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Abstract

Neural models for text generation require a softmax layer with proper word em-
beddings during the decoding phase. Most existing approaches adopt single point
embedding for each word. However, a word may have multiple senses according
to different context, some of which might be distinct. In this paper, we propose
KerBS, a novel approach for learning better embeddings for text generation. KerBS
embodies two advantages: a) it employs a Bayesian composition of embeddings
for words with multiple senses; b) it is adaptive to semantic variances of words and
robust to rare sentence context by imposing learned kernels to capture the closeness
of words (senses) in the embedding space. Empirical studies show that KerBS
significantly boosts the performance of several text generation tasks.

1 Introduction

Text generation has been significantly improved with deep learning approaches in tasks such as
language modeling [Bengio et al., [2003} Mikolov et al.,[2010]], machine translation [Sutskever et al.,
2014, Bahdanau et al.,[2015| [Vaswani et al.,2017]], and dialog generation [Sordoni et al.| 2015]. All
these models include a softmax final layer to yield words. The softmax layer takes a context state (h)
from an upstream network such as RNN cells as the input, and transforms A into the word probability
with a linear projection (W - h) and an exponential activation. Each row of W can be viewed as the
embedding of a word. Essentially, softmax conducts embedding matching with inner-product scoring
between a calculated context vector h and word embeddings W in the vocabulary.

The above commonly adopted setting for softmax imposes a strong hypothesis on the embedding
space — it assumes that each word corresponds to a single vector and the context vector i from the
decoding network must be indiscriminately close to the desired word embedding vector in certain
distance metric. We discover that such an assumption does not coincide with practical cases. Fig.[T]
visualizes examples of the context vectors for utterances containing the examined words, calculated
from the BERT model Devlin et al.|[2019]]. We make three interesting observations. a) Multi-sense:
Not every word’s context vectors form a single cluster. There are words with multiple clusters
(Fig.[Tb). b) Varying-variance: The variances of context vectors vary significantly across clusters.
Some words correspond to smaller variances while others to larger variances (Fig.[Ic). ¢) Robustness:
There are outliers in the context space (Fig.[Tb). These observations explain the ineffectiveness during
training with the traditional softmax. The traditional way brings word embedding W ill-centered
with all context vectors of the same word — even though they might belong to multiple clusters. At
the same time, the variances of different words are completely ignored in the plain softmax with
inner-product as the similarity score. It is also vulnerable to outliers since a single anomally would
lead the word embedding to be far from the main cluster. In short, the softmax layer doesn’t have
sufficient expressiveness capacity.

Yang et al.|[2018]] propose Mixture-of-Softmax (MoS) to enhance the expressiveness of softmax. It
replaces a single softmax layer with a weighted average of M softmax layers. However, all words
share the same fixed number of components M and averaging weights, which heavily restrict MoS’s
capacity. Furthermore, the variances of context vectors are not taken into the consideration.
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Figure 1: Context vectors h calculated from BERT and projected using PCA. Each point corresponds
to one utterance containing the word. (a) “computer” has only one cluster; (b) “monitor” has two
clusters, representing the verb (left) and the noun (right). The outlier at the lower right only appears
in phrase “christian science monitor”; (c) “car” has smaller variance than “vehicle”.

In this paper, we propose KerBS, a novel approach to learn text embedding for generation. KerBS
avoids the above softmax issues by introducing a Bayesian composition of multiple embeddings and
a learnable kernel to measure the similarities among embeddings. Instead of a single embedding,
KerBS explicitly represents a word with a weighted combination of multiple embeddings — each is
regarded as a “sense’ﬂ The number of embeddings is automatically learned from the corpus as well.
We design a family of kernel functions to replace the embedding matching (i.e. the matrix-vector
dot-product) in softmax layer. With parameters learned from text, each word (or “sense”) can enjoy
individual variance in its embedding space. In addition, the kernel family is more robust to outliers
than Gaussian kernels.

We conduct experiments on a variety of text generation tasks including machine translation, language
modeling, and dialog generation. The empirical results verify the effectiveness of KerBS. Ablation
study indicates that each part of KerBS, including the Bayesian composition and the kernel function,
is necessary for the performance improvement. We also find that words with more semantic meanings
are allocated with more sense embeddings, which adheres to our intuition.

2 Related work

Word Embeddings. Word2Vec [Mikolov et al [2013]] and GloVe [Pennington et al., [2014]] learn
distributed word representations from corpus in an unsupervised way. However, only one embedding
is assigned to each word, which not only suffers from ignoring polysemy but also could not provide
context related word embeddings. Recent works [Alec Radford and Sutskever, 2018|, |Peters et al.,
2018 [Devlin et al.| | 2019] indicates that pre-trained contextualized word representations are beneficial
for downstream natural language processing tasks. BERT [Devlin et al., 2019] pre-train a masked
language model with a deep bidirectional Transformer and it achieves state-of-the-art performance in
various NLP tasks.

Multi-Sense Word Embeddings. Early works obtain multi-sense word embeddings by first training
single point word embeddings and then clustering the context embeddings (for example, the average
embedding of neighbor words). But these methods are not scalable and take lots of efforts in parameter
tuning [Reisinger and Mooneyl, 2010} [Huang et al., 2012]. Tian et al.|[2014] introduce a probabilistic
model, which uses a variable to control sense selection of each word. |[Liu et al.| [2015] add a topic
variable for each word, and condition word embeddings on the topic variable. Both of Tian et al.
[2014] and |L1u et al.|[2015]] can be easily integrated into Skip-Gram model [Mikolov et al.| 2013]],
which is highly efficient. Other works [Chen et al., 2014, Jauhar et al,|2015} |Chen et al., 2015/ Wu
and Giles|, |2015]] further improve the performance of multi-sense embeddings by making use of huge
corpora such as WordNet [Miller| [1995] and Wikipedia. However, these works are mainly focused on
text understanding rather than text generation.

Word Embedding as a Distribution. In order to represent the semantic breadth of each word, |Vilnis
and McCallum| [2015] propose to map each word into a Gaussian distribution in the embedding

ISince there is no direct supervision, an embedding vector does not necessarily correspond to a semantic
sense.



space. Instead of using cosine similarity in [Mikolov et al|[2013]], [Vilnis and McCallum| [2015]]
use KL-divergence of the embedding distributions to measure the similarities between words. To
improve the numerical stability of Gaussian word embeddings, especially when comparing very close
or very distant distributions, |Sun et al.| [2018]] propose to replace KL-divergence with Wasserstein
distance. Though Gaussian word embeddings perform well in word-level tasks such as similarity and
entailment detection, they cannot be directly applied to the scenario of text generation, because it is
difficult to perform embedding matching between Gaussian word embeddings and output embeddings,
which are usually single points in the embedding space.

3 Background

Most text generation models generate words through an embedding matching procedure. Intuitively,
at each step, upstream networks such as RNN decoders compute a context vector h according to
the encoded information from input and previously generated words. The context vector h serves
as a query to search for the most similar match from a pre-calculated vocabulary embeddings 1.
In practice, this is implemented with an inner-product between W and h. Normalized probabilities
over all words are computed with the softmax function. Words with the highest probabilities will be
chosen during the inference process.

Specifically, given an utterance gy, a GRU decoder calculates as follows:

er = LOOKUP(Wip, 1), (1
ht = GRU(ht_l, Gt), (2)
P(y; = i) = SOFTMAX (hW);. (3)

At time step ¢, its word embedding e; is obtained by looking up the previous output word in the
word embedding matrix W;,, = [@1, W3, ..., Wy] (Eq. ). Here w; is the embedding of the i-th
word in the vocabulary. V is the vocabulary size. The context embedding h; of the ¢-th step will be
obtained from GRU by combining information of h;_1 and e; ( Eq. (2)). Other decoders such as
Transformer Vaswani et al.|[2017] work similary.

Eq. (3) performs embedding matching between h; and W, and probabilities of words will be obtained
by a softmax activation. Intuitively, to generate the correct word ¢, the context embedding h; should
lie in a small neighborhood around §;’s word embedding wyg, .

4 Proposed KerBS

In this section, we first introduce KerBS for text generation. It is designed according to the three
observations mentioned in the introduction: multi-sense, varying-variance, and robustness. Then
we provide a training scheme to dynamically allocate senses since it is difficult to directly learn the
number of senses of each word.

4.1 Model Structure

KerBS assumes that the space of context vectors for the same word consists of several geometrically
separate components. Each component represents a “sense”, with its own variance. To better model
their distribution, we replace Eq. (3) with the following equations:

Plys=i)= >, Plsi=(i,])). 4)
j€0,1,..., M;

Here, s; is the sense index of the step ¢. Its value takes (7, j) corresponding to the j-th sense of
the i-th word in vocabulary. M; is the number of senses for word i, which may be different for
different words. Instead of directly calculating the probabilities of words, KerBS first calculates the
probabilities of all senses belonging to a word and then sums them up to get the word probability.

&)
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The probability of output sense s; in Eq. (§) is not a strict Gaussian posterior, as the training of
Gaussian models in high dimensional space is numerical instable. Instead, we propose to use a
carefully designed kernel function, to model the distribution variance of each sense. Concretely, we
replace the inner product in Eq. (3) with kernel function K, which depends on a variance-related

parameter 6. [KCg(h¢, W)] is a simplified notation containing all pairs of kernal values KCy; (h, w?).

With different 6{ for each sense, we can model the variances of their distributions separately.

4.1.1 Bayesian Composition of Embeddings

In this part, we introduce in detail how KerBS models the multi-sense property of words. Intuitively,
we use Bayesian composition of embeddings in text generation, because the same word can have
totally different meanings. For words with more than one sense, their corresponding context vectors
can be usually divided into separate clusters (see Figure[I). If we use single-embedding models such
as traditional softmax to fit these clusters, the word embedding will converge to the mean of these
clusters and could be distant from all of them. This may lead to poor performance in text generation.

As shown in Eq. (), we can allocate different embeddings for each sense. We first obtain the sense
probabilities by performing weight matching between context vector i and sense embedding matrix
W. Then we add up the sense probabilities belonging to each word to get word probabilities.

We adopt weight tying scheme [Inan et al., 2017]], where the decoding embedding and the input
embedding are shared. Since W is a matrix of sense embeddings, it cannot be directly used in the
decoding network for next step as in Eq. (I). Instead, we obtain embedding e; by calculating the
weighted sum of sense embeddings according to their conditional probabilities. Assume that §; = ¢
is the input word at step ¢,

€ = Z P(st—1 = (4,5)|910:t-1)) w?, (6)
JEM,2,...,M;]
P(s;—1 = <i,j>|?[0:t72])
[1,2,...,M;] P(si—1 = (i, k>|@[0:t72])

P(si—1 = (4, 5)90:t—1)) = 5 @)
ke

4.1.2 Embedding Matching with Kernels

To calculate the probability of each sense, it is very straightforward to introduce Gaussian distributions
in the embedding space. However, it is difficult to learn a Gaussian distribution for embeddings
in high dimensional space for the following reasons. Context vectors are usually distributed in
low dimensional manifolds embedded in a high dimensional space. Using an iostropic Gaussian
distribution to model embedding vectors in low dimensional manifolds may lead to serious instability.
Assume in a d-dimensional space, the distribution of H; follows N(0,01) in a d;-dimensional
subspace. We build a model N (0, o) to fit the embedding points. But there are often some noisy
outliers, which are assumed to distribute uniformly in a cube with edge length 1 and centered at the
origin. Then the average square distance between an outlier and the origin is 1%, which increases
linearly with d. The log-likelihood to maximize can be written as:
B S 2 S, x2
L= log((Vamo) exp(- =25 00)) = 3 (~dlog(Vame) - TEZSE),(8)
reX zeX

where X is the set of data points including outliers. Denote the proportion of outliers in X as o.. Since

EQ 124 x?) equals d; for points generated by the oracle and 1% for outliers, £ is dominated

ad —a)do .
by outliers when d is large. The optimal o approximately equals to 4/ M. With large d,

optimal o ~ /{5, which is independent of real variance 1. As expected, we find that directly
modeling the Gaussian distributions does not work well in our preliminary experiments.

Therefore we design a kernel function to model embedding variances, which can be more easily
learned compared with Gaussian mixture model. Specifically, we replace the inner product Z(h, e) =
cos(h, e)|h||e|, which can be regarded as a fixed kernel around whole space, with a kernel function

Ko(h,e) = [n||e| (a exp(=6 cos(h, €)) — a). ©)
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Figure 2: Kernel shapes with different 6.

. . . . . —6
Here 6 is a parameter controlling the embedding variances of each sense and a = e (=0)F0=1))

is a normalization factor. When 6 — 0, Ky(h,e) — Z(h,e), which degenerates to com-
mon inner product. As shown in Figure 2] with a small 6, embeddings are concentrated on a
small region, while a large 6 leads to a flat kernel. Finally, parameters for the i-th word could

be:{[w}, 0}, [w?,67] - - - [w, M1}, where w! and 6/ are the embedding and kernel parameter of
sense (4, j). Intuitively, in the original space with inner product similarity, the density of probability
mass is uniformly distributed. But XC distorts the probabilistic space, making the variances of context

vectors differ over different senses.
Since
dlog Kg(h,e) 10a  cos(h,e)exp(—0cos(h,e))

a0 T add  exp(—0Ocos(h,e)) —1 (19)

the gradient of each h is bounded for fixed 6. It results from the continuity of COS(CZ’;();S s&las)o)sfq’e))

when cos(h, e) # 0 and the fact that Cosgg()gffs(@eecf)‘ﬁ}{’e)) — 5, when cos(h,e) — 0. As aresult,

a small proportion of outliers or noise points will not have a major impact on training stability.

4.2 Training Scheme

It is difficult to empirically determine the sense numbers of each word, which is a very large set
of hyper-parameters. Also, properties of the same word may vary among different corpora and
tasks. So we design a training scheme for KerBS, which includes dynamic sense allocation. Instead
of providing the sense number for each word, we only need to input the total sense number. The
algorithm will automatically allocate senses.

Details of the training scheme are shown in Algorithm 1. Specifically, to obtain parameters for both
KerBS and upstream network f,, which outputs the context vectors, the whole process consists of
allocation and adaptation phases. Before training, W and 6 are initialized by a random matrix and a
random vector respectively. We randomly allocate My, senses to words. After initialization, we first
turn to the adaptation phase. Given a sequence ¥ in training set, at step ¢, we get the context vector
h: from f,. Then sense and word probabilities are calculated by Eq. (E[) and Eq. (E]), respectively.
Afterwards, we calculate the log-probability £ of generating ¢;. And we maximize £ by tuning W, 6
and ¢:

L= Zlog(P(yt = t|910:0-1; W. 0, 9)). (11)
t

During the adaption phase, KerBS learns wf , the sense embedding vector, and Gf , the indicator of
distribution variance.

During the allocation phase, we remove redundant senses and reallocate them to poorly predicted
words. To determine senses to remove and words which need more senses, we record the moving
average of each word’s log prediction accuracy log PP and sense usage U':

log P; < (1 — B)log P; 4 log(P(y; = 7))Ly, (12)
Ul < (1 - B)U} + BP(s; = (i, j)) Lizy, (13)



where (3 is the updating rate. For a word 4, if after several epochs log P is consistently lower than a
threshold €, we think that the senses currently allocated to 7 is not enough. Then we delete the least
used sense and reallocate it to 7. We alternatively perform adaption and reallocation until convergence.

Algorithm 1: Training scheme for KerBS

Input :Training corpus 37, total sense num M sym , word num V, embedding dimension d,
adaption-allocation ratio @, threshold ¢;

Output : W, 0, sense allocation list L;

Initialize W, H, 0, U, L, step = 0;

while not converge do

Random select §j € Y;

for i; in T do

hi < fo(fo:t-11) 5

Calculate sense probability P(y; = (i, j)) and word probability P(y. = i) by Eq. @), @);

MAXIMIZE log(P(y: = §+)) by ADAM;

Update logP and U by Eq. (12), (T3);
end

if step mod @@ = 0 then
foriin{1,2,...,V} do
if logP; < € then
10, J6 argmini/’j,(Uij, );
679 « le — 8; U;® «+ MEAN(U);
0 0
L{{io, jo)] « 4
end
end

end
step = step + 1;

end

4.3 Theoretical Analysis

In this part, we explain why KerBS has the ability to learn the complex distributions of context
vectors. We only give a brief introduction to the following lemmas and leave more detailed proofs in
the appendix.

Lemma 4.1. KerBS has the ability to learn the multi-sense property. If the real distribution of context
vectors consists of several disconnected clusters, KerBS will learn to represent as many clusters as
possible.

Proof. Each cluster of word ¢’s context vectors attracts i’s KerBS sense embeddings, in order to
draw these embeddings nearer to increase £. However, if a cluster has already been represented by a
KerBS sense, its attractions to embeddings of other senses get weaker. So they will converge to other
clusters. Instead of gathering together in a few clusters, senses will try to represent as many clusters
of context vectors’ distribution as possible. [

Lemma 4.2. KerBS has the ability to learn variances of embedding distribution. For distributions
with larger variances, KerBS learns larger 6.

Proof. The optimized 6 is a solution of equation % = 0. We only need to explain that, when the
variance of h grows, the solution of the equation gets larger. O

S Experiment

In this section, we empirically validate the effectiveness of KerBS. We will first set up the experiments,
and then give the experimental results in Section 5.2}

We test KerBS on several text generation tasks, including:

e Machine Translation (MT) is conducted on IWSLT’ 16 De—En, which contains 196k pairs
of sentences for training.



e Language modeling (LM) is included to test the unconditional text generation performance.
Following previous work, we use a 300k, 10k and 30k subset of One-Billion-Word Corpus
for training, validating and testing, respectively.

e Dialog generation (Dialog) is also included. We employ the DailyDialog dataset from |Li
et al.| [2017]] for experiment, by deleting the overlapping of train and test sets in advance.

Note that these text generation tasks emphasize on different sides. MT is employed to test the ability
of semantic transforming across bilingual corpus. LM is included to test whether KerBS can generally
help generate more fluent sentences. Dialog generation even needs some prior knowledge to generate
good responses, which is the most challenging task.

For LM, we use Perplexity (PPL) to test the performance. For MT and Dialog, we measure the
generation quality with BLEU-4 and BLEU-1 scores [Papineni et al.| 2002]. Human evaluation is
also included for Dialog. During human evaluation, 3 volunteers are requested to label Dialog data
containing 50 sets of sentences. Each set contains the input sentences as well as output responses
generated by KerBS and baseline models. Volunteers are asked to score the responses according to
their fluency and relevance to the corresponding questions. (See detailed scoring in the appendix.)
After responses are labeled, we calculate the average score of each method. Then a t-test is performed
to reject the hypothesis that KerBS is not better than the baseline methods.

5.1 Implementation Details

For LM, we use GRU language model [[Chung et al.,[2014]| as our testbed. We try different sets of
parameters, including RNN layers, hidden sizes and embedding dimensions. The model that performs
best with traditional softmax is chosen as the baseline.

For MT and Dialog, we implement the attention-based sequence to sequence model (Seg2Seq,
[Bahdanau et al.,|2015]]) as well as Transformer [[Vaswani et al., |2017]] as our baselines. For Seq2Seq,
(hidden size, embedding dimension) are set to (512, 256) and (1024, 512), respectively. And For
Transformer, (hidden size, embedding dim, dropout, layer num, head num) is set to (288, 507, 0.1, 5,
2) for both MT and Dialog, following [Lee et al. [2018]]. All models are trained on sentences with
up to 80 words. We set the batch size to 128 and the beam size to 5 for decoding. For both German
and English, we first tokenize sentences into tokens by Moses tokenizer [Koehn et al.,[2007]]. Then
BPE [Sennrich et al.,[2016] is applied to segment each word into subwords.

Adam [Kingma and Ba, |2014]] is adopted as our optimization algorithm. We start to decay the learning
rate when the loss on validation set stops to decrease. For LM, we set the initial learning rate to 1.0,
and the decay rate to 0.8. For MT and Dialog, the initial learning rate is Se-4 and the decay rate is 0.5.

5.2 Results of Text Generation

We list the results of using KerBS in Table[I]and[2] Then we give some analysis.

Table 1: Performance of KerBS on Seq2Seq.

Tasks Metrics Seq2Seq Seq2Seq+ MoS [Yang et al.;[2018]] SeqSeq + KerBS
MT BLEU-4 2591 26.45 27.28

LM PPL 103.12 102.72 102.17
Dialog BLEU-1 16.56 13.73 17.85

Human Eval. 1.24 1.04 1.40
Table 2: Performance of KerBS on Transformer.

Tasks Metrics Transformer | Transformer + MoS [Yang et al[[2018]] | Transformer + KerBS
MT BLEU-4 29.61 28.54 30.90

Dialog BLEU-1 10.61 9.81 10.90

Machine Translation For machine translation, KerBS achieves higher BLEU-4 scores on
Seq2Seq(+1.37) and Transformer(+1.29). However, the performance gain of MoS is not signif-
icant, and it is not even as good as vanilla Transformer model. Cases of MT on Transformer are
shown in Table 3



Table 3: Examples of MT on IWSLT’ 16 De—En

Source meine gebildete Mutter aber wurde Lehrerin.
Transformer | my foster mother was a teacher.
+ MoS and my educated mother was a teacher.
+ KerBS | but my educated mother became a teacher.
Source man erreicht niemals eine Gemeinde mit Ideen, man setzt sich mit den Einheimischen zusammen.
Transformer | you never achieve a community with ideas; you put together with local people.
+ MoS you never get a community with ideas, you’re putting together with indigenous people.

+ KerBS | you never get to a community with ideas, and you sit with the local people.

Table 4: Examples of dialog generation on DailyDialog

Source what do you mean ?
Seq2Seq 1 mean, what s up with the and iron bars on your windows.

+ MoS well, how can 1 put this? france is a terrible team.

+ KerBS | well, i mean. we always do the same thing. there s no variety in our lives.
source now , what seems to be the trouble ?

Seq2Seq trouble is trouble.
+ MoS yeah. and he was.
+ KerBS | not bad. but i have a bad cold today.

source it can t be more than fourteen days late for us to accept it .
Seq2Seq it will just fine.
+ MoS well, i see. have you been back to work then?

+ KerBS | maybe you re right. i think we should take it.

Language Model As expected, KerBS achieves lower PPL (102.17) on LM compared with both
MoS (102.72) and traditional softmax (103.12). Although it introduces more parameters, KerBS does
not lead to overfitting. On the contrary, the increased complexity in KerBS helps the model to better
capture the information of the embedding space.

Dialogue Generation We also include results of dialog generation. Unlike tasks where source and
target sentences are highly aligned, dialog generation may need some prior knowledge for obtaining
good responses. Moreover, the multi-modality of the generated sentences is a serious problem in
Dialog. We expect that much expressive structure of KerBS could help. Since the performance of
Transformer is not comparable to Seq2Seq on Dialog generation, we will focus on Seq2Seq in this
part. KerBS achieves a BLEU-1 score of 17.85 on test set, which is remarkable compared with the
baselines. Human evaluations also confirm the effectiveness of using KerBS in dialog generation.
After performing a one-tailed hypothesis test, we find that the p-value is lower than 0.05, which means
that the obtained improvements on Dialog systems are nontrivial. We list some of the generated
responses of different models in Table 4]

5.3 Ablation Study

We perform ablation study of three variants of KerBS on the MT task. KerBS w/o kernel removes
the kernel function from KerBS, so that distribution variances are no longer explicitly controlled.
We find that it loses 0.49 BLEU scores compared with original KerBS, which indicates that to
explicitly express distribution variances of hidden states is important and KerBS works well in doing
so (Table[5). KerBS with single sense replaces the multi-sense model with single-sense one, which
also leads to performance decline. This further confirms our assumption that the distribution of

Table 5: Results of ablation study on MT (Seq2Seq).

Models BLEU-4

Seq2Seq + KerBS 27.28
w/o kernel 26.79
w/ only single sense 26.80
w/o dynamic allocation | 27.00




context vectors is multi-modal. In such cases, the output layer should also be multi-modal. In KerBS
w/o dynamic allocation, each word is allocated with a fixed number of senses. Though it still performs
better than single sense models, it is slightly worse than full KerBS model, which shows the necessity
of dynamic allocation.

5.4 Detailed Analysis

In this part, we verify that KerBS learns reasonable sense number M and variance parameter 6 by
examples. And we have the following conclusions.

Table 6: Randomly selected words with different numbers of senses M after training.

Sense 1 2 3 4
Redwood | particular open they
heal figure order work
word | structural during amazing | body
theoretical known sound power
rotate size base change

Firstly, KerBS can learn the multisense property. From Table[6] we find that words with a single
meaning, including some proper nouns, are allocated with only one sense. But for words with
more complex meanings, such as pronouns, more senses are necessary to represent them. (In our
experiment, we restrict each word’s sense number between 1 and 4, in order to keep the training
stable.) In addition, we find that words with 4 senses have several distinct meanings. For instance,
”change” means transformation as well as small currency.

Beijing China  earth
monkey cat animal
Jeep  Ford car
— —)
-05 -0.1 0 0.1 6

Figure 3: Words with different 6.

Secondly, 6 in KerBS is an indicator for words’ semantic scopes. In figure 3| we compare the 6 of 3
sets of nouns. For each set of them, we find words denoting bigger concepts (such as car, animal and
earth) have larger 6.

5.5 Time Complexity

Compared with baselines, the computation cost of incorporating KerBS into text generation mainly
lies with the larger vocabulary for embedding matching, which is only a portion of the whole
computation of text generation. Empirically, when we set the total sense number to about 3 times the
vocabulary size, KerBS takes twice as long as vanilla softmax for one epoch.

6 Conclusion

Text generation requires a proper embedding space for words. In this paper, we proposed KerBS to
learn better embeddings for text generation. Unlike traditional Softmax, KerBS includes a Bayesian
composition of multi-sense embedding for words and a learnable kernel to capture the similarities
between words. Incorporating KerBS into text generation could boost the performance of several text
generation tasks, especially the dialog generation task. Future work includes proposing better kernels
for generation and designing a meta learner to dynamically reallocate senses.
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A Proofs

Lemma A.1. KerBS has the ability to learn the multi-sense property. If the real distribution of
context vectors is composed of several disconnected parts, KerBS components will learn to represent
as many as these parts.

Proof. We only prove the simplest situation under traditional inner product kernel. We assume
that the real context vectors of the ¢-th word are composed of two disconnected parts and it is also
allocated with two KerBS senses. We also assume that part 1 has already been represented by sense
(i,1),1.e., P(s = (i, 1)|y = i) — 1 for hy in part 1. Then for the second newly allocated sense (i, 2),
we find

z(hy - w2 (R - w2
oL _ z dlog(Softmax(hy - w?)) n Z Olog(Softmax(hy - w?))

— 1
ow? - ow? . ow? (1
B Z Riexp(hy - w?)hy )
- " (exp(hy - w}) + exp(hy - w?))(exp(hy - w}) + exp(hy - w?) + Ry)
w2
Ryexp(hy - wi)ho 3)

+ 2 Ceapli )+ contla -ud)eap(ha - wl) ¥ erpllia wD) ¥ o)

where h and hq are context vectors in part 1 and 2, respectively. R; = > exp(h; - wf) for all senses

except (i,1) and (i, 2). As part 1 has already be well represented by sense (i, 1), exp(hy - w}) should
be much larger than exp(hy - w?).

Then
exp(hy - w?)

?

<e. 4)

exp(hi - wy) + exp(hy - wy)

As aresult part 1’s attraction (line to w? is much smaller than part 2 (line , and w? will move
towards part 2.
O

Lemma A.2. KerBS has the ability to learn model variances. For distributions with larger variances,
KerBS learns larger 6.

Proof. We will only give a heuristic proof for the situation where 6 is a small positive number. The
proof is also done under single-sense condition. If § is in other intervals, the proof will be more
complex, but the ideas are the same.

From the definition of L,
L= log(P(y: = f:;0)), 5)
t
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where ), is the the expected output for 3;, and we temporarily hide other parameters.
We can derive the partial derivative of £ with respect to 6;:
oL . 3]C9(ht,wi) . 8’C9(ht,wi)
90, > (1—P(yt=Z))T— > P(yt:z)T. (6)

t,ge=1i t,ge Al

When 6 is small, we can approximate a by the following equation:

—0 —0 1
= ~ 5 =——. 7
“ 7 2(exp(—0) + 0 - 1)) 20-04+% +60-1))) 0 ™
Approximately,
KCollhe,ws) o — 5 (exp(~icose) 1), ®
M o i(exp(—é’icost) —-1) - l(—cost exp(—0;cost)), 9)

00; 6? 0;
where cos(hy, w;) is abbreviated as cos;.

Because cos(h, w;) is usually small for §; # ¢ we can ignore the second part of Eq. @ So the
optimal value for 6 is approximately a solution to Eq. (I0).

0K (he,w;
S (1 - Py = ip 2ol (10)
— 00;
t,ge=1
Then,
F= Z (1 - P(y =1))(exp(—0;cosy) — 1 + 0;cosrexp(—0;cos:)) = 0, (11
t,gr=1 P

Hence, when cos; gets smaller, 6; tends to increase, since a‘zf: ;t % > 0 when cos; > 0 and cos;
A k2

is usually positive when ¢, = ¢. So when distribution variance increases, cos; tends to decrease,
because context vectors are farther from the mean vector. As a result, 8; will increase. ]

B Experiment Details

Scoring Standard for Human Evaluation The volunteers are asked to score responses generated
by all models according to the following standard:

e Score 0 : response which is neither fluent nor relative to the input question.

e Score 1 : response which is either fluent or relative to the input question, but not both.

e Score 2 : response which is both fluent and relative to the input question.
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