Â)], ρ =
πθ(at|ψ(st))
πθold(at|ψ(st))

,

where Â is the advantage function. In the value phase, we
train Vφ and ψ by minimizing Ljoint defined as

Ljoint = LV+βcloneLclone,LV =
1

2
E[(Vφ(ψ(st))−V targ)2],

Lclone = E[KL[πθold(·|ψ(st))||πθ(·|ψ(st))]].

IV. METHOD

Designing and constructing a bridge using varying-sized
blocks is a challenging task due to sparse reward and
complex physical constraints of stable bridges — only a
tiny subspace of possible object placements could yield
stable architectures. Hence, we propose the PMR technique,
which adaptively resets the initial state to an intermediate
configuration, to tackle this hard exploration challenge. In
addition, we improve the representation learning of the agent
with a self-supervised auxiliary task, which can be shown to
accelerate training significantly. Finally, we also fine-tune
the pre-trained high-level designer with the integration of a
low-level controller to get feasible instructions for the robot.

A. Prioritized Memory Reset

We propose PMR, an adaptive reset paradigm to enhance
the exploration ability of an RL agent. When an episode
resets, we allow the agent to restart from an intermediate
state it has previously visited with some probability instead
of always from scratch. For on-policy RL methods, a training
RL agent can occasionally reach some promising states that
are close to success through random exploration. However,
since each episode restarts from scratch in standard RL, the
agent may not be able to re-visit those promising architec-
tures. By contrast, PMR enables the agent to directly teleport
to these critical states without re-executing its policy.

Algorithm 1: PPG with prioritized memory reset

1 Intialize ψ, πθ, Vφ. RL data buffer B. An empty
replay buffer Q to store reset states.

2 s0 ∼ ρ0
3 for iter=0:n iters do
4 B ← ∅
5 for t=0:n steps do
6 Q.insert(priority(st), st)
7 at ← πθ(ψ(st))
8 st+1, rt, terminate← env.step(at)
9 B ← B ∪ (st, at, rt, st+1, terminate)

10 if terminate then
11 if rand() < prestart then
12 st+1 ← Q.pop()
13 else
14 st+1 ← ρ0
15 for batch data sampled from B do
16 Optimize ψ and πθ with Lπ
17 for batch data sampled from B do
18 Optimize ψ and Vφ with Ljoint
19 Recompute priority(s) for each s in Q

The key design choice in PMR is how to select critical
states to restart from. In this work, we propose to use
temporal difference (TD) error as a priority metric:

priority(s) = |r + γV (s′)− V (s)|,

where s, r, s′ are states, rewards, and the subsequent states
collected from previous interactions with the environment,
and V is the learned value function. Intuitively, the states that
result in unexpected success or suddenly degrade to complete
failure are with large TD errors. Restarting from these states
could aggressively guide the agent to discover successful
configurations and also practice to avoid catastrophic failure.

We store the visited states and their priorities when inter-
acting with the environment. When an episode terminates, we
query the state with the highest priority and set it as the new
initial state with probability prestart; otherwise, we reset the
episode with a random state sampled from the initial state
distribution ρ0. The framework of RL combined with PMR
is shown in Alg. 1.

Implementation details: We maintain all the visited
states in a priority queue. Since our agent is constantly
evolving, the stored priorities computed from old values
would soon become stale. Therefore, we re-compute the
priorities of all the tracked states after each training phase.
We pop out the states with the least priorities when the
priority queue is full. Since our state space is continuous
and we can only restore a limited number of states, it is
infeasible to keep track of all the visited states. Also, it
is unnecessary to store multiple states that are similar to
each other. Therefore, we adopt state hashing and only keep
one representative for each hash value. The hash function
we apply is defined as follows: we first get the heights of
the built structure’s upper surface, which we call the skyline

vector, then discretize the vector as the hash key of the state.

B. Inverse Dynamics Prediction

To better guide the training of the transformer-based en-
coder ψ, we propose to optimize a self-supervised auxiliary
task jointly with the original RL objective. Given a transition
tuple (st, at, st+1), the auxiliary task is to predict the action
at that results in the transition from st to st+1, which is
called inverse dynamics prediction. Any valid transitions
from our environment can be used as training data for
the auxiliary task. Therefore, the agent can always get
rich supervision for learning representation even when the
reward signal from the environment is very sparse. In our
experiments, we optimize

Ljoint = LV + βcloneLclone + βauxLaux

in the value phase of PPG training. LV and Lclone are
the original objectives in PPG, and Laux is the auxiliary
prediction loss. We first compute the features h

[N+2]
t =

ψ(s
[N+2]
t) and h

[N+2]
t+1 = ψ(s

[N+2]
t+1) using the same policy

feature extractor. Then we concatenate ht and ht+1 together
along the hidden size dimension to get ĥ. ĥ is passed into an
action predictor with almost the same architecture as πθ to
get â – the difference is that the input linear layers become
twice wider. Finally, Laux is computed as the cross-entropy
between â and at.

Note that the designer only places a single block per
step, so a large part of st+1 is often identical with st.
Consequently, we choose inverse dynamics prediction as our
self-supervised objective instead of another popular choice,
forward prediction (i.e., predicting st+1 from st and at),
which may hurt representation learning and result in a
degenerated policy.

C. Fine-tuning with Low-level Control Generator

We first train the high-level designer with object tele-
portation, and then fine-tune the learned designer by inte-
grating with a low-level motion generator. With an object
teleporter, the environment directly repositions the selected
block according to the instruction produced by the designer,
runs forward simulation until all the objects become stable,
and then takes the resulting stable state as the next state.
This approach is originally proposed in [14]. However, with
random-sized objects, we empirically observe the learned
designer often gives instructions infeasible for a robot arm
to execute, e.g., it may instruct to pick up an object too
close to another object for the robot arm to grasp without
collision. Therefore, we further replace the object teleporter
with a low-level motion generator, which fully simulates the
movement of the robot arm, and fine-tune the pre-trained
designer to generate feasible construction plans.

We implement the low-level motion generator with a
sampling-based motion planner. Each instruction from the
designer is implemented as a pick-and-place task that grasps
the block’s center of mass. We divide each pick-and-place
task into several sub-tasks: fetching the target object, chang-
ing the object pose, and moving back the arm. In each

Fig. 2: Learned strategies for constructing a long bridge using 7 blocks with different sizes. The two rows are construction
sequences in simulation and in the real world.

sub-task, we use a bidirectional RRT [42] motion planner
to search a collision-free sequence of robot motions. If the
planner fails to find a valid path (which may due to failing to
find a grasp pose, target state in collision, etc.), the simulator
will revert the scene to the state before the whole pick-and-
place task and wait for the next instruction.

Training the designer from scratch with integration of the
low-level motion planner is much more time-consuming than
with teleportation transition. We still try to train a designer
from scratch with a mixed ratio of low-level controller and
teleportation. Despite the long training time, this approach
gets lower sample efficiency and fails to converge to a
high success rate (more in Sec. V-D). We hypothesis that
incorporating low-level control may hurt exploration in the
early training stage of the designer in construction tasks.

D. Real Robot Deployment

We mount an xArm7 robot in the real world with the same
configuration as in the simulated environment. A RealSense
D435 RGBD camera is mounted on the hand of the robot.
We attach ArUco markers [43] to the building blocks to
get accurate pose estimation. We estimate the lengths of
the building blocks using contour approximation provided in
OpenCV [44]. After parsing the scene at the beginning of an
episode, the robot plans a sequence of joint angle positions
with the trained high-level designer and the low-level motion
generator, then executes along the planned trajectory.

V. EXPERIMENTS

We first show how our method solves a bridge design
and construction task with a collection of 7 random-sized
blocks, then validate the effectiveness of all the algorithmic
components with ablation studies. All the experiments in
simulation are repeated over 3 seeds.

A. Main Results

We demonstrate how our agent designs and constructs a
long bridge with a total of 7 building blocks in Fig. 2. The
building material set consists of three standard blocks with
a length of 20cm, two short blocks of length 14cm, and two
long blocks of length 24cm. The distance between cliffs is
65cm. The agent learns to put three standard blocks vertically
inside the valley as supporting blocks, then put two long
blocks on top of these supporting blocks as part of the bridge
surface, finally fill in the gaps with two short blocks.

B. Visualization of Reset States with PMR

We visualize which states PMR proposes to restart from.
The states with the highest priorities during training are
demonstrated in Fig. 5. The quality of reset states is also
evolving as the training proceeds. In the early stage, the
states with large TD errors are messy states with objects
randomly dropped in the scene. Then the agent gradually
learns to construct more meaningful structures. Finally, the
agent focuses on building very long bridges from partially
built structures. The prioritized reset mechanism can be also
viewed as an implicit curriculum for the agent.

C. Ablation Studies on High-level Designer Learning

In this part, we directly use the object teleporter to execute
the instructions given by the designer. All the experimented
methods are evaluated on the tasks with a collection of 7
blocks of various sizes and are always reset from states
sampled from ρ0 in evaluation. The distance between cliffs
is sampled from the range [2.75L, 3.75L]. We verify the
effectiveness of PMR and auxiliary task by comparing our
method with the variants that remove one or both compo-
nents. The ablation results are shown in the left half of
Fig. 6. Our method (PPG + PMR + auxiliary prediction,
red) outperforms “PPG + auxiliary prediction” (blue) and
“PPG + PMR” (purple) with a large margin, indicating
both PMR and auxiliary prediction are critical for efficient
learning of construction tasks. Note that naively apply PPG
algorithm, which is essentially the method in [14], leads
to complete failure (grey). It also demonstrates this sparse-
reward construction task with varying-sized building blocks
is non-trivial for current on-policy RL algorithms to solve.

We show performances of different metrics to prioritize
the reset states in the right half of Fig. 6. The red curve
is prioritizing with absolute TD error, and the blue curve
is using the inverse dynamics prediction error to prioritize
the states. Prioritizing with TD error achieves better sample
efficiency and a higher success rate.

D. Ablation Studies on Fine-tuning with Low-level Control

We first answer whether fine-tuning with a motion planner
improves the performance of a pre-trained designer. We take
an RL designer trained with the object teleporter for 1.3e7
timesteps, then continue training by combining it with the
motion generator. As shown in Fig. 7, directly executing

(a) An efficient construction plan using 6 blocks. (b) Another bridge design using all 7 blocks.

Fig. 3: Different modes of construction plans under the same task configuration.

Fig. 4: One failure case. The agent knocks down part of the built bridge when placing the short purple block, cleans up the
messy scene by itself, and tries to build again. The trajectory terminates due to time limit.

(a) Iteration 10 (b) Iteration 50 (c) Iteration 100

Fig. 5: Reset states with top priorities selected by PMR at
different training iterations.

Fig. 6: Ablation studies of different algorithm variants. The
left figure shows the effectiveness of prioritized reset and
auxiliary prediction task. Red: PPG with prioritized reset
and auxiliary prediction task. Blue: PPG with auxiliary
representation learning. Purple: PPG with prioritized reset.
Grey: Pure PPG. The right figure compares the performances
of different metrics to prioritized the reset states.

the instructions of the pre-trained policy with the motion
generator can only achieve a success rate of 0.224, but the
success rate can be improved to 0.718 after fine-tuning. The
blueprint policy can quickly adapt its instructions to avoid
infeasible actions for the specific low-level controller, thus
boost its performance especially at the beginning of the fine-
tuning phase.

We try another variant that trains the policy from scratch
with mixed teleportation and motion generator. We use the
motion generator to execute instructions with probability
equal to the current success rate of the agent, and use the
object teleporter otherwise. The overall sample efficiency is
lower than pre-training then fine-tuning, and the success rate
only converges to 0.472. The degradation of performance
may due to insufficient exploration when integrated with the
low-level controller in the early training stage.

Fig. 7: Comparison between pre-training high-level designer
with teleportation then fine-tuning after integrated with a
motion generator (red) and training from scratch combined
with the low-level controller (blue). The first half of the red
curve is evaluated with teleportation, and all other parts are
evaluated with the motion generator.

E. Learned Strategies and Failure Cases

Our agent can discover multiple solutions for the same task
configuration. We set the distance between cliffs to be 69cm,
and give the agent 7 blocks of length 14cm, 18cm, 20cm,
20cm, 20cm, 24cm, 24cm. In Fig. 3, the agent discovers
two different construction plans. The first solution only uses
6 blocks to solve the task. In the second solution, the agent
utilizes all 7 blocks. It strategically adjusts the position of
the yellow block before putting the short black block.

A failure case of the agent is depicted in Fig. 4. The agent
intends to connect the red and light blue blocks with the short
purple block, but knocks down other blocks when dropping
the pink block from the air. The agent then spends many steps
to clear the scene, and tries to construct again. The agent fails
to reach a successful state before the episode terminates.

VI. CONCLUSION

We tackle a challenging sparse-reward manipulation task
that designs and constructs bridges with varying-sized build-
ing blocks. We propose a novel learning paradigm PMR, that
allows the agent to restart from critical states it has visited
before to deal with the exploration issue. We additionally
propose an auxiliary representation learning task and fine-
tuning with integration of a motion generator to successfully
build a system that can construct interesting structures using
building blocks of various sizes in the real world.

REFERENCES

[1] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[2] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” in Robotics:
Science and Systems XIV, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, June 26-30, 2018, H. Kress-Gazit, S. S. Srinivasa,
T. Howard, and N. Atanasov, Eds., 2018.

[3] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas et al., “Solving
rubik’s cube with a robot hand,” arXiv preprint arXiv:1910.07113,
2019.

[4] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and
S. Levine, “Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning,” in Conference on Robot Learning.
PMLR, 2020, pp. 1094–1100.

[5] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke et al., “Qt-
opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” arXiv preprint arXiv:1806.10293, 2018.

[6] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in 2018 IEEE International Conference on Robotics and
Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018. IEEE,
2018, pp. 6292–6299.

[7] R. Li, A. Jabri, T. Darrell, and P. Agrawal, “Towards practical multi-
object manipulation using relational reinforcement learning,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 4051–4058.

[8] O. OpenAI, M. Plappert, R. Sampedro, T. Xu, I. Akkaya, V. Kosaraju,
P. Welinder, R. D’Sa, A. Petron, H. P. d. O. Pinto et al., “Asymmetric
self-play for automatic goal discovery in robotic manipulation,” arXiv
preprint arXiv:2101.04882, 2021.

[9] C. Li, F. Xia, R. Martı́n-Martı́n, and S. Savarese, “HRL4IN: hierar-
chical reinforcement learning for interactive navigation with mobile
manipulators,” in 3rd Annual Conference on Robot Learning, CoRL
2019, Osaka, Japan, October 30 - November 1, 2019, Proceedings,
ser. Proceedings of Machine Learning Research, L. P. Kaelbling,
D. Kragic, and K. Sugiura, Eds., vol. 100. PMLR, 2019, pp. 603–616.

[10] F. Xia, C. Li, R. Martın-Martın, O. Litany, A. Toshev, and S. Savarese,
“Relmogen: Integrating motion generation in reinforcement learning
for mobile manipulation.”

[11] B. Balaguer and S. Carpin, “Combining imitation and reinforcement
learning to fold deformable planar objects,” in 2011 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, IROS 2011,
San Francisco, CA, USA, September 25-30, 2011. IEEE, 2011, pp.
1405–1412.

[12] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar,
and P. Abbeel, “Reinforcement learning on variable impedance con-
troller for high-precision robotic assembly,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 3080–
3087.

[13] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hierarchical planning
for long-horizon manipulation with geometric and symbolic scene
graphs,” arXiv preprint arXiv:2012.07277, 2020.

[14] Y. Li, T. Kong, L. Li, Y. Li, and Y. Wu, “Learning to design and
construct bridge without blueprint,” in 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2021,
pp. 2398–2405.

[15] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Re-
verse curriculum generation for reinforcement learning,” in Conference
on robot learning. PMLR, 2017, pp. 482–495.

[16] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal gener-
ation for reinforcement learning agents,” in International Conference
on Machine Learning, 2018, pp. 1515–1528.

[17] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Ikeabot:
An autonomous multi-robot coordinated furniture assembly system,”
in 2013 IEEE International conference on robotics and automation.
IEEE, 2013, pp. 855–862.

[18] L. Nägele, A. Hoffmann, A. Schierl, and W. Reif, “Legobot: Auto-
mated planning for coordinated multi-robot assembly of lego struc-

tures*,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020, pp. 9088–9095.

[19] K. Zakka, A. Zeng, J. Lee, and S. Song, “Form2fit: Learning shape
priors for generalizable assembly from disassembly,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 9404–9410.

[20] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine,
“Composable deep reinforcement learning for robotic manipulation,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 6244–6251.

[21] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng,
V. Koltun, S. Levine, J. Malik, I. Mordatch, R. Mottaghi,
M. Savva, and H. Su, “Rearrangement: A challenge for embodied
AI,” CoRR, vol. abs/2011.01975, 2020. [Online]. Available: https:
//arxiv.org/abs/2011.01975

[22] D. Ritchie, S. Lin, N. D. Goodman, and P. Hanrahan, “Generating
design suggestions under tight constraints with gradient-based proba-
bilistic programming,” in Computer Graphics Forum, vol. 34, no. 2.
Wiley Online Library, 2015, pp. 515–526.

[23] D. Ritchie, B. Mildenhall, N. D. Goodman, and P. Hanrahan, “Con-
trolling procedural modeling programs with stochastically-ordered se-
quential monte carlo,” ACM Transactions on Graphics (TOG), vol. 34,
no. 4, pp. 1–11, 2015.

[24] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” Advances in neural information processing
systems, vol. 29, pp. 3675–3683, 2016.

[25] P. Bacon, J. Harb, and D. Precup, “The option-critic architecture,”
in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA,
S. P. Singh and S. Markovitch, Eds. AAAI Press, 2017, pp.
1726–1734. [Online]. Available: http://aaai.org/ocs/index.php/AAAI/
AAAI17/paper/view/14858

[26] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient hierarchical
reinforcement learning,” in Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., 2018, pp. 3307–3317.

[27] ——, “Near-optimal representation learning for hierarchical
reinforcement learning,” in 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=H1emus0qF7

[28] A. Bagaria and G. Konidaris, “Option discovery using deep skill chain-
ing,” in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=B1gqipNYwH

[29] N. Heess, G. Wayne, Y. Tassa, T. P. Lillicrap, M. A. Riedmiller,
and D. Silver, “Learning and transfer of modulated locomotor
controllers,” CoRR, vol. abs/1610.05182, 2016. [Online]. Available:
http://arxiv.org/abs/1610.05182

[30] Y. Zhang, P. Abbeel, and L. Pinto, “Automatic curriculum learning
through value disagreement,” Advances in Neural Information Pro-
cessing Systems, vol. 33, 2020.

[31] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fer-
gus, “Intrinsic motivation and automatic curricula via asymmetric self-
play,” in International Conference on Learning Representations, 2018.

[32] S. Singh, A. G. Barto, and N. Chentanez, “Intrinsically motivated re-
inforcement learning,” MASSACHUSETTS UNIV AMHERST DEPT
OF COMPUTER SCIENCE, Tech. Rep., 2005.

[33] Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov, “Exploration
by random network distillation,” in 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=H1lJJnR5Ym

[34] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A.
Efros, “Large-scale study of curiosity-driven learning,” in ICLR, 2019.

[35] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First
return, then explore,” Nature, vol. 590, no. 7847, pp. 580–586, 2021.

[36] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering atari, go, chess and shogi by planning with a learned
model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[37] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proceedings of the 34th

International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, ser. Proceedings of Machine
Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70. PMLR,
2017, pp. 2778–2787.

[38] N. Hansen, R. Jangir, Y. Sun, G. Alenyà, P. Abbeel, A. A. Efros,
L. Pinto, and X. Wang, “Self-supervised policy adaptation during
deployment,” in 9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021.

[39] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2020.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, Decem-
ber 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, Eds., 2017, pp. 5998–6008.

[41] K. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic policy
gradient,” CoRR, vol. abs/2009.04416, 2020.

[42] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.

[43] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marı́n-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, 2014.

[44] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

