
Hibernating Process: Modeling Mobile Calls at Multiple Scales

Siyuan Liu∗, Lei Li†, Ramayya Krishnan∗
∗Carnegie Mellon University, †University of California, Berkeley

{siyuan, leili, rk2x}@cmu.edu

Abstract—Do mobile phone calls at larger granularities
behave in the same pattern as in smaller ones? How can we
forecast the distribution of a whole month’s phone calls with
only one day’s observation? There are many models developed
to interpret large scale social graphs. However, all of the exist-
ing models focus on graph at one time scale. Many dynamical
behaviors were either ignored, or handled at one scale. In
particular new users might join or current users quit social
networks at any time. In this paper, we propose Hibernating
Process (HiP), a novel model to capture longitudinal behaviors
in modeling degree distribution of evolving social graphs. We
analyze a large scale phone call dataset using HiP, and compare
with several previous models in literature. Our model is able to
fit phone call distribution at multiple scales with 30% to 75%
improvement over the best existing method on each scale.

Keywords-Mobile phone call graph, churning behavior, heavy
tailed distribution, non-parametric model.

I. INTRODUCTION

Large scale social graphs emerge in many online and
offline communication networks. As one specific social
graph, mobile phone call networks receive more and more
attentions recently [1], [2], [3], [4], [5], [6]. It is one of
the key challenge to detect the latent structure and patterns
hidden in the graph. One aspect is to examine the degree
distribution of the nodes in the graph, which is previously
discovered to follow a heavy-tailed distribution [7], [8]. To
large extend, many patterns have been discovered about
large social networks [9], [10], [11], [12]. For example,
the degree of nodes often exhibits a certain heavy-tailed
distribution (i.e. richer-get-richer). Various models have been
proposed to model the behavior and in particular the degree
distributions in a social network, such as generalized Pareto
[12], [10], DPLN [13], [14], Lognormal [3], and Loglogistic
[15], [4]. However, often those models focus on behaviors
at one scale (e.g. the friends within a month), and assume
the same pattern exist in all scale. However, we observe
that often at different scales the macro behavior might be
visually different. For example, the number of connections
one made during a day might distribute differently from that
of one month (this observation is reported in Figure 1(a)).

Therefore, can we predict a network’s behaviors (e.g. the
number of calls in a month) with or without observing one
day’s behavior? One naı̈ve solution is “multiplying” by the
scale factor. To illustrate the challenge here, we show that
simply multiplying does not work in real data. Figure 1(a)
shows distributions of the number of calls in one day and
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(a) Mismatch of simple prediction by multiplying.
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(b) HiP prediction for a month.

Figure 1. (a): Distribution of the number of calls for one day (in blue), one
month (in black), and the predicted 30 days from one day’s data (in green)
by the simple multiplication rule. Note that simply multiplying one day
data does NOT produce prediction for one month data. (b): The predicted
distribution of the number of calls by HiP (in red) matches the real data
of one month (in black). N = 396486732, α = 1300000, β = 0.01
and γ = 0.993644. HIP generates number of phone calls completely from
scratch (day zero) using the given parameters.

one month. A simple rule of thumb to predict a month from
single day is to simply multiply the number of phone calls
in a month is just that of one day by 30 (Eq.(1)).

log pmonth(x) = log pday(e
log x−log 30)− log 30 (1)

where x is number of calls, pday is the probability density
function (PDF) of one day’s phone calls, and pmonth is PDF



of one month’s. Visually it is equivalent to the moving of
day’s PDF curve (the blue line in Figure 1(a)) to rightward
and downward by certain amount. However, such simple
prediction does not produce a distribution close to reality
as shown in Figure 1(a). Note that in Figure 1(a) the
simulated 30 days’ PDF has a big difference from the
real 30 days’ PDF, not only the shape of the curve, but
also the placement. Previous studies show that at certain
specific scale several models fit well, such as generalized
Pareto [12], [10], Lognormal [3], Loglogistic [15], [4] and
DPLN distribution [13], [14]. To date, there is no study
applying these successful models on multiple scales. It is
therefore previously unclear whether they would work or not
at different scales. Our study however gives negative result
(see experiment section for more details). As a comparison,
without going to details, our proposed method HiP does
surprisingly well in predicting phone call distribution with
the input of the total number of calls in the month. Note HiP
generates the number of calls for 30 days completely from
scratch (day zero) using only three additional parameters
(Figure 1(b))!

In our work, we aim to understand the process from
quantitative change to qualitative change in social graphs
(in particular mobile phone call graph) and then propose a
model to capture desirable behaviors at different scales. Our
proposed method is inspired by an interesting observation,
called churning behavior, which is less noticed and studied
in the previous social network models. After examining three
large scale mobile social graphs from three different coun-
tries, with millions of mobile phones, billions of call records,
as long as one year’s duration, we obtain a surprising finding:
the nodes in the mobile call graphs not only accumulate
edges along the time, but also drop or retire from the graphs,
which we define as “churning”. The “churning behavior”
may be caused by the quitting of users, burner users (prepaid
short time users), inactive users or tourists in the city, etc.
Given the limited time period of mobile social graph, it is
very hard for us to retrieve who is really churning and going
to churn. Apparently, mobile operators are very interested in
the churning behavior, since they simply want to retain as
more phones in their network and expect them to call as
many as possible for more profit.

The contributions of this paper are below. First, we dis-
cover surprising patterns of churning nodes in social graphs.
Second, we devise a novel model, Hibernating Process
(HiP), for describing the dynamic evolving behavior in large
scale graphs, and give the interpretation of the underlying
generation process. As shown in Figure 1(b), the prediction
by our model for one month is reported. There are only four
numerical inputs to HiP, while it does surprisingly well and
is able to generate about 400 million calls that matches real
data. At last but not the least, we evaluate HiP on a large
scale phone call dataset. HiP produce distributions of phone
calls very close to real data in every cases and on multiple

scales. Our method can achieve 75% improvement than the
previous models.

II. RELATED WORK

Social graph mining: Rodriguez et. al [16] tried to infer
networks of diffusion and influence. Leskovec et. al [17],
[11], [18], [19], [20] studied graph over time by densification
laws, shrinking diameters and possible explanations, and
provided a graph generator based on a forest fire spreading
process to study the graph evolution. McGlohon et. al
[21] studied patterns in weighted graphs and proposed a
generator. There are a category of recent studies on social
networks evolution and growth [22], [23], [24], [25], [26],
[27], [28]. Vaz de Melo et al. [4] investigated the patterns
for the call duration distribution of mobile phone users, and
proposed a Truncated Lazy Contractor distribution to fit the
call duration distribution, which is a truncated version of
log-logistic distribution. Seshadri et al. [13] observed some
distributions (of number of calls, distinct call partners, nd
total talk time), and proposed a Double Pareto LogNormal
distribution to fit the data. In [5], the authors proposed a
log-normal distribution to fit the call duration. In [29], the
authors found that the call duration neither exponentially nor
log-normally distributed, and the distribution has a semi-
heavy tail, which asks for a more heavy-tailed distribution.
In our work, we investigate the graph generated from mobile
phone networks at multiple scales, and propose the non-
parametric fitting and prediction method.

Parametric models for social network: The stable dis-
tribution family is sometimes referred to as the Lévy alpha-
stable distribution [30]. The normal distribution is one family
of stable distributions [31]. Reed et al. [14], Clauset et al.
[8], and Newman [12] studied the heavy tail distribution, and
proposed the distribution function, approximation method
and generation mechanism. Fofack et al. [9] and Nolan [10]
studied the tail behavior, modes, modeling and accurate
computation way of stable distribution. In our work, we
propose a non-parametric model to fit and predict in different
time scale data, which cannot be accomplished by the above
parametric models.

Non-parametric models for social network: Non-
parametric model is a distribution-free method (e.g., Chinese
Restaurant Process, India Buffet Process and Yule–Simon
distribution), which does not rely on assumptions that the
data are drawn from a given probability distribution. Blei
et al. [32] presented the nested Chinese restaurant process
and showed that this stochastic process can be used as a
prior distribution in a Bayesian nonparametric model of
document collections. Chen et al. [33] proposed a nonpara-
metric Bayesian contextual focused topic model. All these
methods model the birth process and accumulation of degree
or weights, and produce richer-get-richer phenomenon. Our
proposed model falls into this category, while we explicitly
model the “churning” behaviors in communication network.



III. MOBILE PHONE CALL DATASETS

In our work, our study is based on a large scale mobile
phone data set which is collected from a large city in country
1. The size of the city is around 8700 km2. In this city,
there are 2.5 million mobile phones and 15 million records
per day. The size of the raw data set that we collected from
1st January, 2008 to 31st December, 2008, is around 0.7
Terabytes.

The data set is generated from the Call Detail Record
(CDR) which is the information related to mobile phone
communication, such as caller ID, callee ID, call start time
and call duration. In the following study, to make our method
and findings clear, we illustrate our work by one attribute of
the mobile phone communication data, that is the number
of calls. The number of calls is defined as the total number
of calls per user in a given time interval. Based on a set of
call records, we can construct a mobile phone call graph:
each node is a mobile phone number and each edge is a
phone call. The number of calls distribution is the the data
distribution of all the users’ call in a given time period (time
scale). Time scale is defined as a time period that we observe
the accumulated data. For example, a day means we observe
the data by one day as the time unit. Our method is obviously
not limited to the distribution of the number of calls, and
can be easily adapted to other attributes.

In this paper, we emphasize that our interest is in aggre-
gating statistical analysis and therefore, we do not study any
particular individual’s calling behavior. In order to preserve
the user privacy and anonymity, data that could identify
users, e.g., the phone numbers, is not utilized in this study.

IV. PROPOSED MODEL: HIP
In this section we propose a model for interpreting the

increase and flattening of the number of phone calls. We
describe how the number of phone calls for each user
accumulate over time. Our goal is to develop a model that
can generate phone calls that match the observed behaviors
in real mobile phone call data. We also provide a fast gener-
ation algorithm and the parameter estimation for Hibernating
Process (HiP).

Our proposed Hibernating Process (HiP) maintains a set
of phones, which can be further divided into two subsets:
active set (AS), and hibernated set (HS). The phones in AS
can start a call, while those in the hibernation set will keep
all the past calls but never start additional ones. HiP models
three processes: the growing process of the size of AS, the
accumulation process of calls from phones in AS, and the
transition process of phones from AS to HS. Once a phone
reaches HS, it will not change its state. More formally, HiP
describes the following calling procedure:

1) Initially all phones make zero phone call, and both AS
and HS are empty;

2) Randomly pick up a phone number, make a phone call
and put this phone number to AS;

Algorithm 1: HiP
Input: N , α, β, γ
Output: A list F of pairs, 〈ci, fi〉 representing fi

phones making ci calls
1 H ← ∅; A← {1→ 1};
2 d← 1; W ← {1← 1}; C ← 1;
3 for n← 2 to N do
4 generate random value r ∼Uniform(0, 1);
5 if r < α+β·d

n+α then
6 increment A[1], W [1] and d by 1;
7 else
8 generate random value s ∼Uniform(0, C);
9 foreach 〈c, f〉 ∈ A ∧ s > 0 do

10 s← s−W [c];
11 if s < 0 then
12 increment A[c+ 1] by 1;
13 decrement A[c] by 1;
14 increment W [c+ 1] by c+ 1;
15 decrement W [c] by c;

16 C ← C + 1;
17 generate random value r ∼Uniform(0, 1);
18 if r > γ then
19 generate random value s ∼Uniform(0, d);
20 foreach 〈c, f〉 ∈ A ∧ s > 0 do
21 s← s− f ;
22 if s < 0 then
23 decrement A[c] and d by 1;
24 decrement C and W [c] by c;
25 increment H[c] by 1;

26 foreach c ∈ Keys of A ∪H do F [c]← A[c] +H[c];

3) From then on, n-th time tick:
• with probability α+β·number distinct phone

n+α , there
will be a new phone joining AS and making one
call;

• otherwise, with probability proportional to the
number of calls for each phone already in AS,
one phone will make one call;

4) Every time after making the i-th call, with probability
1 − γ, one random phone from AS will hibernate
and move to HS (hence its number of calls will never
increase);

From the above process, we can obtain the following
results.

Lemma 1: At time tick n, the probability of retaining all
phone is AS is γ.

Lemma 2: At time tick n, suppose the size of AS is dn,
the probability of phone i ∈AS hibernates is 1−γ

dn
.

Lemma 3: If β = 0 and γ = 1, the expected number of



distinct phones for N calls from HiP is
∑N
i=1

α
α+i−1 .

How do we generate phone calls using the process (Hi-
bernating Process) describe above? A naı̈ve approach would
be simulating the process one by one and keep the number
of calls for each phone. However, it is extremely slow when
we have a huge number of phone calls. The total number
of calls from or to a mobile network in a month can reach
400 million in a normal month, and 1.17 billion in a quarter.
The number of distinct phones in a month can also reach 8
million. With such big numbers it is inefficient to simulate
using the straightforward approach. Hence, we provide a fast
generation algorithm as below.

The full algorithm is described in Algorithm 1. It accepts
four inputs: the total number of calls N and three model
parameters α, β, and γ.

There are a few algorithmic techniques to achieve high
performance, namely

• Using two hash tables A (for active set) and H (for
hibernated set) to record the number of phones who
made c calls, denoted as fn,c;

• Maintaining partially computed probability and accu-
mulative probabilities using binary indexed trees (or
Fenwick tree [34]) and updating incrementally in Step
9 and 20 of Alg.1. Note that updating the accumulative
sums of weights in W using binary indexed trees cost
O(log |W |) ;

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Setup

We observe mobile phone data at four different time
scales: day data, one week data, one month data, and three
months data and find out a clear pattern which is very
different from the pattern we showed in Figure 1(a), that
is, the longer time period data cannot be generated from the
shorter time period data by the intuitive method in Eq. 1.
But our non-parametric model, Hibernating Process, is able
to not only fit different time scales data, but also have the
power to conduct prediction from the shorter time period
data (e.g., day data) to the longer time period data (e.g., one
month data or longer).

We select 1st day, 1st week, and the whole month, as the
representative of day, week, and month respectively.

• Day: A full 24 hours data.
• Week: 1101 to 1107 is the first week of November.
• Month: By default, monthly data means 30 days data

in the following.

B. Goodness-of-fit

For testing a hypothesis whether a distribution function
fits a given data, there are Kolmogorov-Smirnov (KS) test,
Berk-Jones test, score test and their integrated versions
[35], [36]. Kolmogorov-Smirnov score quantifies a distance
between the empirical distribution function (ECDF) of the
sample and the cumulative distribution function of the

reference distribution, or between the empirical distribution
functions of the two samples, as a sequence. Intuitively, it
can be used to test whether a sample comes from the same
distribution (KS-score is 0 in the ideal case). KS score is
defined as follows.

Sx = sup
x
|Fn(x)− F (x)| (2)

where Fn(x) is ECDF of n samples.
In addition, we can visualize the fitting by plotting the

PDF against the real data. In our case, since the number
of calls has a long tail, we could plot them in log-log
scale. Another way to visualize is through odds ratio as a
measure of a fitting to real data. We will see both plots in
the experiment section. The better fitting, the closer of the
two curves.

C. Churning Behaviors Analysis

Newcomer and Churner: We examine the number of
people join and leave the network to exam whether there
exists a pattern of retiring in the mobile phone social
network. We count the number of comer and churner based
on following definitions:

• Newcomer: the customer ID which does not appear
from day i-30 to day i-1, but appears in day i (say,
appears in day i but not in any of the 30 days before
day i)

• Churner: the customer ID which appears in day i but
not in day i+1 to day i+30 (say, appears in day 1 but
not in any of the 30 days after day i)

We notice from our data set that there is a relative constant
daily in-and-out in the social network. For the time period
we exam, the number of newcomers is slightly larger than
the churner. But for other time period, the situation could
be different. At the same time, even for a given time period,
there is slight chance that the number of newcomers is
the same as the number of churners. Thus, the churners’
impact or change to the data is hard to be eliminated
by the newcomers. Therefore, we design HiP model, with
parameters α and β for new phones joining the network,
and a parameter γ representing the effect of mobile phone
customers leaving the network.

D. Comparison Study

We compare our model, HiP, with a set of parametric
models, Lognormal, GP, DPLN and Loglogistic, by real
mobile phone call data.

1) Hibernating Process: We evaluate HiP on day, week
and month data as shown in Figure 2. Apparently our HiP
model fits the real data distribution very well: not only for
one day data and one week data, but also for one month
data.

In Figure 3, we report the odds ratio curve of HiP for the
day data, week data and month data. Odds ratio is defined
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(a) Number of calls for a day
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(b) Number of calls for a week
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Figure 2. HiP prediction of number of calls daily, weekly and monthly. HiP (in red) matches real data (in black) at all time scales. Notice that HiP
estimates its parameter from only two values: the total count of calls and distinct phones.
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(a) Daily data
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Figure 3. Odds ratio curve of HiP prediction (in blue) for one day, one week and one month data. HiP almost overlap with the real in every case.

as ratio(x) = CDF (x)
1−CDF (x) . The results conclude that HiP is

a good fit for different time-scales.
In Table I, we report the KS score of HiP to fit day

data, week data and month data. Our method can achieve
75% improvement than the previous models. The analysis
of the fitting results is provided in the following subsection,
compared with a set of parametric models, Lognormal, GP,
DPLN and Loglogistic (our model HiP can fit the real data
much better than Lognormal, GP, DPLN and Loglogistic).

2) Parametric models: To investigate the goodness-of-fit
of four distributions at multiple scale data, we conduct KS
test, and the results are reported in Table I. Our method can
achieve 75% improvement than the previous models. For
the day data, we run 60 days’ simulation, and take a mean
of each KS score. For the week data, we run 30 weeks’
simulation, and take a mean of each KS score. For the month
data, we run 12 months’ simulation, and then take a mean
of each KS score. The KS score confirms that HiP is much
better than the other four models in fitting to the actual data,
which means HiP can model the real generation process of
the actual mobile social graph at different time scales.

VI. CONCLUSIONS

In this paper, we revealed a very interesting phenomenon
hidden in mobile social networks, that is, churning be-
haviors. Newcomers and churners in together maintain the

Table I
GOODNESS-OF-FIT (KS SCORE, LOWER IS BETTER)

Method Day Week Month
Lognormal 0.1881 0.1298 0.1347

DPLN 0.3272 0.1298 0.2544
Loglogistic 0.1762 0.1238 0.1442

GP 0.2232 0.1398 0.1467
HiP 0.0432 0.0817 0.0940

HiP improvement 75.5% 34.0% 30.2%

dynamics in a mobile social graph. Based on such obser-
vations, we proposed Hibernating Process (HiP), a novel
non-parametric model for the accumulating process of phone
calls. HiP was able to predict the number of phone calls in
mobile network at multiple scale (daily, weekly, monthly).
We applied HiP on three different mobile social network
data and those at three scales, with constantly high quality
matches, visually and quantitatively. Our HiP improves
prediction by 30% to 75% over the best existing method
on each single scale.

Our findings and model may well extend to other social
networks with such transient behaviors, which is a promising
direction for future research.
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