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Abstract—What are the features of mobile phone graph along
the time? How to model these features? What are the interpreta-
tion for the evolutional graph generation process? To answer the
above challenging problems, we analyze a massive who-call-whom
networks as long as a year, gathered from records of two large
mobile phone communication networks both with 2 million users
and 2 billion of calls. We examine the calling behavior distribution
at multiple time scales (e.g., day, week, month and quarter),
and find that the distribution is not only skewed with a heavy
tail, but also changing at different time scales. How to model
the changing behavior, and whether there exists a distribution
fitting the multi-scale data well? In this paper, first, we define
a o-stable distribution and a Multi-scale Distribution Fitting
(MsDF) problem. Second, to analyze our observed distributions
at different time scales, we propose a framework, ScalePower,
which not only fits the multi-scale data distribution very well, but
also works as a convolutional distribution mixture to explain the
generation mechanism of the multi-scale distribution changing
behavior. Third, ScalePower can conduct a fitting approximation
from a small time scale data to a large time scale. Furthermore,
we illustrate the interesting and appealing findings from our
ScalePower model and large scale real life data sets.

Categories and Subject Descriptors: H.2.8 Database appli-
cations: Data mining 1.2.6 Artificial Intelligence: Learning -
parameter learning

General Terms: Algorithms; Experimentation.

Keywords: Distribution; Generative Process; Lognormal;
Convolution; Mobile Phone Graph.

I. INTRODUCTION

Mobile phone graph is attracting more and more attentions
recently, and the feature study is a hot issue now [1], [3],
[4], [8], [10], [14], [16]. One of the feature study is trying to
figure out the patterns hidden in the graph. For example, the
degree distribution of the nodes in the graph fits a heavy-tailed
distribution. Moreover, heavy-tailed distribution is ubiquitous
in an extremely wide range of phenomena, such as the heights
of human beings, the degree of nodes in the Internet or the
number of citations received by papers, which indicates that
things always have a typical size or scale [6], [11], [18], [22],
[23]. In our work, we study a large scale and appealing who-
call-whom networks, mobile phone communication data, at
multiple time scales to find the hidden surprising patterns
which are not discovered and studied in current heavy-tailed
distribution related work.

Given a very large amount of mobile phone communication
records, what is the best way to summarize the multi-scale
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Fig. 1. Data features at multiple scales

(day, week, month and quarter) calling behavior of the data?
Is the calling behavior in a day the same as the calling behavior
in a week or a month? In the former study, a Lognormal
distribution is proposed to fit the call duration in [13], a Double
Pareto LogNormal distribution (DPLN) is proposed to fit the
mobile phone call data in [25], while in [9] a Truncated Lazy
Contractor (TLAC) model is designed to model the mobile
phone call data. The above methods or findings may suit on
a given certain time scale data set, but the problem is that
how about the data features at multiple scales? We show the
real data features by real call data at multiple scales in Figure
1. Note that the data distributions are different among day,
week and month data. As the sequence problem, how about
the data fitting at multiple scales? We illustrate this problem
in Figure 2 where we fit day and bimonth data by Lognormal,
Generalized Pareto (GP) and Loglogistic distributions. The
observation is that GP fits day data well, while fits bimonth
data bad; Loglogistic fits day data bad, while fits bimonth data
well; promisingly, Lognormal fits both day data and bimonth
data very well.

After examining large scale mobile phone communication
records from two large cities in different countries, both with
million order of magnitude mobile phones, billion order of
magnitude call records, as long as one year, we more specifi-
cally analyze the number of calls, and have a surprising find-
ing: the data distribution changes at different time scales. To
investigate and interpret this finding, we first define a J-stable
distribution to describe an approximative stable distribution
for multi-scale data fitting; second, we propose ScalePower, a
framework which retrieves a distribution satisfying a d-stable
distribution, and then describes the distribution at multiple
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scales. Moreover, ScalePower models and approximates the
calling behavior by a novel convolutional generation. This
convolutional distribution mixture describes the mobile phone
uses as new-comer, leaver and consistent users at multiple
scales. Last, we utilize two large mobile phone communication
networks with millions of users and billions of calls to valid
our model.

The contributions of this paper are below. First, we discover
surprising patterns of mobile phone calling behavior at mul-
tiple scale. Second, we propose a d-stable distribution as a
family of distributions to best-fit multi-scale data. Third, we
devise a framework, ScalePower, for best-fitting the mobile
phone calling behavior at all observed scales. Fourth, we give
the interpretation of the underlying calling behavior generation
process.

The rest of the paper is organized as follows. In Section
II, we provide a brief survey of other work that analyzed
mobile phone records and probability distributions. In Section
III, the preliminary information of our work is introduced.
In Section IV, we formally define the problem. In Section
V, we describe our proposed ScalePower framework and the
hidden generation mechanism. We discuss our framework’s
goodness-of-fit at multiple scales and promising applications
for our results in Section VI. In Section VII, we show the
conclusions and future research directions.

II. RELATED WORK

Our work is related to three categories of current works.
One is the mobile phone data fitting, one is the heavy-tailed
distribution study, and the third one is the social graph mining.
We briefly survey the related work as follows.

Mobile phone data fitting: Mobile phone data set is attract-
ing more and more attentions recently. There are a number of
current works giving insightful study of the mobile phone data
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set. Vaz de Melo et al. [9] investigated the surprising patterns
for the call duration distribution of mobile phone users, and
proposed a Trncated Lazy Contractor (TLAC) distribution to
fit the call duration distribution, which is a truncated version
of log-logistic distribution. Seshadri et al. [25] observed some
distributions (of number of calls, distinct call partners, nd
total talk time), and proposed a Double Pareto LogNormal
distribution to fit the data. In [13], the authors proposed a
log-normal distribution to fit the call duration. In [26], the
authors found that the call duration neither exponentially nor
log-normally distributed, and the distribution has a semi-heavy
tail, which asks for a more heavy-tailed distribution. In our
work, the major difference from theirs is that we study the
distribution in a multi-scale scenario, that is, we study the
distribution evolution at day, week, month and quarter time
scales. Hence we not only best-fit the data at multi-scale,
but also reveal the generation mechanism. Some unrevealed
interesting patterns are also discovered in our work.

Heavy-tailed distribution: In probability theory, a random
variable is said to be stable or have a stable distribution, if the
random variable has the property that a linear combination of
its two independent copies has the same distribution, up to
location and scale parameters. The stable distribution family
is sometimes referred to as the Lévy alpha-stable distribution
[21]. The normal distribution is one family of stable distri-
butions. Reed et al. [24], Clauset et al. [7], and Newman
[22] studied the heavy tail distribution, and proposed the
distribution function, approximation method and generation
mechanism. Fofack et al. [11] and Nolan [23] studied the tail
behavior, modes, modeling and accurate computation way of
stable distribution. In our work, first, we propose a J-stable
distribution which describes a distribution stable at multiple
scales. Second, the approximation of distribution for multi-
scale data fitting is studied. These interesting works are not



discussed in the current literature.

Social graph mining: In recent years, social graph mining
is a very hot topic. For example, Rodriguez et. al [12] tried to
infer networks of diffusion and influence. Leskovec et. al [17],
[19] studied graph over time by densification laws, shrinking
diameters and possible explanations, and provided a graph
generator based on a forest fire spreading process to study
the graph evolution. McGlohon et. al [20] studied patterns in
weighted graphs and proposed a generator. In our work, we
investigate the graph generated from mobile phone networks
at multiple scales, and propose the fitting method.

III. PRELIMINARIES

In this section, first, we describe the data sets we study;
second, we introduce the related distributions and tests.

A. Mobile phone data sets at multiple scales

In our work, we study two large scale mobile phone data
sets. Data set 1 is collected from a city in Asia. The size
of the city is around 8700 km?2. In this city, there are four
million mobile phones and more than ten million records per
day. The size of the raw data set that we collected from
1% January, 2008 to 31%% December, 2008, is around 0.7
Terabytes. Data set 2 is half-year collected from a private
mobile phone company of a large city, with more than three
million users and one billion phone call records, spanning 0.1
Terabytes.

The data sets are both generated from the Call Detail Record
(CDR) which is the information related to mobile phone
communication, such as caller ID, callee ID, call start time
and call duration. In the following study, to make our method
and findings clear, we illustrate our work by one attribute of
the mobile phone communication data, that is the number of
calls. The number of calls is defined as the total number of
calls per user in a given time interval. The number of calls
distribution is the the data distribution of all the users’ call in
a given time period (time scale). Time scale is defined as a time
period that we observe the accumulated data. For example, a
day means we observe the data by one day as the time unit.

In this paper, we emphasize that our interest is in aggre-
gating statistical analysis and therefore, we do not study any
particular individual’s calling behavior. In order to preserve
the user privacy and anonymity, data that could identify users,
e.g., the phone numbers, is not utilized in this study. We take
Data set 1 as our study data set, and Data set 2 is utilized
to confirm the same findings. Without specification, we utilize
Data set 1 by default.

B. Distribution fitting

1) Heavy-tailed distribution: In probability theory, a heavy-
tailed distribution has a much heavier tail (not exponentially
bounded) than an exponential distribution [21]. In the heavy-
tailed distribution family, there are left-tailed, right-tailed,
two heavy tailed distributions. A random variable X with a
distribution function F' is said to have a heavy right tail if, for
all A > 0,

lim e Pr[X > 2] = oo (1)
Tr—r00

The definitions of heavy-tailed for left-tailed or two tailed
distributions are similar.

In heavy-tailed distribution family, there are several one
tailed distributions, such as Lognormal (LN), Loglogistic (LG)
and Generalized Pareto (GP) distributions. Accordingly, there
are some mixture forms of above distributions, such as Double
Pareto Lognormal (DPLN) distribution and Pareto Lognormal
distribution [23]. For example, a Lognormal distribution is a
probability distribution of a random variable whose logarithm
is normally distributed. The parameters of a Lognormal distri-
bution are denoted w and o, which are the mean and standard
deviation, respectively. The probability density function (PDF)
of a Lognormal distribution is as follows.
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The cumulative distribution function (CDF) of a Lognormal
distribution is
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where erfc is the complementary error function, and ® is the
standard normal CDF.

To fit a given data set with a heavy-tailed distribution, a
PDF or a CDF are computed, and then we fit the empirical
CDF or PDF with the observed data distribution. In our work,
we fit the given data by LN, LG, GP and DPLN distributions.

2) Goodness-of-fit: For testing a hypothesis whether a
distribution function fits a given data, there are Kolmogorov-
Smirnov (KS) test, Berk-Jones test, score test and their in-
tegrated versions [5], [15]. Kolmogorov-Smirnov score quan-
tifies a distance between the empirical distribution function
(ECDF) of the sample and the cumulative distribution function
of the reference distribution, or between the empirical distri-
bution functions of the two samples, as a sequence, it can be
used to decide whether a sample comes from a population with
a specific distribution. Kolmogorov-Smirnov score is defined
as follows.

The empirical distribution function F,, for n independent
and identically distributed random variable X; is defined as

1
Fx(z;p,0) = 567'f0[* N E))

1
Fo(w) = =) Ix.<e €

where Iy, <, is an indicator function( if X; < z, it equals 1;
0, otherwise).

Kolmogorov-Smirnov score for a given cumulative distribu-
tion function F'(z) is

Sy = sup |Fn(z) — F(x)] (5)

where sup z is the supremum of the distance set.



As Kolmogorov-Smirnov test has a long tradition in statis-
tics, can be a goodness-of-fit test for any statistical distribution
and there are no other tests which clearly perform better, hence
in our work, we evaluate the goodness-of-fit by the KS test
[15]. We say a distribution fit the data good at multiple scales,
if this distribution fits the data good at each scale.

IV. PROBLEM: MsDF

In this section, we formally define the problem we try to
solve in our work, that is, Multi-scale Distribution Fitting
(MsDF) problem.

A. Definition

Recall the definition of Stable distribution, we introduce the
following definition of §-stable distribution.

Definition 1: (§-stable distribution) A family of distribution
D(0) is said to be J-stable, if two independent random
variables (X, Y)~D(0), there exist 8, such that Z = X +Y
can be approximated by a distribution D(6,), where

max|D(0,) — D(X +Y)| < § (6)

0, 0, and 0 are parameters.

The intuition of Definition 1 is that the PDF convolution
can be approximated by a distribution from the same distri-
bution family. For example, Lognormal distribution is a 4-
stable distribution. A sum of Lognormal distribution can be
approximated by a Lognormal distribution [2], [27], [28]. Let
a random variable X=InY, then

N
W=>Yi=e¥ +eX 44XV xe? (7)
i=1

where the random variable Z possesses a normal distribution.
In Figure 3, we utilize a simulation result to illustrate such
a characteristic of the Lognormal distribution. In the figure,
the black line is the actual Lognormal sum of two Lognormal
distributions, and the red line is a Lognormal distribution. The
observation is that the grey line can approximately fit the black
line. The multiple scale fitting can be intuitively modeled by a
convolution. For example, a week data is a sum of seven days
data. In our work, the score of goodness-of-fit is KS score. The
problem we try to resolve is formally defined in the following

subsection.

B. MsDF problem

In our work, we investigate the data at multiple scales, and
want to find a distribution can fit the data at all observed data
scale. The formal definition of this problem is below.

Multi-scale Distribution Fitting (MsDF) problem: Given
a data at multiple scales, how to find a distribution satisfying
d-stable distribution.

To solve MsDF problem, we have to solve two problems.
Problem 1: how to find a good distribution fitting at a given
scale. Problem 2: how to find a J-stable distribution fitting
the given data at multiple scales. In our work, specifically,
for the number of calls distribution fitting, we try to retrieve
a distribution satisfying J-stable distribution, that is, the KS
score is less than a given parameter § at multiple scales.
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TABLE I
GOODNESS-OF-FIT RESULTS (KS SCORE)

1 7 30 60 90
LN 0.1181 | 0.1273 | 0.1291 | 0.1465 | 0.1553
DPLN | 0.3063 | 0.2987 | 0.2570 | 0.2780 | 0.2830
LG 0.3685 | 0.2808 | 0.2169 | 0.2647 | 0.2154
GP 0.2251 | 0.1511 | 0.1483 | 0.1665 | 0.1755

V. PROPOSED FRAMEWORK: ScalePower

In this section, we introduce our proposed framework,
ScalePower. First, we conduct a goodness-of-fit at multiple
scales to find out a J-stable distribution, and second, we
propose a convolutional mixture distribution to approximate
the J-stable distribution.

A. Goodness-of-fit

In the goodness-of-fit, we conduct KS test on the distribu-
tion fittings at multiple scales, and find out the distribution
satisfying d-stable distribution. In our work, 4 is set as 0.16,
which is considered as a good fitting result test [15], [21]. The
test results of the goodness-of-fit are reported in Figure 4 and
Table I, and the independence study of the number of calls is
shown in Figure 5.

In Figure 4, we show the distribution fitting results at
multiple scales and the fitting is conducted on the PDF. In
the figure, the grey points are the observed data at multiple
scales, and the black line is the fitted result by a probability
distribution. There are four data scales in our test, that is,
day data, week data, month data and quarter data (i.e., three
months data). There are four distributions in our test, that
is, Lognormal distribution, GP distribution, Loglogistic dis-
tribution and DPLN distribution. At day scale test, Lognormal
distribution and GP distribution show a best-fit of the data. At
week scale test, Lognormal distribution is better than the other
three distributions, and GP distribution is similar to Loglodistic
distribution. The similar observation can be found at month
scale data and quarter scale data. In a conclusion, Lognormal
fitting is the best considering all the observed data scales. To
better investigate the goodness-of-fit of the four distributions
at multiple scale data, we conduct KS test, and the results are
reported in Table I.

In Table I, we report the goodness-of-fit results. In the table,
the first row are the number of days indicating the time scale
that we study, and the first column are the distributions we
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Fig. 4. Distribution fitting results at multiple scales

investigate. The goodness-of-fit results confirm that Lognormal
fits all the data at different scales. Hence we can conclude that
the number of calls can be fitted by a Lognormal distribution.

In Figure 5, the scatter plot of number of calls at multiple
scales are illustrated. X-axis and Y-axis are the data at the
same scale. In Figure 5 (a), we plot the day data against
another day data. In Figure 5 (b), we plot the month data
against another month data. The observation is that the data
are scattered in the figure, which means the calling behavior
is independent. Hence in the following sections, we assume
the calling is independent, and model a user’s number of calls
as an iid random variable.

B. Convolutional mixture

In practice, the mobile phone graph data can be incremen-
tally summed. For example, two day data equal to the sum
of two individual data. This intuition triggers us to design
a convolutional mixture model to describe the generation

mechanism of mobile phone graph evolution.

ScalePower not only fit the data at the single scale and
multiple scales, but also interpret the generation mechanism
of Lognormal-fitting-well at multiple scales. The basic idea
is approximating a convolution of two Lognormal random
variables by one Lognormal distribution.

Theorem 1: Given two random variables X and Y, we
assume X follows a Lognormal distribution, and Y follows
a Lognormal distribution, then the convolutional result of X
and Y, (X + Y), can be approximated by one Lognormal
distribution [2].

Theorem 1 actually can be extended into a number of
Lognormal distributions. In [27], [28], the techniques are
developed to approximate the sum of Lognormals.

Given two independent random variables X (e.g., the num-
ber of calls of a set of persons in the 1% month) and Y
(e.g., the number of calls of a set of persons in the 27¢
month), assume that X follows a Lognormal distribution, and
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Y follows a Lognormal distribution. X is the augmented Step 4 sample z;..n from the distribution as described in

X, and Y is the augmented Y. The physical meaning of

Eq. (10).

augmented variable here is that not only the number of calls Step 5 estimate the p., o, with LN(z; ., 0.).

of a set of persons in one month, but also plus the the the
number of calls of the persons who make calls in the other
month but not in this month.

X follows the following probability distribution,

~ 0 p
X = ’ 8
Ui, a7 ®
Equation 8 means X equals O with a probability as p, and
equals LN (p,,0,) with a probability as (1 — p).
Y follows the following probability distribution,

v ] 0 q
Y= { LN(MmUy)a (1 - Q) ©)

So Y equals O with a probability as ¢, and equals
LN (piy, o) with a probability as (1 — q).

Let Z=X+Y, and then ~Z=X +Y.~The convolutional proba-
bility distribution of (X+Y) is P(Z).

Theorem 2: P follows the following probability distribu-
tion,

0, Pq
— . LN(NIvo-Z)7 p
P(Z) B LN(,vaUy)v q
LN (pz,02) + LN (p1y, 0y), (l—p)(l—%)lo)

and can be approximated by a Lognormal distribution.

C. Parameter estimation and prediction

The above theorems tells what the bi-month distribution will
look like based on one month’s distribution. Our framework
provides a prediction model for the number of call at a larger
scale. Here is the basic flow of our prediction. We will use
monthly data as an example.

Step 1 estimate the uq, 07 with LN(x; 1, 01).

Step 2 estimate g, 09 with LN(y; 10, 00), where y is the num-
ber of call for those who made call on 1st month but
not second month.

Step 3 LN(us, 03) < fitting the convolution of LN(x; p1, 01)
by matching the moments of the Lognormal and the
convolution.

Using the above procedure we can effectively estimate the
distribution of bi-monthly number of call from one-month
data (similarly for daily, weekly and other scales). We will
show such our method generates good fits in the following
experiment section.

VI. EXPERIMENTAL RESULTS

In this section, we utilize our large scale data sets to
valid our proposed framework, ScalePower, and discuss the
potential applications of ScalePower.

A. ScalePower validation

In ScalePower validation, first, we valid ScalePower as a
convolutional mixture of Lognormal approximation; second,
we utilize ScalePower to approximate large scale data from
a fitted small scale data. Third, we study and interpret the
parameters in ScalePower. In Figure 6, we utilize real data to
illustrate the Lognormal sum approximation result. The grey
points are the real data, the black line is the Lognormal sum
result, and the red line one Lognormal which approximates
the Lognormal sum. The experiment result shows that the
approximated Lognormal fits the real data and Lognormal sum
very well. Hence, ScalePower can utilize a small scale data
fitting result (a Lognormal distribution) to approximate a large
scale data fitting. In Table II, we report the fitted Lognormal
parameters at multiple scales. The first row are the number of
days (scale), and the first column are the two parameters of
Lognormal. The result shows that as the time scale becomes
larger, 1 and o are becoming much larger, which means that
the mean and variance of the data are becoming larger. In
practice, as the observed calling behavior data scale becoming
longer, the mean of the number of calls become larger and the
variance also become larger. Based on the parameters in Table
II, we can utilize ScalePower to approximate the larger time
scale data distribution. The experiment results are reported in
Table III.

In Table III, the approximated result is reported. In the table,
the first row are the prediction time scales, for example, two
days mean that we utilize a day data to predict two days data.
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TABLE I
LOGNORMAL FITTING PARAMETERS

1 7 30 60 90
w | 1.0578 | 19144 | 2.1186 | 2.1256 | 2.1378
o | 09691 | 1.5549 | 1.8740 | 2.0155 | 2.1081

The first column are the estimated parameters (i and o.) and
predicted parameters (4, and o). The result shows that our
method results in a very promising prediction accuracy. At
multiple scales, our method all work well.

In Table IV, we report the parameters of ScalePower at
multiple scales. In the table, the first row are the time scales,
and the first column are the parameters of ScalePower (p, q
and 1—p—gq). p indicates the percentage of new-comers in the
networks, ¢ indicates the leavers’ percentage, and (1 —p — q)
indicates the percentage of consistent users in the networks. An
interesting observation is that the percentages of three types
of users in the networks are stable no matter how long the
observed time is, even though the individuals of a category
may be not the same.

In Figure 7, we report the month data fitting in Data set
2. In the figure, the grey points are the observed one month
data, the black line is the Lognormal distribution fitting result,
and the red line is the approximation result by a Lognormal
distribution based on our ScalePower method. The result
shows that Lognormal distribution fits the data very well, and
the approximation result is very promising, which is close to
the estimated Lognormal distribution from the real data. The
same results can be checked at multiple scales.

B. Potential applications of ScalePower

Thus far, we introduce our ScalePower, and valid it at
multi-scale data. The approximation and fitting results are very
promising. While several applications are possible, we focus
on three in particular. First, the outlier detection in the calling

TABLE III
APPROXIMATED LOGNORMAL PARAMETERS

Two days | Two weeks | Two months
e 1.3269 2.0132 2.1256
Oe 0.9753 1.6013 2.0155
L 1.3310 2.0014 2.1148
op 0.9513 1.5872 2.0027
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Fig. 7. Approximation and fitting in Data set 2

TABLE IV
ScalePower PARAMETERS AT MULTIPLE SCALES

Day Week Month

p 0.2154 | 0.2132 | 0.2206

q 0.2437 | 0.2441 | 0.2401
1—p—q | 05409 | 0.5427 | 0.5393

behavior. Second, the social ability study. Third, distribution
prediction.

1) Outlier detection: In Figure 4, for the Lognormal fitting
results, we can find out that there are two categories of outliers
identified by the fitting line. First, a category with extreme
limited number of calls in a time period. For example, in a
month, there are more than 25 % of the total users calling
once. An interesting finding is that this percentage is close to
the leaver’s percentage in our ScalePower model, which means
that these one time calling persons may leave our observed
networks soon. Second, a category with extreme high number
of calls in a time period. For example, in a month, there are
nearly 0.05 % of the total users calling ten thousand times.
When we survey and check the utilization of these numbers,
surprisingly, we find out that these numbers are a kind of
service agency, which has extreme high call volumes.

2) Social ability study: In Figure 8, we illustrate the scatter
plot of number of calls and talk time at multiple scales. In the
figure, X-axis is the number of calls, and Y-axis is the talk
time. Talk time is defined as the total call duration (second)
in a given time period. One observation is that the scatter plot
can be divided into two parts. The first one is a well scattered
part at the left-bottom of the figure. The second one is the
left-off of the figure, which centers on the diagonal of the
figure. The interpretation of such a pattern is as follows. The
first part means if a person gives a small number of calls,
this person’s talk time varies from short time to long time,
which means an unstable social ability. The persons in this
category may be random calling, traveler or service agency in
the networks. The second part means that if a person gives a
larger number of calls, this person’s talk time becomes larger,
respectively, which means a stable social ability. Interestingly,
the percentage of the persons in this category is close to the
consistent users’ percentage in our ScalePower model. These
persons not only have stable social ability, but also consistent
in the networks.
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3) Distribution prediction: As discussed in Figure 6, Table
IIl and Figure 7, our ScalePower model can approximate
a large scale data from a small scale data. For example,
ScalePower can approximate a data set with two days scale
from a data set with one day scale, which means ScalePower
can conduct a prediction on the distribution at multiple scales.
This is a promising application of ScalePower, which needs
more study and investigation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we explored user calling behaviors in the large
mobile phone communication data, specifically we analyzed
millions of users and billions of phone call records at multiple
scales (data, week and month data). The main contributions
of this paper are:

o Discovery of surprising patterns of number of calls at
multiple time scales.

o Identification of a ¢§-stable distribution to fit multi-scale
data.

e Proposal of ScalePower model to conduct fitting and
approximation at multiple time scales.

o Study of generation mechanism to explain the surprising
patterns and fitting results.

Future work could focus on how to utilize our model
to other data distributions of mobile phone networks, e.g.,
call duration and number of friends. A second promising
direction is to spur further studies involving other data sets
and underlying generative processes at multiple scales.
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